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Concurrent surface electromyography
and force myography classification
during times of prosthetic socket
shift and user fatigue
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Abstract

Objective: Surface electromyography has been a long-standing source of signals for control of powered prosthetic

devices. By contrast, force myography is a more recent alternative to surface electromyography that has the potential to

enhance reliability and avoid operational challenges of surface electromyography during use. In this paper, we report on

experiments conducted to assess improvements in classification of surface electromyography signals through the addition

of collocated force myography consisting of piezo-resistive sensors.

Methods: Force sensors detect intrasocket pressure changes upon muscle activation due to changes in muscle volume

during activities of daily living. A heterogeneous sensor configuration with four surface electromyography–force

myography pairs was investigated as a control input for a powered upper limb prosthetic. Training of two different

multilevel neural perceptron networks was employed during classification and trained on data gathered during

experiments simulating socket shift and muscle fatigue.

Results: Results indicate that intrasocket pressure data used in conjunction with surface EMG data can improve clas-

sification of human intent and control of a powered prosthetic device compared to traditional, surface electromyography

only systems.

Significance: Additional sensors lead to significantly better signal classification during times of user fatigue, poor socket

fit, as well as radial and ulnar wrist deviation. Results from experimentally obtained training data sets are presented.
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Introduction

Current state-of-art surface myoelectrographic
(SEMG) sensors allow amputees to control powered
prosthetic or robotic devices. These sensors determine
muscle activation in a user’s residual limb by sensing
electrical potential change.1 It has been extensively
reported that amputees have regained some lost func-
tionality through the use of multiple degrees of freedom
(DOF) of an upper-limb prosthetic.2 After the initial
learning curve to use the prosthetic, some users report
being able to successfully operate robotic hands which
include dexterous digits, thumbs, and wrist rotation.
Although current powered prosthetic devices provide

sufficient dexterity to open doors, grasp glasses and
bottles, and carry grocery bags,3 use of these devices
continues to be limited outside of the clinical
laboratory. Research is underway that will address
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human–robot interaction challenges and improve con-
trol of these devices.

Many prosthetic devices offer users control over only
a single DOF, thus reducing operational speed and
increasing task completion length. An example of
such a task used in clinical settings is to move a
number of small foam balls between two boxes, as
described in literature.2,4,5 In this case, it was reported
that the time needed to choose the desired action of the
powered prosthetic device, and switch between degrees
of freedom, comprises a significant portion of the over-
all duration of the task.6 And for a multi-DOF pros-
thetic device, a user is typically tasked with a tedious
switching burden to control one-DOF-at-a-time. To
improve usability, Pilarski et al.6 showed that auto-
matic DOFswitching could be learned by a control
system using an Actor Critic Model with data collected
from a SEMG system. This method predicts which
DOF a user is likely to control next through a
reinforcement learning algorithm. Improvements in
simulated tasks of daily life were reported, in particular
task completion times were reduced by approximately
14%.6 In this study, however, the user was only allowed
to quickly move between the relatively gross move-
ments of the elbow and wrist and was only able to
successfully function with two DOFs selected at any
given time.

Therefore, it is of considerable interest to expand
this work to finer and more dexterous movements.
However, practical limitations of SEMG sensing tech-
nology have often been cited as major challenges for
generalizing this approach to SEMG arrays. These limi-
tations include noise and signal degradation over time
depending on linear distances along the skin surface
above the muscle to be sensed,7–9 and differences
between limb poses during classification and training
data sets.10 User fatigue and sweat, perspiration
within the socket, can also cause a degraded EMG
signal.11–13 A method to compensate for signal losses
due to sweat was studied by Tomasini.14 EMG sensors
make use of the subject’s skin as a common ground.
This shared ground can be highly variable and cause
ground-loops; compensation and removal of the DC
Offset was found to be possible. Signal processing and
EMG signal classification for control purposes is still
an active research area, including spatial filtering15 and
methods of preprocessing data.16 Work in the areas of
Neural Networks,17,18 Gaussian Mixture Models,19,20

and other approaches have all produced incremental
improvements in signal classification.21–24

Relatively few studies have examined the addition of
other sensor input modalities to control upper limb
prosthetics. During training, Fougner et al. used accel-
erometer and an SEMG sensor to help classify grip
type.25 More recent studies interfaced an accelerometer

with EMG sensors.26,27 Others have proposed force
sensors placed in contact the skin used to detect the
changes in force and pressure within the socket due to
volumetric changes of the forearm. This technique also
known as force myography (FMG),28 residual kinetic
imaging (RKI),29 and muscle pressure mapping
(MPM)30 shows promise in providing an alternate
and additional input for signal classification. Craelius
et al. referred to this method as residual kinetic imaging
in 1999.29,31,32 Separately, Phillips described a device
with 32 pressure sensors, allowing a pair of lower-arm
(transradial) amputees to open and close a simulated
prosthetic hand. Forces measured at the interface of the
socket and skin surface of the residual limb were used
as control inputs.29 More recently, Radmand reported
making use of a simulated prosthetic socket with 126
pressure sensors to classify eight hand motion classes.
They called the technique ‘‘Muscle Pressure Mapping’’
(MPM).33 Fit of the prosthetic socket has also been
verified using ‘‘intrasocket forces’’34 and as a means
to estimate grip force.28

However, few works have taken multiple sensor
input modalities as control inputs into account.
Fougner et al.’s use of accelerometers and EMG sig-
nals is mentioned above. Time-domain features pro-
vided grip type information when combined with
linear discriminant analysis during arm motions
made by the subject; resting in a neutral position,
overhead, and outstretched to one side.25 Thus, pros-
thetic socket shift as the subject completed simulated
activities of daily life was said to be taken in to
account by the classifier. Force sensors were inte-
grated with SEMG to ‘‘address force induced arti-
facts when predicting grip-pressure’’, by Fougner,35

and showed promising results. Recently, data from
an accelerometer were fused with the data from 16
EMG sensors, initially described in Assad et al.26 and
followed up in Wolf et al.27 Control signals for a
mobile robot, ‘‘stop’’, ‘‘turn’’, ‘‘go’’, were the general
focus of the study, but the authors were able to map
specific arm gestures and move an actuated robotic
gripper.27 Applications in prosthetic control were not
explicitly explored. Practical discussions and consid-
erations for fusing accelerometer and EMG data were
presented by Radmand et al.30 The clinically imprac-
tical needs of training classifiers in a number of pos-
sible arm positions is discussed, referred to as
‘‘Dynamic training’’, and the otherwise very lengthy
time requirement for training was able to be mini-
mized somewhat.

In this paper, we report on the use of a combination
of SEMG and FMG) sensors along side a neural net-
work classifier to explore classification of data during
times of non-ideal prosthetic socket placement due to
fatigue, arm position or socket shift. A custom socket
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was created and fit with both SEMG and FMG acti-
vated during flexion and extension of the forearm. In
our previous work, we reported on the strong correl-
ation between single pairs of SEMG and pressure sen-
sors,36 which suggests that Force Myography is a good
complement to SEMG, and may help with correcting
its signal degradation over time. Other work has also
shown that it is possible to utilize FMG data in con-
junction with grip-selection interfaces.37 This paper
details expanded studies of SEMG and FMG data
fusion, utilizing a simplified multilayer perceptron feed-
forward neural network, experimentation with four
SEMG and four FMG collocated sensors as a user per-
forms flexion and extension motions of their dominant
wrist. Testing using only FMG data is beyond the scope
of this study, and proof-of-principle results can be
found in prior work36,37 and in the literature as men-
tioned above. Results show that classification results
can be improved by at least 3% for most cases, 8%
when classifying radial and ulnar deviation, and 35%
when a socket is shifted due to normal activities of daily
living.

Methods

Our previous study36 correlated volumetric changes of
the carpi flexor and carpi extensor muscles of the sub-
ject’s forearm, which then induced a detectable pressure
as applied to a sensor, to ‘‘ideal’’ locations of the
SEMG electrodes and ‘‘non-ideal’’ locations of the elec-
trodes. Linear offset, as measured across the surface of
the skin, has been shown to affect and degrade signal
integrity.7,8 Placement of the SEMG sensors in ‘‘ideal’’
locations on the flexor and extensor muscle bodies was
determined by a physical therapist in order to achieve
high-quality EMG data.

Flexion and extension actions were made by the sub-
ject and data were recorded. The socket and sensor pair
was then manually moved to ‘‘non-ideal’’ locations 1 cm
and 2 cm away from the previously determined ‘‘ideal’’
location as measured along the surface of the subject’s
skin in each of the four cardinal directions. The flexion
and extension movements were then repeated, data were
collected, and a signal classification schema built. This
proof of concept study has been repeated, expanded, and
results and discussion are seen below.

Experimental protocol

Experimental data from a single right-hand dominant,
healthy-limbed subject is reported. The subject was
informed of the test procedures, which were approved
by the local ethics review committee (National Science
Foundation NRI Grant #IIS-1208623), and written
consent was given by the test subject. In the type of

tests conducted, the hardware for sensor housings
must be fabricated specifically for each individual sub-
ject using 3D scanning of their forearm and 3D
printing.

Four experiments were conducted during initial
experimentation. These experiments made use of four
SEMG sensors attached to the subject’s dominant fore-
arm in order to isolate activity of their flexor and exten-
sor carpi radialis and ulnaris muscles. Four sensor
housings containing a piezo-electric force sensor in con-
tact with the surface of an SEMG sensor are contained
within a simulated socket described below in the
Materials: Socket and sensor housings Section. The
sensor placement referenced here as the ‘‘ideal pos-
ition’’ can be seen below in Figure 1(a) and (b). A
metronome provided auditory cues for the subject to
perform the defined action at a rate of 40 bpm unless
otherwise noted. All SEMG sensors were placed paral-
lel to the muscle body during initial placement.

Simulating socket shift. During the first experiment, the
subject sat in a chair and rested their dominant arm

Figure 1. (a) Subject wearing SEMG and FMG collocated

sensors. (b) Subject wearing simulated prosthetic socket and

sensors.

Sanford et al. 3



on the chair’s arm rest in a comfortable position. The
subject extended their wrist at least 10 times and
returned to a neutral, resting position after each hand
motion. Next, the subject was instructed to flex their
wrist at least 10 times, returning to a neutral, resting
position as before. After collecting data of these initial
movements, the SEMG-FMG sensors and housing
were rotated or shifted away from this ‘‘ideal position’’.
Sensor orientation parallel to the muscle body was
maintained despite this socket shift.

By moving the sensor housing, we simulated the
shifting of a user’s prosthetic socket during activities
of daily life. The sensor housing was relocated into
four separate locations, displaced from the starting,
ideal position, by 1 cm. This procedure was initially
introduced in our prior study36 and nomenclature has
been updated for clarity. Repositioning of the sensor
housings occurred in four directions referred to as ‘‘lat-
eral’’, or rotated counter clockwise when viewing the
forearm as if one were the subject, ‘‘medial’’, or rotated
clockwise when viewing the forearm as if one were the
subject, ‘‘proximal’’, or shifted towards the elbow, and
‘‘distal’’, or shifted towards the user’s hand. The experi-
ment was then repeated, offsetting the sensors and
sensor housing 2 cm from the ‘‘ideal position’’. All
sensor housings were rotated or shifted in the same
direction during each of the individual experiments,
clockwise, counter clockwise, distally or proximally.
The subject repeated extension and flexion motions at
least 10 times each, in each of the eight offset positions.

Data and further discussion of experimental results
are presented in Results and Discussion Sections.

Simulating arm positions during activities of daily

living. Additionally, the subject repeated flexion and
extension motions in several arm configurations while
standing. These arm configurations included position-
ing the shoulder laterally across the body (adduction),
90� abduction, 135� of shoulder flexion in the sagittal
plane, i.e. with the hand at approximately the head
level, and 45� shoulder flexion in the sagital plane, i.e.
with the hand at approximately the waist level. Data
were collected with the socket in the ‘‘ideal’’ position.
Figure 2(a) to (d) illustrates the basic arm positions
used to during experimentation while the subject was
standing.

SEMG and FMG while fatigued. To create forearm muscle
fatigue, the subject was instructed to apply force to a
sensorized-rectangular piece of plastic with their dom-
inant hand in a ‘‘key pinch’’ grip. A single piezeoresis-
tive sensor was mounted between this piece of plastic
and a solid surface with cellophane tape. An initial
reading of applied force was taken. Following this ini-
tial reading, the subject squeezed a rubber ball covered
in felt, i.e. a tennis ball, 10 times at a frequency of
60 bpm. The metronome was used to provide auditory
cues for a consistent squeeze rate. The subject
then squeezed the force plate as before, providing a
reading. This procedure of squeezing a tennis ball
and immediately providing a force output measurement
was repeated until the subject’s output force measure-
ment was 80% of the initial reading. All readings were
taken with the socket in the ‘‘ideal position’’ as defined
above.

Figure 2. Arm positions used while gathering data while simulating arm positions found during activities of daily living. (a) Arm

45� shoulder flexion in the sagital plane (the hand approximately at waist-level). (b) Arm 135� of shoulder flexion in the sagittal

plane (hand at approximately head-level). (c) Arm out, away from the body (90� abduction). (d) Arm laterally across the body

(adduction).
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Recording radial and ulnar deviation of the hand. The sub-
ject was seated comfortably in a chair as described
before in our previous work.36 The subject sat,
rested their arm in a comfortable position and
positioned their hand in a neutral position with their
thumb pointing ‘‘up’’. The socket and sensor housing
was placed in the ‘‘ideal’’ location on the arm above
the forearm muscles. The subject was instructed to
deviate their wrist and hand in the ulnar direction,
towards the ‘‘pinky’’ finger, repeating this motion at
least 10 times. The subject was instructed to return
their hand to a neutral, resting position after each
motion. The subject was then instructed to deviate
their hand in the radial direction, towards the thumb
10 times, returning to a resting neutral position fol-
lowing each motion.

This experiment is meant to capture data of the hand
performing a simulated ‘‘hammering’’ or ‘‘dart throw-
ing’’ motion, an activity common during daily life.

Materials

For this study, we have prototyped a heterogeneous
sensory input system to control a powered prosthetic
device based around four SEMG sensors and four colo-
cated piezo-resistive force sensors. Activation of a
desired control input is via excitation of the user’s fore-
arm muscles and the resulting increased intra-socket
force. This proof of principle powered prosthetic con-
trol system is currently under development in the
author’s laboratory.

Socket and sensor housings

Initial work correlating surface EMG and intra-socket
pressure made use of a simplified sensor housing
which described in Sanford et al.36 and can be seen in

Figure 3(a) and (b). This setup allowed a single surface
EMG and single pressure sensor to be co-located above
the subject’s forearm muscle, and easily relocated as
part of that previous experiment. An expanded
system, including housings for an opposing pair of
pressure sensors was demonstrated in Sanford et al.37

This system continued to make use of piezo-resistive
force sensors, using two opposing Flexiforce A201
sensors. This system allowed a user access to two
input modalities, flexion and extension of their dom-
inant hand, by sensing changes of intra-socket
pressure in a simulated prosthetic socket. Figure 1(a)
and 1(b) illustrates the basic placement of the sensors
above the muscle bodies activated during gross flex-
ion and extension movements of the subject’s
dominant hand.

The system used in this work expands on previous
prototypes and includes four Delsys Bagnoli EMG sen-
sors and four collocated FlexiForce A201 model piezo-
resistive force sensors. These sensors were positioned
around the circumference of the subject’s arm as men-
tioned in the Methods: Experimental protocol Section.
Sampling of EMG data occurred at 2.4 kHz. The four
FMG sensors were mounted above the EMG sensors,
in contact with the surface of the EMG sensors and the
sensor housing. Figure 1(a) illustrates the placement of
one of the four pairs of EMG and Force sensors.

Prior to creation of the sensor housings, four EMG
sensors were placed above the flexor and extensor mus-
cles of the subject’s dominant forearm. These locations
were marked on the subject’s skin. A three-dimensional
model of the subject’s dominant arm was then created,
using a 3DMD Flex438 three-dimensional scanning
system to provide a scan of the subject’s arm and
CAD software. A custom socket was created from
this model and sensor housings were created above
the marked EMG sensor locations. The socket was
3-D printed using ABS plastic.

Data acquisition

A Delsys Bagnoli EMG system, National Instruments
DAQ, and a custom circuit including an Arduino
Micro and LabVIEW program were used to gather
data for this experiment. The Delsys Bagnoli 16 chan-
nel EMG system was directly connected to an NI
(National Instruments) USB-6210 DAQ for EMG
data acquisition. A custom voltage divider circuit was
created to gather pressure data from the four piezore-
sistive sensors, making use of an Arduino Micro micro-
controller. This voltage divider circuit was also
connected to the NI USB-6210 DAQ. In conjunction
to the mentioned hardware, a custom LabVIEW VI
program was written. This program allows users to
start and stop data gathering, change data sampling

Figure 3. Proof of Principle SEMG and colocated piezoresistive

force sensor housing. (a) Top and (b) side views. The SEMG

sensor can be seen (dark grey), with the collocated force sensor

(light grey) attached above it, but under the cantilever.

Sanford et al. 5



rates, view data in real-time in a graphical display, and
output data to TDMS file formats. These TDMS files
are later processed and classified and are described
in Materials: Classification algorithm.

Classification algorithm

A custom Matlab program was created to process the
gathered data, classify that data using a feed-forward
neural network, and determine the motion of the sub-
ject’s hand. Data acquired using the system described in
3.2 was converted from TDMS file format to CSV for
processing.

Then, EMG and FMG data were classified using the
Matlab Neural-Network Toolbox in a multi-layer per-
ceptron feed-forward configuration. SEMG parameters
described by Hudgins et al. are used as network inputs
along with piezo-resistive pressure sensor data.39 These
inputs to the network were the moving average of the
absolute value of the SEMG signal, the derivative of
the absolute value of the SEMG data, and the absolute
value of the pressure data. The time vectors of SEMG
data and pressure data are denoted as rt and pt, respect-
ively. r̂t is defined as the magnitude of the time vector of
SEMG data, as seen in equation (1).

r̂t ¼ rtj j ð1Þ

The Central Moving Average of the absolute
value of the SEMG signal is referred to as MA and
has window size denoted, !1. A central moving
average computation was performed as shown in equa-
tion (2).

�1 ¼MAr̂t ¼
1

!1
r̂ðt�!1Þ þ

1

!1
r̂ðt�!1�1Þ þ

1

!1
r̂ðt�!1�2Þ

þ � � � þ
1

!1
þ r̂ðtÞ þ � � � þ

1

!1
r̂ðtþ!1�2Þ

þ
1

!1
r̂ðtþ!1�1Þ þ

1

!1
r̂ðtþ!1Þ ð2Þ

Finally, a simple difference calculation, using
window size !2, was substituted in place of the

derivative of the absolute value of the SEMG data
during calculation (equation (3)).

�2 ¼ slopeðMAr̂t Þ ¼MAr̂t �MAr̂ðt�!2 Þ
ð3Þ

A Central Moving Average and slope calculation
occurred for the pressure data as shown in equation (4).

�3 ¼ slopeðMAp̂t Þ ¼MApt �MApðt�!2 Þ
ð4Þ

Seventy percent of the sampled moving difference
window data was used as training input, testing and
validation evenly split between the remaining 30%.
All data were subdivided into these groups, training,
testing, and validation randomly.

Data were classified for an action when the SEMG
moving average was above the signal noise, the slope
was positive over a moving window, and pressure data
showed a positive value over a moving window. The
SEMG noise-threshold was found by multiplying the
CMA value by 1.5 (for SEMG). Hidden layer sizes of
1–10, 50, 100, and 1000 were tested. A 10 neuron
hidden layer size was chosen and used for training.
Training was repeated for approximately 10 times
until no significant improvement in the network weights
or outputs was seen. The scaled conjugate gradient
method was used to update weights and bias values.40

Data were classified using one of eight multi-layer
perceptron, feed-forward neural network classifiers.
Four of these classifiers included training data solely
consisting of EMG data. Separately, four neural net-
works were trained considering each SEMG–FMG
pair, for a total of eight inputs and two outputs with
the result of determining if an action had occurred.
Separately, two networks were trained to classify
wrist deviation, one using SEMG data only and one
using both SEMG and FMG data.

Training data for the first eight networks consisted
of data while the subject was seated and the socket and
sensors were in the ‘‘ideal’’ position, while the subject
was standing and the socket was in the ‘‘ideal’’ position,
and while the subject was seated and the socket had
been shifted. Descriptions of these data sets can be

Figure 4. Network topology of feedforward MLP used in this work. Inputs �1, �2, and �3 are described in Methods: Classification

Algorithm.
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found in the Methods: Experimental protocol section.
Training of the two additional networks, as part of the
experiment described in Section 2.1.4, occurred while
the subject was seated and the socket was placed in
the ‘‘ideal’’ position. Data from the experiment
described in Section 2.1.3, while the subject was fati-
gued, was not included in any training set. A table
describing which data are included in each of the
eight data sets used to train the classifiers can be seen
in Table 1. Column labels can be described as: EMG,
FMG, ‘‘ideal’’ socket position, various arm positions
while standing, and ‘‘shifted’’ socket positions. For
clarity during discussion below, the classifiers will be
referred to by a short-hand, concatenating the names
of the data sets used to train the networks. For exam-
ple, Classifier 1 will be referred to as ‘‘EMG_I’’, i.e.
‘‘EMG data while the socket is in the ‘‘ideal’’ position’’
(Classifier 2-EMG&FMG_I, Classifier 3-EMG_ISt,
Classifier 8-EMG&FMG_IStSh, etc.).

Results

Eight different classifiers were trained. The first two
classifiers were trained using only data collected while
the socket was in the ‘‘ideal’’ position and the subject
was seated. These classifiers are used as a base or con-
trol to compare against. The first of the two control
classifiers included only data from the EMG sensors.
The second control classifier included EMG and FMG
data. A table describing the data included in each train-
ing data set can be seen in Table 1. Data sets 1 and 2, as
labeled in the above mentioned table, are the control
data sets. All eight networks were tested against data
while the socket was in the ‘‘ideal’’ position while the
subject was seated, against shifted socket data, against
data gathered while the subject was standing, and
against data gathered during times of subject fatigue.
Comparisons were also made between classifiers not
including pressure data and those that included

intrasocket pressure data. Final results of classification
of data during times of fatigue are reported. No data
from trials during times of fatigue were included in
training data. Separately, two networks were trained
to classify radial and ulnar deviation of the hand
while the simulated socket was in the ‘‘ideal’’ position
and the subject was seated. Figures 5(a), 7(h) and 8(a)
and (b) show the confusion matrices in which the main
diagonal percentages indicate the percentages of ‘‘cor-
rect’’ classification for flexion and extension, radial
or ulnar deviation, or ‘‘no action’’ while off-diagonal
values show the percentages of mis-classifications. Data
are presented as averages of flexion and extension clas-
sification data over the entire experiment, for each clas-
sifier. The entire matrix will sum to approximately
100%, due to rounding of significant digits.

Performance against arm positions during
activities of daily living

This section reports results of the eight neural networks
when classifying data collected during the experiment
described in Sec. 2.1.2. This experiment simulated arm
positions during activities of daily living. The subject
performed wrist flexion and extension motions while
their dominant arm was in the four positions as seen
in Figure 2(b) to (d). Figure 5(a) to (h) reports the
average performance data for each classifier, for each
experiment.

Performance against socket shift

Figure 6(a) to (h) reports the results of the eight neural
networks when classifying data collected during the
experiment described in Sec. 2.1.1. This experiment
simulated socket shift as experienced when a prosthetic
socket moves due to socket-pull-out or poor socket fit.
The subject performed wrist flexion and extension
motions while their dominant arm was resting on an
arm rest. The simulated prosthetic socket was then
moved, as described above, 1 cm and 2 cm away from
the ‘‘ideal’’ socket position. Figure 6(a) to (h) reports
the average performance data for each classifier, for
each experiment.

Performance against fatigue

Figure 7(a) to (h) report results of the eight neural net-
works when classifying data collected during the experi-
ment described in Sec. 2.1.3. This experiment simulated
user fatigue as experienced throughout a user’s typical
day of powered prosthetic use. The subject squeezed a
felt ball 10 times and then squeezed a force sensor. These
motions were repeated until the force output was
reduced to 80% of the initial force output. The user

Table 1. Experimental data included in each training set for

each neural network classifier.

Sensors Socket/Arm position

EMG FMG Ideal Standing Shifted

Classifier 1 X X

Classifier 2 X X X

Classifier 3 X X X

Classifier 4 X X X X

Classifier 5 X X X

Classifier 6 X X X X

Classifier 7 X X X X

Classifier 8 X X X X X

Sanford et al. 7



Figure 6. Confusion matrices comparing classifiers to socket shift data. Matrices a, c, e, g, used SEMG data. Matrices b, d, f, h used

SEMG and FMG data. (a) Classifier 1-EMG_I; (b) Classifier 2-EMG&FMG_I; (c) Classifier 3-EMG_ISt; (d) Classifier 4-EMG&FMG_ISt;

(e) Classifier 5-EMG_ISh; (f) Classifier 6EMG&FMG_ISh; (g) Classifier 7-EMG_IStSh; (h) Classifier 8-EMG&FMG_IStSh.

Figure 5. Confusion matrices comparing classifiers to standing data. Matrices a, c, e, g, used SEMG data. Matrices b, d, f, h used

SEMG and FMG data. (a) Classifier 1-EMG_I; (b) Classifier 2-EMG&FMG_I; (c) Classifier 3-EMG_ISt; (d) Classifier 4-EMG&FMG_ISt;

(e) Classifier 5-EMG_ISh; (f) Classifier 6EMG&FMG_ISh; (g) Classifier 7-EMG_IStSh; (h) Classifier 8-EMG&FMG_IStSh.
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then performed wrist flexion and extension motions
while their dominant arm was resting on a chair’s arm
rest. Figure 7(a) to (h) reports the average performance
data for each classifier, for each experiment.

Performance of radial and ulnar deviation
classification

Figure 8(a) and (b) reports results of the trained neural
network when classifying data collected during the
experiment described inSec. 2.1.4. This experiment simu-
lated the radial and ulnar deviation of the user’s hand
during activities of daily living, such as during a
‘‘hammer’’ or ‘‘dart throwing’’ action. The subject
deviated their dominant wrist 10 times in the radial dir-
ection and then 10 times in the ulnar direction while their

dominant arm was resting on a chair’s arm rest. Figure
8(a) reports the average performance data for the classi-
fier for this experiment using only the four SEMG sen-
sors as input. Figure 8(b) reports the performance data
for the classifier for this experiment using the four SEMG
sensors and the four FMG sensors as input. These clas-
sifiers were trained and tested against data from this
experiment only; 70% of the time samples were used
for training, 15% for validation, and 15% for testing.

Discussion

Flexion and extension motions were chosen for this
study as a means of testing data typically available to
‘‘the greatest number of lower arm prosthetic users’’.
That is to say that in commercial settings with typical
users, these motions have been used by protheticists for
gathering signals for some time. While it is true that
clinical results using the most advanced techniques
available in the literature boast classification results
much higher then those presented here, the classifiers
trained in this study were chosen for the simplicity and
ease of implementation. The results presented here are
to be viewed as a baseline for future improvements. It
should also be noted that although force-profiles and
classifier training will be similar across a cohort of sub-
jects, due to customization of the socket, only a single
subject was considered at this time.

Figure 7. Confusion matrices comparing classifiers to fatigue data. Matrices a, c, e, g, used SEMG data. Matrices b, d, f, h used SEMG

and FMG data. (a) Classifier 1-EMG_I; (b) Classifier 2-EMG&FMG_I; (c) Classifier 3-EMG_ISt; (d) Classifier 4-EMG&FMG_ISt;

(e) Classifier 5-EMG_ISh; (f) Classifier 6EMG&FMG_ISh; (g) Classifier 7-EMG_IStSh; (h) Classifier 8-EMG&FMG_IStSh.

Figure 8. Confusion Matrix reporting classification results

for radial and ulnar deviation of the hand: (a) 4 SEMG inputs;

(b) SEMG and FMG inputs.
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It can be seen from Figures 5(a) and 7(h) that in
general, those classifiers trained using larger training
sets, Classifiers 7 & 8 performed better than the classi-
fiers including shorter training sets, Classifiers
1-EMG_I & 2-EMG&FMG_I. It is thought that inclu-
sion of more data, more examples of flexion and exten-
sion motions, provides a more robust classifier. This
was also confirmed by Fougner et al. during their
experiments which included data collected with the sub-
ject’s arm in various positions and not just resting on a
table top or a chair’s arm.

During experiments described in Sec. 2.1.2 & 2.1.1, it
can be seen that those classifiers including intrasocket
pressure data and SEMG outperformed classifiers with
data collected from surface EMG only. This is especially
true when considering Classifiers 1-EMG_I &
2-EMG&FMG_I during socket shifts. These classifiers
were not trained with data collected when the socket
was shifted but were tested against ‘‘shifted’’ data
(Section 2.1.1). Interestingly, Classifiers 3-EMG_ISt
and 4-EMG&FMG_ISt, trained including data while
the subject’s arm was in different positions, outper-
formed Classifiers 2-EMG&FMG_I. Comparing
Classifiers 2-EMG&FMG_I and 3-EMG_ISt, one can
see that a classifier using four SEMG and four FMG
sensors is nearly as accurate as a classifier including add-
itional training data. This could have implications
during initial training, implementation, and deployment
for a prosthetic user. This conclusion is not necessarily
true for times when a user is standing and holds their
arm in different positions, however. It should also be
noted that while Fougner et al. mentioned that the clas-
sifiers trained using SEMG and accelerometer data most
likely took socket shift do to arm position variations in
to account, magnitudes of the displacement of the sen-
sors were not measured unlike in this work where it was
a controlled variable. That is to say that position data
was only recorded while the socket was in the ideal loca-
tion, as described in Methods: Experimental protocol:
Simulating arm positions during activities of daily living,
and is meant as a means to effectively compare against
the shifted socket in Methods: Experimental protocol:
Simulating socket shift, where the sensor housings were
displaced a controlled distance away from the ideal pos-
ition. By performing a linear shift while the subject’s arm
was resting on a chair’s arm-rest, EMG effects due to
varied arm positions can be eliminated.

Fromdata found in Figure 5(a) to (h), one can see that
Classifiers 3-EMG_ISt - 8-EMG&FMG_IStSh per-
formed approximately equally. But they did outperform
Classifier 2-EMG&FMG_I which in turn outperformed
Classifier 1-EMG_I. That is to say that classifiers includ-
ing SEMG and FMG data as part of their training sets
performed approximately equally to classifiers including
only SEMGdatawhen additional training data collected

when the subject’s arm is in different positions, is
included. But a classifier using the eight sensor setup
outperforms the SEMG-only setup when additional
training data is not included. This same conclusion can
bemade when comparing and classifying samples during
times of user fatigue as seen in Figure 7(a) to (g).

No training sets included data collected during the
fatigue experiment, Methods: Experimental protocol:
SEMG and FMG while fatigued. This protocol was
used due to hardware limitations and in an attempt
to measure classification robustness as the user per-
spired. It should also be noted that due to the nature
of the method of data acquisition and signal processing
performed described above in Section 3.2 and 3.3,
EMG signal frequency was not recorded. Future hard-
ware will take this in to account, measuring the median
EMG signal frequency, and using this as a means of
determining user fatigue. Despite these limitations, this
protocol allowed us to gather data and see that
Classifiers 3-EMG_ISt - 8-EMG&FMG_IStSh were
able to perform approximately equally and classify
user intent. It should be noted that while the subject
reported their arm ‘‘feeling tired’’, they did not report
‘‘feeling sweaty’’. Future experiments should attempt to
force the subject to exert themselves enough to cause
sweat on the skin surface in order to further test the
SEMG-FMG system, since sweat has been reported to
reduce the amplitude of the EMG signal. A degrad-
ation of the measured amplitude of the SEMG signal
of 2–3%, depending on the type of sensor used, for
every 0.02mm of sweat between the surface of the
skin and the sensor was determined in Abdoli-
Eramaki et al.12 Perspiration, a conductive fluid, can
also cause intermittent short-circuits of an EMG
sensor. While this can be partially compensated for as
proposed by Ray and Guha,11 a high frequency oscil-
lator is necessary for signal injection, and is not used in
clinical settings and the author is unaware of any pro-
duction systems making use of this method. The system
presented in this paper avoids EMG signal degradation
issues due to sweat by making use of a multi-modal
sensory input.

Prior work by Young et al. discusses classification
errors based on socket shift direction along the muscle
body.9 The authors found that socket shift and sensor
displacement affected classification more readily when
the socket shifted perpendicularity to the muscle fiber,
i.e. rotated around the arm as compared to moved
more distally or proximally. While we gathered data
shifted in a similar method to Young et al., we did
not control for direction of shift as part of the classifier
training. Only linear distance away from an ideal loca-
tion was considered. Future work may show that
improvements in a reduction of training motions can
be made by only rotating the socket without also
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moving the socket distally and proximally along the
forearm.

Figure 8(a) and (b) reports findings from classifica-
tion of radial and ulnar deviation motions of the sub-
ject’s wrist and hand. These motions are found during
several activities of daily living, including ‘‘hammer-
ing’’, ‘‘dart throwing’’ and many others. A significant
improvement in classification can be seen between the
two methods presented here, using only surface EMG
and using a combination of surface EMG and force
myography. It is believed that a more advanced classi-
fication algorithm could provide even further improve-
ments. To these authors’ knowledge, classification of
these actions has not been reported before in the litera-
ture. Previous work has focused on improving dexter-
ous finger motions and classification. It should be noted
that also to these authors’ knowledge, no powered
prosthetic devices currently available to the public are
able to provide this capability to a robotic hand.
Currently, only wrist rotation actions are possible
with available devices. The authors feel that the add-
ition of radial and ulnar deviation to a powered device
would improve usability and decrease long-term, com-
pounding injuries of the remainder limb’s elbow and
shoulder joints.

While fine gesture recognition for highly dexterous
motions is beyond the scope of this study, it has been
considered in works by Scheme and Fougner, for exam-
ple. And while there has been interest in classifying data
from a large array of EMG sensors, the advantages of
studying smaller arrays for pattern recognition are
apparent. Implementation will require real-time control
of a device, making use of a micro-controller, more
readily possible with fewer input signals. Sensor size
must also be taken in to account when constructing a
practical socket as well as actual, available muscle sites
on a prosthetic user.

Advanced classification algorithms were not con-
sidered as part of this study as the goal was to test an
SEMG-FMG system against an SEMG only system,
using a known classification algorithm as a bench-
mark. Additionally, large training sets were compared
to more simple training sets. Time considerations
during training of the feed-forward network with
these large training sets were noted.

Conclusion

This proof of concept system has provided insight and
considerations in to training data and sensor config-
urations for future powered prosthetic and human–
robot systems. We have shown that given basic train-
ing data created by a subject seated in a chair, a
system of collocated surface EMG and FMG, and a
basic neural network classifier performs better than a

system trained using only SEMG data by at least 3%
against data collected during arm movements found in
daily life. An even more significant improvement was
seen against data collected during times of subject
fatigue and socket shift, 8% and 35%, respectively.
Additional and more complex training sets consisting
of data gathered during shift of the prosthetic socket
performs as well as, or better than, systems trained
using data gathered during arm motions of daily
living while standing. Should a user only be able to
perform a single additional training data set, socket
shift movements should be considered over arm move-
ments with considerations for socket rotation. Insight
into classifying data gathered during times of user
fatigue was gained. And although systems making
use of additional training data outperformed systems
including only basic training data during fatigued
tasks, no information could be gained for tasks per-
formed while a user was perspiring at this time.
Classification of radial and ulnar deviation of the
wrist was shown to be possible, with a significant clas-
sification improvement of the SEMG-FMG system
over the traditional SEMG only system. Future
work will include implementation of DC offset com-
pensation.14 This should further improve the captured
signals. Training using the recurrent neural network
method, a more computationally intensive training
algorithm, is considered impractical at this time but
will be considered during future work. Other more
complex training algorithms will be considered and
tasks designed to force a subject to exert themselves
and cause perspiration will be performed.
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