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Hemorrhage, or massive blood loss, continues to be a leading cause of preventable death.
Therapeutic approaches that protect vital organ function are needed to improve outcomes from
hemorrhage. In this dissertation, I explored the use of hemodynamic oscillations below the
respiratory frequency (i.e., oscillations in arterial pressure and cerebral blood flow) as a novel
technique for protecting tissue oxygenation during hemorrhage. In the first study of this
dissertation, I hypothesized that hemodynamic oscillations would contribute to improved
tolerance to central hypovolemia simulating hemorrhage. In further assessing the role of arterial
blood gases on the physiological responses to forcing hemodynamic oscillations during a
simulated hemorrhage, I hypothesized that forcing hemodynamic oscillations during simulated
hemorrhage would protect tissue oxygenation during conditions of hypoxia and isocapnia, and
improve cerebral blood flow. I also hypothesized that this protection would occur equally for
both females and males. To address these hypotheses, I conducted five independent studies using
lower body negative pressure as a method of simulating hemorrhage in healthy, conscious
humans: in one study I utilized a maximal step-wise LBNP protocol to assess endogenous
hemodynamic oscillations and tolerance to simulated hemorrhage, and in the remaining 4
studies, I utilized oscillatory and non-oscillatory LBNP to assess the potential therapeutic utility

of forcing hemodynamic oscillations during simulated hemorrhage.



The major findings from these investigations were: 1) greater amplitude of low frequency
oscillations in arterial pressure are associated with greater LBNP tolerance, but the relative time
to peak oscillatory power was not dependent on tolerance; 2) forced hemodynamic oscillations
protect cerebral tissue oxygenation without protecting cerebral blood flow during the combined
stress of simulated hemorrhage and hypobaric hypoxia; 3) isocapnia with simulated hemorrhage
prevents the reduction in cerebral blood flow and tissue oxygenation, and forced hemodynamic
oscillations during this stress protects stroke volume and arterial pressure; 4) females exhibit
protected muscle tissue oxygenation to simulated hemorrhage, and the reduction in muscle tissue
oxygenation in males can be attenuated with forced hemodynamic oscillations; and 5) forced
hemodynamic oscillations at high altitude are greater in amplitude and result in similar
protection of cerebral tissue oxygenation as low altitude conditions.

These findings contribute to the growing body of literature highlighting the potential

utility of oscillatory hemodynamics for therapeutic application.
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CHAPTER 1

LITERATURE REVIEW

The cardiovascular system is tightly regulated to maintain the delivery of oxygen and
nutrients to metabolically active tissues, and the removal of waste products. Both intrinsic and
extrinsic mechanisms regulate the cardiovascular system to facilitate the matching of blood flow
to metabolic demand, including neurogenic, myogenic, and humoral control. Given the
complexity and interactive nature of these multiple physiological inputs, there is inherent
variability in the measurable indices of the cardiovascular system (such as heart rate, arterial
pressure, and blood flow), hence the term “hemodynamic”. This variability can occur across
multiple time scales, and is associated with a variety of underlying physiological mechanisms.
Aside from the term “variability”, there are numerous other terms used for describing
hemodynamic variability in the literature, such as pulsatility, fluctuations, and oscillations. For
this review, a definition of each term being used will be provided to enhance clarity.

While now common knowledge, in 1733 Stephen Hales was the first to directly measure
arterial pressure (in the horse), and recognize both its magnitude and pulsatile nature that was
coincident with the heart beat (1). Fluctuations in blood vessel diameter occurring at a rate
slower than the heart beat were recognized as early 1853, and were concomitant with changes in

blood flow at the same rate (2). Since these early fundamental observations, research examining



cardiovascular variability has expanded across many parameters such as heart rate and R-R
intervals, arterial pressure, systemic and microvascular blood flow, and even tissue oxygenation,
and the range and complexity of analytical approaches has also grown. When examined,
hemodynamic variability can provide important information beyond that of a single or series of
average measurements, and can improve our understanding of regulatory mechanisms of the
cardiovascular system (3, 4).

It is important to note that when hemodynamic variability is assessed, a wide array of
timescales can be examined. These time frames range from very fast beat-to-beat measures,
down to very slow visit-to-visit variability, which can be measured week-to-week, month-to-
month, over 6 month intervals, or even over years (5). Intermediate time scales can also be
explored including variability due to respiration, sympathetic activity, vasomotion, hormonal
cycles, and circadian rhythms (6). For a more comprehensive assessment of measures of blood
pressure variability over slower timescales (e.g., visit-to-visit), the reader is referred to reviews
focused on this topic (4, 7). There has also been extensive investigation into the physiological
mechanisms (8-10), and the potential clinical application, of heart rate variability for diagnostic
and treatment purposes (11-15), but this is also beyond the scope of the current report. The focus
of this review is on short term variability of arterial pressure and blood flow, measured over
minutes, and within frequency ranges typically centered around 0.1 Hz (low frequency) and 0.05
Hz (very low frequency), which equate to 10-s and 20-s cycles. The physiological mechanisms
underlying variability within these time scales will be explored, including how these

measurements can be used for clinical diagnostic and treatment purposes.



Methods for Quantifying Hemodynamic Oscillations

Various methods have been developed for quantifying the oscillatory characteristics of
cardiovascular parameters using techniques in both the time domain and frequency domain.
Within the time domain, measurements such as standard deviation (10), coefficient of variation,
root mean squared standard deviation, Poincare plots (16, 17), complex demodulation (18), and
pulsatility indices (19, 20) (such as Gosling’s pulsatility index for cerebral blood velocity (21))
are commonly used. While time domain metrics are relatively easy to calculate, and helpful as a
measure of general cardiovascular variability, they are limited in that the time scale of the
variation within a signal is absent, and subsequently, the physiological underpinning of the
variability is not always apparent.

More complex methods have been developed for distinguishing variability at different
time scales, which can then be related to physiological mechanisms (e.g., via pharmacological
blockade). Most popular among these methods is the Fourier transformation (9, 22-26), but other
methods such as autoregressive techniques and wavelet analysis have also been employed (7, 27,
28). Using these advanced analytical techniques, the oscillations occurring at various frequencies
within a time series signal can be extracted (both frequency and amplitude characteristics; see
figure 1). These techniques can be categorized as “frequency domain” or “spectral analysis”

approaches, and have a number of strengths and weaknesses that should be considered (29).



Amplitude

Figure 1. Representation of a cardiovascular time domain signal and the various oscillatory
components that can be extracted from this signal at different frequencies of interest.

If the red signal was arterial pressure, the pink tracing would be related to heart rate and would
occur at around ~1 Hz (for a heart rate of 60 beats/min); the green signal would be related to
respiratory effects on arterial pressure, occurring between 0.15-0.5 Hz (9-30 breaths/min); the
blue signal would be related to the effects of sympathetic activity on arterial pressure, occurring
at ~0.1 Hz (6 cycles/min, or 10-s cycle); and the yellow tracing would be related to the
myogenic/neurohumoral effect on arterial pressure, occurring at ~0.05 Hz (3 cycles/min, or 20-s

cycle).

The fast Fourier transform can be used to generate frequency spectrums over a given time
interval (dictated by the user), but without any localization of when a particular frequency of

oscillation is occurring in time (aside from the specific time frame that was selected for analysis).



This approach can be used to capture the total variability in a time series directly, both at a
specific frequency of interest, or across a range of frequencies (i.e., broadband) (22). A further
limitation to this approach is that the oscillatory frequencies and amplitudes of cardiovascular
signals can change over time (non-stationarity), which can either dilute or broaden estimates of
amplitude (or power) around a frequency range of interest (27).

Autoregressive techniques create a statistical model of the time series by regressing a
measurement at one time point by another measurement from a previous time point, and
subsequently estimating the frequency spectrum (30). An advantage to this approach is finer
resolution within the frequency domain compared to the Fourier transform, allowing for
improved identification of peaks within the frequency spectrum (31). A critique to using this
method, however, is that the frequency domain measures are not generated directly from the
measured time series but are estimated from the time series, and the order of the model (how
many samples from the past are included in the prediction) must be explicitly chosen, both of
which could introduce error (29, 32).

Wavelet analysis of time series data provides both measures of magnitude at different
frequencies, and localization of these frequencies in time (28, 29). This could, for example, allow
for the identification of when in time arterial pressure has the largest amplitude of oscillation
within a given frequency range during a physiological stress, and is better suited for non-
stationary data (33, 34). Use of the wavelet transform, however, requires greater familiarity with
the technique for accurate implementation (for example, choosing the correct wavelet for
analysis). Of these advanced approaches, the Fourier transformation is the most well-known and
widely used throughout the signal processing, physiology, and clinical literature. Regardless of

the method, however, spectral analysis of hemodynamic time series data provides important



information that is otherwise lost when simply calculating the averages of these time series (3, 4,

35).

Mechanisms of Oscillations in Arterial Pressure and Blood Flow

The waveform oscillations shown as an example in figure 1 are due to different
underlying physiological mechanisms. In brief, oscillations around 1 Hz are due to the cardiac
cycle (for a heart rate of 60 beats/min), around 0.2 Hz are due to respiration (for a respiratory
rate of 12 breaths/min), around 0.1 Hz are due to sympathetic activity (36), and around 0.05 Hz
are likely due to a number of circulating and local vasoactive substances, or may be the result of
the intrinsic constriction and relaxation of smooth muscle around the arterioles (i.e., myogenic
control) (37).

Oscillations in arterial pressure have been widely assessed in the literature for potential
use as a non-invasive biomarker of physiological function, such as sympathetic activity (36, 38-
41), or as an index of condition severity such as in stroke (42, 43). Much of the literature
surrounding oscillations or variability in arterial pressure focuses on negative clinical outcomes
in a myriad of conditions, including transient ischemic attack, stroke, and hypertension (7, 43-
45). However, this focus on the negative consequences of arterial pressure variability may be an
oversimplification, as variability occurs across different time scales, with different underlying
mechanisms and consequences. Day-to-day or visit-to-visit variability, often focused on in the
clinical literature, may indeed represent hemodynamic instability and impaired physiological
function (4). Studies assessing beat-to-beat metrics of variability focused around the cardiac
frequency (~1 Hz), also known as pulsatility, have also shown associations with negative clinical

outcomes, such as stroke (46-48). However, while associations between blood pressure



variability and poor clinical outcomes are prevalent in the literature, experimental evidence
demonstrating a causative role between high blood pressure variability (including around the 0.1
Hz frequency) and organ damage is lacking. Indeed, this variability may occur secondary to the
initial insult, so may be an indicator of overall damage rather than the being the cause of the
damage. We contend that it is also possible that oscillations around 0.1 Hz are present with
disease and/or compromised physiological states as a compensatory mechanism, rather than the
cause of the damage (see “Blood Flow Oscillations and the Protection of Tissue Oxygenation”
section for details). More research is needed to elucidate this potential “cause and effect”
relationship.

Early observations of oscillations in arterial pressure below the respiratory frequency
were made in experimental conditions of reduced tissue perfusion (38, 49). Notably, Arthur
Guyton and colleagues conducted a series of studies in dogs, seeking to understand the source of
these oscillations (38). After removing 25% of total blood volume via hemorrhage, Guyton and
Harris observed consistent “waves” in blood pressure occurring at ~0.04 Hz (~25-s cycles),
which then disappeared when the animals were heavily sedated with sodium pentobarbital or
with denervation of the baroreceptors, both of which block direct neural regulation of the
vasculature (38); hence this was postulated as an underlying mechanism for the oscillations.
Auer & Gallhofer conducted a series of studies in cats to observe the oscillatory characteristics
of the blood vessels in the brain during different physiological stimuli (e.g. hemorrhage,
hypercapnia, hyperoxia, sympathetic blockade/stimulation), and noted consistent oscillations at
various frequencies including 5-8 cycles/min (~0.1 Hz) (50). More recently, oscillations around
0.1 Hz (6 cycles/min) were experimentally observed in the cerebral microcirculation at rest and

during hemorrhage in rats (51). Hudetz et al. demonstrated that ~0.1 Hz oscillatory amplitudes of



cerebral blood flow (assessed via microcirculatory flux with laser Doppler flow) consistently
increased with progressively decreasing mean arterial pressure. Much of the research following
these experiments has sought to further investigate the physiological mechanisms responsible for
the arterial pressure and blood flow oscillations.

Mechanistically, short-term oscillations in arterial pressure below the rate of respiration,
and the resulting oscillations in blood flow, may be linked to different physiological systems
depending on the species under investigation (36, 52, 53). Rhythmic oscillations in blood vessel
diameter or vascular tone (often referred to as “vasomotion”) are an important contributor to the
oscillations observed in arterial pressure and blood flow. Vasomotion can occur intrinsically, or
via extrinsic stimuli, so serves as a “control site” where other physiological systems can then
modulate the frequency and amplitude of hemodynamic oscillations. Observations of vasomotion
at frequencies below the rate of respiration, date as far back as 1853 when T. Wharton Jones
documented oscillations in the diameter of bat wing venules at a rate of 10 cycles per min (~0.17
Hz) at rest (2). The range of vasomotion frequencies varies based on location of the vessels
within the arterial tree, and the animal species. In a study of hamster skinfold preparations, larger
arterioles (ranging from 50-100 um) dilate and constrict 2-3 times per minute (0.03-0.05 Hz),
while terminal arterioles dilate and constrict anywhere from 10 up to 25 times per minute (0.17-
0.42 Hz) (54). While similar systematic studies have not yet been conducted in humans, in
studies using laser Doppler flux in human skin at rest, oscillations have been demonstrated
within the microvasculature at various frequencies within the range of 0.005-2.0 Hz (55). These
oscillations appear to be intrinsic to the vascular wall (56), and are altered by physiological
inputs, such as neural and hormonal factors, including local calcium currents (assessed via

calcium imaging), sympathetic stimulation, and release of vasoactive factors (54, 57, 58).



Stauss and Kregel (59) explored how stimulation of the sympathetic nerves at frequencies
between 0.05 and 2 Hz in conscious rats would affect arterial pressure oscillations and
mesenteric blood flow. Splanchnic nerve stimulation in these rats generated blood pressure and
blood flow oscillations between 0.2-0.5 Hz (59). In comparison, the frequency of
sympathetically mediated oscillations in arterial pressure and blood flow in humans is around 0.1
Hz (36, 53). The relationship between sympathetic activity and oscillations in arterial pressure
has been explored in humans during increasing steps of central hypovolemia and hypotension
induced by lower body negative pressure (LBNP) (60). In this study, Cooke et al. demonstrated
an increase in muscle sympathetic nerve activity (measured directly by microneurography) when
diastolic arterial pressure decreased. Importantly, this hypovolemic stimulus resulted in increased
amplitude of oscillations in the 0.04-0.15 Hz range for both diastolic arterial pressure and muscle
sympathetic nerve activity (presumably eliciting vasomotion at the same frequencies), as well as
increased coherence between diastolic arterial pressure and muscle sympathetic nerve activity
within this frequency range. Furthermore, Cevese et al. performed alphai-adrenoreceptor
blockade in supine resting humans using Urapidil, and showed a decrease in arterial pressure
oscillations at around 0.1 Hz, adding further evidence for the role of the sympathetic nervous
system in generating these oscillations (61).

In the skin vasculature of rats, Stauss et al. determined that sympathetic oscillations
occurred between 0.05-0.075 Hz (62). In comparison, when stimulating the median nerve skin
sympathetic fibers in humans across frequencies from 0.01-0.5 Hz, Stauss et al. showed that skin
blood flow (indexed via measurement of skin laser Doppler flux) oscillated between 0.075-0.1
Hz (63), suggesting that sympathetic activity was also responsible for the generation of these

oscillations. However, there is some contention about the sympathetically-induced oscillatory



range of skin vasomotion in humans, as vasomotion in the 0.02-0.05 Hz range was also reduced
in human denervated skin flaps compared to an innervated control skin site (assessed via laser
Doppler flux) (64). Interestingly, Salvi et al. observed an increase in skin vasomotion at 0.1 Hz
(also assessed by laser Doppler flux) in humans during high altitude ascent to 5050 m, a stimulus
known to increase sympathetic activity (65). Collectively, these studies demonstrate two
important characteristics of hemodynamic oscillations in arterial pressure and blood flow: 1) they
occur at different frequencies between various vascular beds, and; 2) they occur at different
frequencies for different species.

For oscillations in arterial pressure and blood flow occurring in the very low frequency
range (i.e., around 0.05 Hz in humans), the exact mechanism/s of generation are more complex.
In isolated blood vessels, rhythmic, spontaneous oscillations in tone have been observed,
demonstrating that the machinery necessary to produce oscillations is intrinsic to the vessels,
leading to an oscillatory myogenic response in the arterioles (56, 66). For example, when using
an L-type Ca?" channel blocker (nifedipine) to prevent the myogenic response, very low
frequency (0.02-0.2 Hz for rats) oscillations in blood pressure are reduced in conscious rats at
rest (37). Similarly, when oscillations in arterial pressure are induced via periodic occlusion of
the abdominal aorta in rats, Ca?>* channel blockade (via nifedipine) suppresses the amplitude of
oscillations between 0.008-0.05 Hz (67). In humans, Ca®* channel blockade (via nimodipine)
reduced resting oscillations in arterial pressure and cerebral blood flow between 0.02-0.07 Hz
(68), but did not affect the amplitude of forced oscillations at 0.05 Hz (induced via application of
oscillatory LBNP) (69). Interestingly, in a similar study, also in humans, Ca?* channel blockade
via nicardipine augmented forced arterial pressure oscillations across the 0.03-0.08 Hz range

(again via oscillatory LBNP), but had no effect on cerebral blood flow oscillations (70). Blood
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pressure and blood flow oscillations within this very low frequency range are mechanistically
complex, however, because they are influenced by a number of factors other than just variations
in myogenic tone (71). Pharmacological blockade studies in animals and humans have also
suggested an influence of the renin-angiotensin system (72), endothelial nitric oxide (73), and
even circulating catecholamines (74) on the generation of very low frequency oscillations in
arterial pressure and blood flow.

While there is a paucity of experimental evidence about the physiological role of
oscillatory arterial pressure and blood flow, the evidence that does exist revolves around the
possible protection of tissue oxygenation, and improved clearance of interstitial fluid. These

topics will be the focus of the next sections of this review.

Blood Flow Oscillations and the Protection of Tissue Oxygenation

While past research efforts have focused on the mechanisms contributing to
hemodynamic oscillations at ~0.1 Hz, there is accumulating evidence pointing to a possible role
of these oscillations in the protection of tissue oxygenation. Recent evidence has alluded to a
potential benefit of 0.1 Hz oscillations in arterial pressure and blood flow in humans in a model
of reduced tissue perfusion, via application of LBNP. Rickards et al. compared the arterial
pressure and cerebral blood velocity responses of human participants who were classified as
“high tolerant” (N=93) or “low tolerant” (N=42) to a maximal LBNP protocol, which was
terminated with the onset of presyncopal signs and symptoms (26). When comparing the final
common LBNP stage between these two groups, high tolerant participants were found to have
higher low frequency (0.04-0.15 Hz) power (i.e., amplitude) in mean arterial pressure and middle

cerebral artery velocity (MCAV), an index of cerebral blood flow, when compared with low
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tolerant participants. One limitation in this approach is the inability to measure the amplitude of
these oscillations continuously over time (see section above on methods for quantifying
hemodynamic oscillations). To address this limitation, I measured the amplitudes of
hemodynamic oscillations over time in high and low tolerant participants using the wavelet
transform approach (Specific Aim 1; Chapter I1). Another limitation of this study was the
observational nature of the experimental design, where spontaneous hemodynamic oscillations
were retrospectively assessed, rather than induced or blocked to assess the “cause and effect” of
oscillations on tolerance to central hypovolemia.

To address this limitation, Lucas et al. developed a protocol to induce hemodynamic
oscillations at 0.1 Hz by coaching participants to breath at a frequency of 6 cycles per min (75).
Participants then underwent a test to presyncope (via head-up tilt plus LBNP) with paced
breathing at 0.1 Hz, or spontaneous breathing (average respiration rate was 16-20 breaths/min
(0.26-0.30 Hz) across the protocol). Importantly, the amplitude of 0.1 Hz oscillations increased
during the paced breathing protocol for both mean arterial pressure and MCAv compared to the
spontaneous breathing condition, demonstrating that robust low frequency hemodynamic
oscillations can be induced experimentally via physiological maneuvers. As a result, tolerance
time to head-up tilt plus LBNP was increased during the paced breathing protocol by ~4.5 min.
There was also an attenuated rate of decline in mean arterial pressure and MCAvV during the
paced breathing protocol, hinting at a protection of cerebral blood flow.

When considering the findings of these two studies (26, 75), it should be noted that the
impact of the increased amplitude of oscillations in arterial pressure and cerebral blood flow on
cerebral tissue oxygenation was not measured. Accordingly, potential mechanisms contributing

to improved tolerance to central hypovolemia were speculative. To address this limitation, we
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have assessed the responses of both cerebral blood velocity and cerebral tissue oxygenation
while inducing hemodynamic oscillations at specific frequencies (76). Unlike Lucas et al. (75),
who utilized the physiological maneuver of breathing to induce hemodynamic oscillations, we
used the physical maneuver of oscillating LBNP chamber pressure at two frequencies of interest:
0.1 Hz (which is related to the effects of sympathetic activity on blood pressure) and 0.05 Hz
(which is somewhat related to the effects of myogenic activity on blood pressure; see discussion
in section above). Importantly, we first induced a state of central hypovolemia by initially
decreasing chamber pressure to -60 mmHg (simulating a blood loss of ~15 ml/kg (77)), then
applied the oscillations for ~10-min. Accordingly, participants completed three experimental
conditions: 1) a static profile where LBNP chamber pressure was lowered to -60 mmHg and held
constant (0 Hz); 2) a 0.1 Hz oscillatory condition where chamber pressure was lowered to -60
mmHg and then oscillated between -30 and -90 mmHg every 5-s (10-s cycle), and; 3) a 0.05 Hz
profile, similar to the 0.1 Hz profile except with 10-s at -30 and -90 mmHg chamber pressures
(20-s cycle). This experimental design ensured that participants were exposed to the same
average LBNP of -60 mmHg for each profile. We observed protection of cerebral tissue
oxygenation of about 2-3% during oscillatory LBNP at both the 0.1 Hz and 0.05 Hz frequency
compared with the control profile, which was also coincident with improved tolerance to the
LBNP stimuli (i.e., prolonged time without experiencing presyncopal signs or symptoms).
Surprisingly, this protection of cerebral tissue oxygenation occurred without the simultaneous
protection of cerebral blood flow indexed by MCAv, suggesting no difference in delivery of
oxygen through the major intracranial arteries. 4 limitation in this design is the index of cerebral
blood flow through the MCA. Transcranial Doppler ultrasound does not allow for the

measurement of blood vessel diameter, and is therefore limited to only velocity measures. To
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address this limitation, I measured the internal carotid artery (ICA) flow utilizing duplex
Doppler ultrasound (Specific Aim 2, Chapters Il and IV), which enables the measurement of
both velocity and diameter in the ICA. In this way, blood flow can be calculated to assess the
effects of hemodynamic oscillations on blood flow to the brain.

These observations in humans are corroborated with evidence from both mathematical
models and empirically via animal experiments, examining the effect of low frequency
oscillations in microvascular diameter and blood flow on tissue oxygenation. Using
mathematical models, Tsai and Intaglietta were among the first to propose a role for vasomotion
in protecting tissue oxygenation (78). Using a model of Krogh cylinder geometry, which is a
simplified model of tissue around a capillary, coupled with oscillating red blood cell flux through
this cylinder, they determined that vasomotion could create a pump-like effect in the
microvasculature, where brief periods of high red blood cell velocity and high hematocrit could
extend perfusion of oxygenated blood further into tissues compared to conditions of no
vasomotion. This phenomenon was further evaluated by Goldman and Popel using another series
of computational models based on the capillary network of a hamster cheek pouch retractor
muscle (79). When accounting for the varying amplitudes and frequencies of vasomotion, the
presence or absence of myoglobin, and tissue metabolic rate, the authors confirmed that
vasomotion could produce similar effects as those stated by Tsai and Intaglietta (79). The most
pronounced improvement in oxygenation from their models occurred with vasomotion between
1.5-3 cycles per minute (0.025-0.05 Hz), in tissues that are relatively hypoxic (modeled by a
computational doubling of oxygen consumption), and do not contain myoglobin (with important
implications for the brain, which also does not contain myoglobin). In both computational

studies, increasing amplitude of vasomotion increased the tissue oxygenation. One of the only
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studies to experimentally assess the effects of vasomotion on tissue perfusion was by Riicker et
al., using a rat model with stepwise reductions in femoral artery blood flow (80). In response to
reduced femoral artery blood flow, vasomotion at about 2 cycles per minute, or 0.03 Hz,
spontaneously occurred in the skeletal muscle vasculature. When vasomotion was blocked via
administration of a Ca?" channel blocker (felodipine), perfusion in the skeletal muscle was
maintained, but surrounding tissues (skin, subcutis, and periosteum), which had previously been
protected by vasomotion, experienced a reduction in tissue perfusion as measured by functional
capillary density. This protection may be due to cyclical increases in blood velocity and
hematocrit being perfused into the capillaries as a result of vasomotion, which may allow for
improved oxygen distribution throughout the tissue (54, 81).

Figure 2 shows the potential mechanisms of protection with increased amplitude of
arterial pressure and blood flow oscillations (both endogenous and forced). At rest, intrinsic
vasomotion creates localized and cyclical increases in red blood cell velocity and hematocrit
within the microcirculation (81). During conditions of reduced tissue oxygenation such as
hemorrhage, this intrinsic vasomotion may be augmented and synchronized across a tissue with
the compensatory increase in sympathetic nerve activity. The subsequent increased amplitude of
blood flow oscillations could then create even greater waves of blood with increased hematocrit
and red blood cell velocity within the capillaries and facilitate a protection in tissue perfusion
and oxygenation (81). These waves of increased hematocrit and red blood cell velocity could
also account for improved functional capillary density during reduced perfusion. When
hemodynamic oscillations are forced, such as with LBNP, oscillatory amplitudes in arterial
pressure and blood flow are increased even further, which could then amplify the sympathetic

response and the subsequent oscillatory vasomotion effect within the microcirculation. While the
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evidence is currently limited, this potential mechanism for the protection of tissue perfusion with
oscillatory blood flow could be utilized in treatment of clinical conditions of tissue

hypoperfusion.

Potential Initiators of Hemodynamic Oscillations
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Figure 2. Proposed mechanism of improved perfusion and tissue oxygenation with
oscillatory blood flow.

Cyclical vasoconstriction (light red square) and vasodilation (light green square) creates brief
increases in red blood cell velocity and hematocrit (81). Several physiological/mechanical
mechanisms can initiate/enhance this response such as increased sympathetic activity, intrinsic
myogenic responses or myogenic responses to changes in arterial pressure and blood flow, and
forced arterial pressure and blood flow oscillations. In conditions of reduced perfusion (e.g.,
hemorrhage), oscillatory blood flow preserves functional capillary density (80). This effect is

enhanced when oscillatory arterial pressure and blood flow are forced systemically. Forcing
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oscillations in arterial pressure and blood flow would subsequently increase sympathetic activity

and increase hemodynamic oscillatory amplitude.

As a primary focus of this dissertation (Specific Aim 2), I will be assessing the utility of
forcing hemodynamic oscillations during simulated hemorrhage, as an example of a clinical
condition of tissue hypoperfusion. I will also be assessing the role of arterial blood gas
concentrations and biological sex on the utility of forced hemodynamic oscillations for
protection of tissue oxygenation during simulated hemorrhage. The first two studies in this aim
are focused on assessing the role of arterial blood gases during forced hemodynamic
oscillations. The last two studies in this aim will seek to further inform potential clinical
applications of forced hemodynamic oscillations by assessing the role of biological sex, and

potential differences between high and low altitude conditions.

Summary

Evidence regarding the role of hemodynamic oscillations as a mechanism to protect
tissue oxygenation is accumulating. To better characterize the timing of endogenous generation
of hemodynamic oscillations, and assess their role in tolerance to simulated hemorrhage, I have
compared the responses of high and low tolerant individuals with continuous measures of
oscillatory amplitude via the wavelet transform during LBNP to presyncope. To explore the
utility of these oscillations as a potential therapeutic, I have assessed the physiological effects of
inducing hemodynamic oscillations during simulated hemorrhage. In particular, I have explored

the use of these oscillations with consideration of arterial blood gases and biological sex. These
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studies provide important information for the future development of therapeutic applications

utilizing hemodynamic oscillations.
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SPECIFIC AIMS

Specific Aim 1: Determine whether the characteristics of endogenous low frequency
hemodynamic oscillations influences tolerance to simulated hemorrhage.

Hypothesis 1: We hypothesized that 1) the amplitude of low frequency (LF) oscillations in
arterial pressure and cerebral blood flow would be higher in participants with greater tolerance to
a presyncopal LBNP stress, and; 2) the time of maximum magnitude of LF oscillations would be
further from baseline for high tolerant vs. low tolerant participants.

Approach 1: In a group of participants subjected to presyncopal LBNP, the continuous wavelet
transform was used to quantify the magnitude of low frequency oscillations in arterial pressure
and middle cerebral artery velocity over time, and the relationship to LBNP tolerance was
explored. These participants were then separated into high and low tolerance groups and their
responses were compared in regard to maximum magnitude of LF oscillations in arterial pressure

and cerebral blood flow. This aim is addressed in Chapter II of this dissertation.

Specific Aim 2: Assess the effect of forced hemodynamic oscillations during simulated
hemorrhage on cerebral blood flow and tissue oxygenation, with consideration of arterial blood
gases and sex.

Hypothesis 2: Forcing hemodynamic oscillations during simulated hemorrhage will protect
cerebral and muscle tissue oxygenation, and cerebral blood flow. This protection of tissue
oxygenation will remain during conditions of altered blood gases (i.e., hypoxia and isocapnia),
and between the sexes.

Approach 2: Participants underwent simulated hemorrhage with and without forced

hemodynamic oscillations during both hypoxic (hypobaric hypoxia; Chapters III and VI) and
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isocapnic (clamped arterial PCO2; Chapter IV) conditions, to assess the effect of changing blood
gases on cardiovascular responses to forced oscillations. A comparison was also conducted to
assess the role of biological sex on cardiovascular responses to forced hemodynamic oscillations

(Chapter V).
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ABSTRACT

Greater amplitude of low frequency (LF) oscillations (~0.1 Hz) in arterial pressure and
cerebral blood flow, quantified by fast Fourier transform (FFT) analysis, have been associated
with higher tolerance to central hypovolemia. The FFT is reliable for analysis of stationary data,
which is an uncommon characteristic of hemodynamic data in conscious humans. The
continuous wavelet transform can also be used to quantify amplitudes of LF hemodynamic

oscillations, but allows for time localization, and is better suited for non-stationary data. We

28



hypothesized that 1) the magnitude of LF oscillations in mean arterial pressure (MAP) and
cerebral blood flow (indexed by middle cerebral artery velocity, MCAv) would be higher in
participants with greater tolerance to central hypovolemia induced via step-wise lower body
negative pressure (LBNP), and; 2) the time of maximum magnitude of LF oscillations would be
further from baseline for high tolerant participants vs. low tolerant participants. Healthy human
participants (N=22; 11 male, 11 female) underwent step-wise LBNP to presyncope. MAP was
measured via finger-photoplethysmography, and MCAv was measured using transcranial
Doppler ultrasound. The continuous wavelet transform was used to quantify the maximum
magnitude of oscillations in MAP and MCAW in the LF range (0.07-0.15 Hz). Presyncopal time
was positively correlated with increases in both MAP LF (r = 0.64, p=0.001) and MCAv LF (r
=0.45, p = 0.06) oscillations. Relative time to maximum magnitude of LF oscillations (where
1.0 is presyncope) was no different between high and low tolerant individuals for MAP (HT:
0.82+£0.13, LT: 0.66 £ 0.25; p=0.11) or MCAv (HT: 0.70 £ 0.27, LT: 0.72 + 0.25; p=0.91).
Overall, the increase in oscillatory amplitudes in the LF range for arterial pressure and cerebral
blood flow are positively associated with tolerance to central hypovolemia, despite no difference

in the relative timing of the maximum amplitude of these oscillations.

INTRODUCTION

Evidence accumulated over the past 30 years has alluded to a protective role of
oscillatory blood flow during conditions of reduced blood flow and/or hypoxia. Early work using
computational approaches provides evidence for a protection of tissue oxygen with oscillatory
blood flow when blood flow to the tissue is reduced (1, 2). Empirical evidence from Riicker et al.

furthered understanding of these oscillations using an animal model of reduced tissue perfusion.
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Tourniquets were used on the hindlimbs of rats to reduce blood flow through the Femoral artery
with or without calcium channel blockade (via felodipine). This model effectively induced tissue
ischemia with or without vasomotion (one mechanism for producing oscillatory blood flow).
Compared to reduced blood flow without vasomotion, vasomotion was shown to protect
perfusion of otherwise vulnerable tissue, as measured by functional capillary density (3). Recent
evidence from human studies has shown a protection of cerebral tissue oxygen saturation when
low frequency (LF; ~0.1 Hz) oscillations in arterial pressure and cerebral blood flow are induced
during a condition of cerebral hypoperfusion (via application of lower body negative pressure,
LBNP) (4, 5). Spontaneously occurring LF oscillations in arterial pressure and cerebral blood
flow have also been associated with improved tolerance to the cerebral hypoperfusion induced
by LBNP (6, 7).

A common method for quantifying oscillations or variability within the cardiovascular
system is the fast Fourier transform (FFT) (8-12). This technique allows for the quantification of
amplitude or power of oscillations at specific frequencies of interest. While a powerful tool, the
FFT has several limitations within the context of physiological systems. First, when used to
measure amplitude or power, FFT is most reliable for time-series signals that are stationary;
meaning the signal has a regular, predictable oscillatory pattern, without irregularities or
deviations from this pattern. However, stationarity is not a typical characteristic for many
cardiovascular variables under all conditions, such as blood pressure or blood flow, where
multiple intrinsic and extrinsic factors can alter oscillatory patterns (e.g., deep sighs, coughing,
occasional sympathetic activity bursts, hypoxia, etc.). Another important consideration when
using the FFT is that this method does not allow for the localization of when oscillations are

occurring in time. Instead, researchers are limited to assessing amplitude or power of a signal
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across the entire time frame for which the FFT was performed. For example, in the LBNP studies
referred to earlier, quantification of oscillatory amplitudes was limited to each 5-min step of
LBNP, which may not accurately pinpoint the precise time when amplitudes were highest.
Because this approach averages the data over a specific time frame set by the user, periods of
low oscillatory amplitude within this time frame may reduce the average oscillatory amplitude.
Other techniques have been developed to quantify the frequency components of a time-series
signal, including the wavelet transform. Importantly, the wavelet transform facilitates assessment
of both the magnitude and timing of oscillations. For a more detailed understanding of the theory
of the wavelet transform see the following reviews (13, 14).

In this study, we retrospectively analyzed data collected from multiple LBNP studies
using the wavelet transform approach, to leverage the advantage of isolating the timing of peak
oscillatory amplitude of arterial pressure and cerebral blood flow. We hypothesized that 1) the
amplitude of LF oscillations in arterial pressure and cerebral blood flow would be higher in
participants with greater tolerance to a presyncopal LBNP stress, and; 2) the time of maximum
magnitude of LF oscillations would be further from baseline for high tolerant vs. low tolerant

participants.

METHODS

Participants

Participants for this analysis were selected from a database of three experimental
protocols which were reviewed and approved by the North Texas Institutional Review Board
(Protocol Numbers: 2012-163, 2014-127, 2018-120). Data from these studies and participants

have been reported in prior publications which focused on independent research questions (15-

31



19). Participants were free from cardiovascular, respiratory, metabolic, or inflammatory diseases.
All participants were familiarized with the study protocol and equipment prior to providing
written informed consent. Participants abstained from exercise, alcohol, caffeine, and
medications 24-h prior to testing. Female participants were tested on days 1-4 of their menstrual
cycle (self-reported), or during the blank or no pill days if taking oral contraceptives. All

experiments were performed in the morning in a temperature-controlled laboratory (22-24°C).

Instrumentation

Upon arrival to the laboratory, participants laid supine in a LBNP chamber (VUV
Analytics Inc., Austin, TX) with their iliac crest in line with the opening of the chamber.
Participants were subsequently sealed into the chamber at the waist using a plastic sleeve and
neoprene waistband. Heart rate was monitored using a standard lead II configuration ECG
(shielded leads, cable and amplifier, AD Instruments, Bella Vista, NSW, Australia). Continuous
measurements of arterial pressure (Finometer, Finapres Medical Systems, Amsterdam, The
Netherlands) and stroke volume (ModelFlow®) were taken via finger photoplethysmography.
Transcranial Doppler ultrasound was used to obtain measures of middle cerebral artery velocity
(MCAv) by placing a 2-MHz probe (ST3, Spencer Technologies, Seattle, WA) on the right
temporal window, which was held in place by adjustable headgear. Cerebral tissue oxygenation
(ScO2) was measured via near-infrared spectroscopy over the temporal lobe (OxiplexTS; ISS,
Champaign-Urbana, IL, USA). End tidal gases (etO2 and etCO2) were measured using an oral-
nasal cannula connected to a gas analyzer (ML206 Gas Analyzer, AD Instruments, Bella Vista,

NSW, Australia). Respiration rate was detected from the continuous CO2 waveform.
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Experimental Protocol

Participants completed a LBNP tolerance protocol to presyncope. Following a 5-min
baseline, LBNP chamber pressure was lowered every 5-min to -15, -30, -45, -60, -70, -80, and -
90 mmHg, or until the onset of presyncope. The protocol was terminated when systolic arterial
pressure fell below 80 mmHg, or upon subject termination due to subjective symptomology (i.e.,
dizziness, light-headedness, nausea, sweating, grey-out). At protocol termination, chamber
pressure was immediately released, and participants were monitored for a 10-min recovery

period.

Data Analysis

Continuous data were collected at 1000 Hz (LabChart 8, AD Instruments, Bella Vista,
NSW, Australia) and saved for offline analysis using specialized software (WinCPRS, Absolute
Aliens, Turku, Finland). R-waves from the ECG were automatically detected and used to gate
the remaining cardiovascular waveform data. Beat-to-beat MAP and mean MCAv were
calculated as area under the curve from the continuous arterial pressure and MCAv waveforms.
After calculating respiratory rate from the CO2 waveform, participants who were breathing
below 10 breaths per minute were removed from the analysis to ensure that respiration was not
influencing the generation of hemodynamic oscillations in the LF range (i.e., 0.07-0.15 Hz or
4.2-9 breaths/min). Participants were also removed from the analysis if a large single breath was
taken during the protocol due to the resultant large swings in arterial pressure or cerebral blood
velocity, leading to noise in calculating oscillatory amplitudes. Given the observational nature of

this study, removing participants from analysis based on these criteria facilitates a clearer
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understanding of the specific outcome variables of interest, rather than trying to interpret data
that is affected by multiple simultaneous and uncontrolled physiological inputs.

Beat-to-beat MAP and mean MCAv data from the start of baseline to presyncope were
then imported into MATLAB (The MathWorks, inc., Natick, MA). MAP and mean MCAv were
resampled at 10 Hz using cubic spline interpolation. Both signals were high pass filtered with a
fifth-order Butterworth filter and cut-off frequency of 0.005 Hz, and then low pass filtered with
fifth-order Butterworth filter with a cut-off frequency of 0.8 Hz. This filtering process removes
noise from baseline shift and variability due to the cardiac cycle (20). The resulting signals were
10 Hz continuous MAP and mean MCAv from the start of baseline to presyncope for each
subject.

The continuous wavelet transform was then calculated for MAP and mean MCAvV using
the cwt() function with the Morlet wavelet in the wavelet toolbox of MATLAB. The absolute
value of the wavelet coefficients was used to calculate the magnitude of oscillations for each
frequency. The magnitude of oscillations within the low frequency range (0.07-0.15 Hz) was
then averaged at each sampling point to provide the magnitude of LF oscillations over time for
each subject. To identify periods of sustained oscillations, a 1-min moving average was
calculated from these signals, and the maximum of MAP and mean MCAv was identified.

The magnitude of LF oscillations at rest for MAP and mean MCAv was calculated by
averaging the magnitude of the wavelet coefficients for the last 3-min of baseline. The change in
LF oscillations was subsequently calculated as the difference between baseline magnitude and
the maximum magnitude divided by baseline magnitude and multiplied by 100. The relative
timing of maximum oscillatory magnitude was calculated by dividing the time at maximum

magnitude of oscillations by presyncopal time.
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For each participant, a 3-min average of ScO2 was taken at the end of baseline and a 10-
sec average was taken at the time of maximum magnitude in oscillations for both MAP and
MCAVv to understand the effect of pressure and blood flow oscillations on this variable. Lastly,
participants were classified as high tolerant (HT) if they completed the -60 mmHg stage of

LBNP (i.e., 1500-s) and low tolerant (LT) if they reached presyncope before this time.

Statistical Analysis

All statistical analysis was performed in R (R Core Team, 2021). Baseline demographics
and cardiovascular parameters were compared between tolerance groups using unpaired t-tests.
Welch’s t-tests were also used to assess differences between high and low tolerant groups when
there was non-homogeneity of variance in the data (i.e., relative increases in MAP and MCAv
magnitudes). Correlation coefficients between the magnitude of LF oscillations and LBNP
tolerance time were calculated using Pearson’s coefficients. Two-way linear mixed models with
subject as a random effect were used to analyze values over time between high and low tolerant
participants using the Ime4 package (21). Post-hoc testing was performed with the estimated
marginal means from the linear mixed models using the emmeans package (22). Specific
pairwise comparisons between tolerance groups at each time point and within tolerance across

time were performed and corrected using Holm’s method.

RESULTS

Of the original 52 participants who completed the LBNP experiments, 21 were removed
for consistent respirations rates below 10 breaths per min during LBNP. Of the remaining 31

participants, 9 recordings of MAP and 12 recordings of MCAv were removed for sudden large
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breaths that affected the frequency domain analysis, as previously indicated. Subsequently, 22
recordings of MAP and 19 recordings of mean MCAv were included in the final analysis. No
differences were observed in the baseline demographics or resting MAP or mean MCAv values
between tolerance groups (Table 1).

A representative tracing of the magnitude of MAP oscillations over time is shown in
figure 1. When assessing the relationship between presyncopal time and the maximum
magnitude of oscillations for MAP, a weak correlation was observed (r=0.37; p=0.09) (Figure 2,
panel A). However, when adjusting for the change from baseline in LF MAP oscillations, the
relationship between presyncopal time and the maximum magnitude of oscillations strengthened
(r=0.64; p=0.001) (Figure 2, panel B). There was no relationship between presyncopal time and
maximum magnitude of LF MCAv oscillations (r=-0.25; p=0.31) (Figure 2, panel C), but this
relationship also improved when assessed with the relative change from baseline (r=0.45; p=
0.06) (Figure 2, panel D).

After separating participants into high and low tolerance groups, the time from the start
of baseline to the maximum magnitude of LF oscillations for MAP and MCAvV was calculated.
As shown in figure 3, the absolute time from baseline at which maximum LF oscillations
occurred for both MAP and MCAv was longer for high tolerant participants compared to low
tolerant participants (Figure 3, panels A and C). As this response is likely due to higher tolerant
participants simply lasting longer through the LBNP protocol, a relative time to maximum LF
oscillations was calculated as described in the methods section. When using this approach,
maximum oscillations in MAP and MCAv occurred at a relatively similar time for both high and
low tolerant participants, although the between subject variability was much higher in the low

tolerant group (Figure 3, panels B and D).
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Finally, the magnitude of maximum oscillations (LF max) was compared between high
and low tolerant individuals. Both MAP and mean MCAv LF oscillations increased compared to
baseline for both tolerance groups (Figure 4, panels A & C), but there was no difference between
groups at baseline or at LF max. When calculating the change in magnitude of LF oscillations
from baseline, a greater increase was observed for high tolerant individuals for MAP (p=0.02)
but not for MCAv (p=0.15) (Figure 4, panels B & D). The reduction in ScO2 was minimal and no
different between the high and low tolerant groups at the time points of either the maximum

MAP oscillations or maximum MCAv oscillations (Figure 4, panels F & H).

DISCUSSION

The aim of this study was to examine the relationship between LBNP tolerance time and
the magnitude of LF hemodynamic oscillations using the wavelet transform approach. The key
findings of this study include: 1) presyncopal time is positively associated with the increase in
magnitude of LF oscillations in arterial pressure and cerebral blood flow, 2) this increase in
oscillatory magnitude occurs at a relatively similar time, regardless of tolerance to the LBNP
stress, and 3) high tolerant individuals exhibited a greater relative increase in arterial pressure LF
oscillations but not cerebral blood flow LF oscillations.

Rickards et al. was the first to associate increases in hemodynamic oscillations to
tolerance to the central hypovolemic challenge of LBNP (6). In response to the same step-wise
LBNP protocol as used in the current study, LF oscillations in MAP and mean MCAv were
quantified for each LBNP step using FFT. High tolerant individuals exhibited greater amplitudes
of MAP and MCAv LF oscillations compared with individuals with low tolerance at the final

common stage of LBNP (-60 mmHg), and during the final 3-min before onset of presyncope.
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Similarly, we observed an association between LBNP tolerance of an individual and the
maximum magnitude of MAP and MCAv LF oscillations. However, in this study the time point
of interest was not at any pre-determined step of LBNP; rather, the continuous wavelet transform
was used to identify the precise time where LF oscillations in MAP and MCAv were at their
greatest amplitude. Based on this analysis, we demonstrate that tolerance to LBNP is most
strongly related to the relative increase of LF oscillations in arterial pressure, and to a lesser
extent, cerebral blood flow (Figures 2 and 4). While Rickards et al. observed increases in both
MAP and MCAVv oscillations for the high tolerant group compared to the low tolerant group, we
observed a greater increase in oscillatory amplitude only for MAP in the high tolerant group.
Both the high and low tolerant groups experience similar decreases in ScO2 in our study, which
may be related to the similar amplitude of oscillations in MCAv. These data suggest that
oscillations in arterial pressure may be having other systemic effects outside of protecting tissue
oxygenation (such as augmenting sympathetic activity) that could contribute to LBNP tolerance.

In both the current study and the Rickards et al. study (6), high tolerant individuals had
greater amplitudes of oscillation during LBNP, but both high and low tolerant individuals
exhibited increases in arterial pressure oscillations from baseline. Endogenous generation of
arterial pressure oscillations around 0.1 Hz have been linked to the effects of sympathetic neural
activity on the cardiovascular system (23, 24). Convertino et al. measured the muscle
sympathetic nerve activity (MSNA) between high and low tolerant individuals to a similar step-
wise LBNP protocol (25). While both groups exhibited an increase in MSNA, the high tolerant
group exhibited a greater increase in MSNA at presyncope compared to the low tolerant group.
As MSNA increases in absolute terms with LBNP, oscillations in MSNA within the low

frequency range also increase, as does coherence between MSNA and arterial pressure
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oscillations (26). This may help to explain the results in our current study, where arterial pressure
oscillations displayed a similar response between tolerance groups albeit for a different absolute
time point during LBNP, where sympathetic activity was likely higher.

Two computational studies have linked the amplitude of hemodynamic oscillations
within the microvasculature with greater protection of tissue oxygenation (1, 2). Tsai and
Intaglietta (1) first developed mathematical models of vasomotion and its effect on tissue
oxygenation. In their model, amplitude of vasomotion (and the resulting flow through the
microvasculature) was modelled at £50% and £90% of the average flow. In their scenarios, the
larger amplitude of oscillations (modelled at £90% of the average flow) always produced a
greater protection of tissue oxygenation (1). Goldman and Popel expanded on these earlier
models to include hypoxic tissue without myoglobin, and compared the effect of varying
amplitudes of hemodynamic oscillations. Similar to Tsai and Intaglietta, greater amplitudes of
oscillations resulted in greater protection of tissue oxygenation (2). Experimental evidence of
this phenomenon is limited, however. While tissue oxygenation was not measured, early studies
have recognized a consistent increase in hemodynamic oscillations around 0.1 Hz during
hemorrhage. For example, Auer & Gallhofer described these oscillations in cerebral pial arteries
during hemorrhage in cats (27). Hudetz et al. took these observations further and quantified the
response across step-wise decreases in blood pressure via hemorrhage in rats (28). They
observed linear increases of oscillatory amplitude at around 0.1 Hz in microvascular flux
(measured via laser Doppler flux) with each decrease in arterial pressure.

Two of our studies have also assessed the effect of forcing hemodynamic oscillations in
arterial pressure and blood flow at 0.1 Hz in humans during a simulated hemorrhage. Our first

study utilized LBNP with or without superimposed oscillations at both 0.1 Hz and 0.05 Hz in
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chamber pressure in order to drive hemodynamic oscillations during a simulated hemorrhage (4).
This approach protected against reductions in cerebral and muscle tissue oxygenation compared
to a control, non-oscillatory condition. Subsequently, we repeated this study under the added
stress of hypoxia and found a similar protection in both cerebral and muscle tissue oxygenation
when arterial pressure and cerebral blood flow are oscillated at 0.1 Hz during simulated
hemorrhage (see Chapter III) (5). Hockin et al. also conducted a study in humans using
intermittent inflation of calf cuffs at ~0.07 Hz during the central hypovolemic challenge of
combined head-up tilt and LBNP (29). While arterial pressure, stroke volume, and cerebral blood
flow were protected, and tolerance to central hypovolemia was improved with cyclical leg cuff
inflations, the amplitude of subsequent oscillations in arterial pressure and cerebral blood flow
were not reported. It is known, however, that leg cuffs oscillating within the LF range can
produce robust oscillations in MAP and MCA at rest (30). Additional experimental evidence is
needed to compare the effects of varying amplitudes of hemodynamic oscillations on tissue
oxygenation under hypoperfused conditions.

In this study, the absolute time at which maximal LF oscillations occurred in MAP or
MCAv was further from baseline in the high tolerant vs. low tolerant participants. However,
when calculated as a relative time from baseline, there was no difference between tolerance
groups, and most participants exhibited the largest amplitudes of oscillations around 80% of the
way through their individual protocol (Figure 3). This finding suggests a similar relative time
profile for the maximal generation of endogenous LF oscillations regardless of tolerance.
Rickards et al. (6) measured LF oscillatory amplitudes in MAP and MCAv at each step of LBNP,
and showed that amplitudes of oscillations at the -60 mmHg stage of LBNP were higher in the

higher tolerant individuals compared to low tolerant individuals (6). The time course for these
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oscillations was not measured past -60 mmHg LBNP for high tolerant individuals, but our results
indicate that the amplitude of LF oscillations may continue to increase in high tolerant
individuals, at least in MAP. It may be that the general pattern of responses in LF oscillations is
similar between high and low tolerant individuals, except high tolerant individuals are able to

continue increasing LF oscillatory amplitude where low tolerant individuals cannot.

Methodological Considerations

Respiration rate and depth were not controlled in this study. To account for the effects of
respiration on hemodynamic oscillations within the LF range, participants were removed from
the analysis if they had a respiration rate below 10 breaths per min (i.e., 0.07-0.15 Hz or 4.2-9
breaths/min). This approach ensures that oscillatory amplitudes were not augmented by the
respiratory pump, focusing instead on sympathetically generated LF oscillations (23).
Participants were also removed from the analysis if a single large breath interfered with
identifying oscillations due to sympathetic activity. Previous studies in a canine model of
hemorrhage by Guyton and Harris, highlighted the effect of small perturbations in pressure (via
reinfusion of blood) during their hemorrhage protocol (31). Reinfusion of blood in these animals
triggered small chains of oscillations in arterial pressure that lasted between 15-30 seconds.
Similarly, when inspecting the individual recordings in our study, large breaths augmented
arterial pressure (via the respiratory pump) and triggered a short chain of oscillations in arterial
pressure and cerebral blood flow. This introduced noise into the analysis, as these oscillations
were sometimes of greater amplitude than the sympathetically induced oscillations occurring
independent of respiration. Application of these necessary exclusion criteria resulted in a reduced

number of participants in this study, but allowed for a more focused analysis, without the
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confounding effect of respiration on the outcomes of interest. Future studies should consider
explicitly examining the role of respiratory rate and/or depth on the generation of hemodynamic
oscillations, and the subsequent effect on tissue perfusion and oxygenation.

As this was a retrospective observational study, the amplitudes of the LF oscillations in
MAP and MCAv were not controlled. While we, and others, have demonstrated that increasing
the amplitude of hemodynamic oscillations in the LF range can improve tolerance to LBNP (4,
7), less is known about the effect of varying amplitudes of oscillations on hemodynamic
responses. Hamner et al. explored the relationship between forcing various oscillatory
amplitudes and frequencies in arterial pressure and cerebral blood flow via varied amplitudes and
frequencies of oscillatory LBNP (32). Participants in this study were exposed to oscillatory
LBNP at 3 frequencies (0.03, 0.05, and 0.1 Hz) and 2 amplitudes (0-20 mmHg and 0-40 mmHg).
Generally, the greater the amplitude of forced oscillations in LBNP, the greater the amplitude of
oscillations in arterial pressure and cerebral blood flow. However, these investigators did not
address the effects of oscillations on tolerance to LBNP or tissue oxygenation. Only Hockin et al.
has explored varying the amplitudes of forced oscillations via leg cuffs during a hypovolemic
stress, which demonstrated that greater amplitudes of oscillations in cuff pressures led to
increased tolerance to central hypovolemia (29). They did not, however, quantify the resulting
amplitudes of oscillations in arterial pressure or cerebral blood flow, or the effect on tissue
oxygenation. Future experimental work is needed in this area to understand the role of oscillatory
amplitude on physiological outcomes.

The data from this study demonstrates that 1) the greater the increase in amplitude of LF
oscillations in arterial pressure, the greater the tolerance to the central hypovolemia induced by

LBNP, but; 2) the relative time profiles for when the maximum amplitude of oscillations occurs
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is independent of LBNP tolerance. This indicates that therapies aimed at increasing low
frequency oscillations in arterial pressure and blood flow could provide therapeutic benefit in

extending tolerance to hypovolemic conditions, such as blood loss.
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Table 1. Demographics and baseline values for all participants (N=22), and participants

separated by tolerance group.

High Low P-value
All Participants
Tolerant Tolerant

N 22(I1M/I1F) 14(9M/5F) 8(2M/6F)

Age (y) 2543 25+3 2543 0.93
Height (cm) 166 = 10 168 + 10 163 = 10 0.23
Weight (kg) 68 + 14 69 + 14 68 + 13 0.83

MAP (mmHg) 94.8 + 10 943+10.9  95.7+8.8 0.74
MCAv (cm/s)  65.6 +13.0 620+ 114  72.0+13.8 0.11

Data are presented as mean + standard deviation. P-values are presented for unpaired t-tests
between tolerance groups. N, number of participants per group; MAP, mean arterial pressure;

MCAv, middle cerebral artery velocity.
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Figure 1. A representative example of the wavelet analysis.

The continuous wavelet function was performed on the resampled mean arterial pressure (MAP)
signal (grey line) and subsequently smoothed with a 1-min moving average (dark line). The last
3-min of baseline (red horizontal line) was used as a reference to detect the maximum magnitude

of oscillations during LBNP (red dot).
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Figure 2. Correlations between presyncopal time and magnitude of oscillations.

Both absolute (panels A and C) and relative (panels B and D) values for mean arterial pressure
(MAP) and middle cerebral artery velocity (MCAvV). Exact Pearson’s correlation (r) and p-values

are reported.
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Figure 3. Absolute and relative timing of LF oscillations in arterial pressure and cerebral

blood flow.

The absolute (panels A and C) and relative (panels B and D) time at which LF oscillations in

mean arterial pressure (MAP) and middle cerebral artery velocity (MCAvV) occurred for high and

low tolerant participants. Data were compared with a Welch’s t-test and the exact p-values are

reported. Data are presented as mean + standard deviation.
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Figure 4. The maximum magnitude of low frequency (LF) oscillations and influence on
cerebral tissue oxygenation.

Mean arterial pressure (MAP; A — absolute values, B — relative values from baseline), middle
cerebral artery velocity (MCAv; C — absolute values, D — relative values from baseline), cerebral
tissue oxygen saturation (ScO2) at maximum MAP oscillations (E — absolute values, F — relative
values from baseline) and at maximum MCAV oscillations (G — absolute values, H — relative
values from baseline). Absolute values were first compared using a linear mixed model for
repeated measures. Specific pairwise comparisons between tolerance groups at each time point
and within tolerance across time were performed and corrected using Holm’s method (A, C, E,
G). Relative changes were compared using Welch’s t-test (B, D, F, H). HT, high tolerant; LT,

low tolerant. Data are presented as mean + standard deviation, and exact p-values are reported
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CHAPTER I1I

Peaks and Valleys: Oscillatory cere