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ABSTRACT 

 

The aging population in the US continues to grow at an exponential rate estimated to reach more 

than 90 million by 2060. The coexistence of two or more diseases (comorbidity) is prevalent in 

ages 65 years and above, and the number of comorbidities increases with age. The genetic factors 

underlying presence and absence of comorbidities is a severely understudied research domain. 

Alzheimer’s disease (AD) is a type of dementia affecting 5.5 million people with an average age 

of diagnosis at 70 years.  Hypertension is a coexisting condition in 60% AD individuals, also 

known as direct comorbidity. On the other hand, cancer is reported to be inversely comorbid with 

AD; individuals with cancer history have been reported to have lower risk of AD and vice versa. 

Furthermore, individuals with cancer history are diagnosed with long term side effects of radiation 

therapy – radiotoxicity. Twin-based studies have reported that certain gene variants are associated 

with radiotoxicity phenotypes with a heritability of 66%.  

This study proposes to investigate genetic factors associated with the direct and inverse 

comorbidity of AD with hypertension and cancer, and proctitis – a radiotoxicity phenotype 

observed in survivors of prostate cancer. The study aims to integrate gene variants, derived-gene 

expression and copy number variation (CNV), followed by functional and pathway-based 

prioritization of observed findings. We used genome-wide and cerebral spinal fluid profile to 

investigate presence of hypertension with AD to evaluate individual-level differences, followed 

by targeted investigation of neighboring gene expression profiles of identified variants. We found 

several novel genes associated with AD-hypertension comorbidity. The investigation between AD 

and cancer identified regions in chromosomes 4, 5 and 19 that are targeted by miRNA-17 family 

along with other miRNAs reported to be inversely expressed and play opposite role in 

pathogenicity of both diseases. The SNP-derived transcriptomic profile between AD and cancer 

highlighted involvement of sirtuin signaling. The findings together indicate involvement of 

mitochondrial and metabolic dysregulation which possibly contribute in differences of the 

epithelial-mesenchymal-transition. The SNP-derived expression and CNV association with 

proctitis highlighted genes involved in DNA-repair and mitochondrial ROS damage pathways. 
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Chapter 1 

1. INTRODUCTION TO INVESTIGATION OF 

COMORBIDITY PATTERNS OF AGING-RELATED 

DISEASES – CANCER AND RADIOTOXICITY, 

HYPERTENSION AND ALZHEIMER’S USING 

INTEGRATIVE GENOMICS 
 

 

 

 

 

 

 

 

 

 

 

 

SUMMARY. The United States aging population is expected to double from 46 million 

in 2014 to more than 95 million by 2060. As aging itself is a risk factor for multiple 

chronic conditions, the incidence rates of age-related diseases, such as cancer, 

hypertension and Alzheimer’s disease (AD), are the highest in the population ages 65 

years and older.  The percentage of individuals with two more chronic conditions 

(comorbidity) also increases with age in both men and women, with comorbidity rates of 

62% in ages 65-74 years and up to 81.5% in ages 85 years and older. Comorbidity- 

defined as a medical condition that exists along with an index condition, is healthcare 

concern due to its high prevalence and our limited pathological understanding in the older 

population. While hypertension is known to co-occur with Alzheimer’s, epidemiological 

studies have reported an inversely comorbid relationship between cancer and 

Alzheimer’s disease. Inverse comorbidity is defined as lower-than-expected probability 

of a disease occurring in individuals who have been diagnosed with other medical 

conditions. This research study proposes to investigate the both direct and indirect 

patterns of comorbidity using genotype data from NCBI’s Database of Genotype and 

Phenotype (dbGaP) and Alzheimer’s disease and Neuroimaging Initiative (ADNI). 
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The strategy is to implement multivariate correlation and regression approaches, with the 

integration of reference transcriptomics data and multiple tissue-based network analysis. There 

are three integrated aims: 1) to identify genetic polymorphisms associated with cancer-related 

radiation treatment in prostate cancer survivors, 2) to investigate the impact of hypertension with 

Alzheimer’s disease, and 3) to study the direction of effect of genetic variants in Alzheimer’s and 

cancer that may be responsible for the inverse association. The clinical decision and management 

of elderly care is marred by issues of poor prognosis after treatment, increased cognitive decline 

with comorbid condition, and polypharmacy. As the amount of health data available is likely to 

grow exponentially, the integrative genomics approach will allow for a more fine-grained 

characterization of comorbidity spectra and will provide possibilities for understanding the 

molecular underpinning of disease co‑occurrences, thereby contributing considerably to the 

landscape of precision treatment initiatives in the elderly. 
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 SPECIFIC AIMS 

There has been a significant shift in population demographic trends, with a projected doubling of 

the segment aged 65 and older in the U.S., from 46 million in 2014 to more than 95 million by 

20601. Aging itself is a risk factor to multiple chronic conditions, and the most prevalent age-

associated diseases are Alzheimer’s, cancer, and hypertension in the elderly population of United 

States2. By the year 2050, the number of Alzheimer’s patients age 65 and older may nearly triple 

to 13.8 million, and cancer incidences for breast and prostate are expected to double3,4. With the 

increase in rate of cancer diagnosis, the number of cancer survivors is currently 12 million and will 

continue to rise in the United States5. Hypertension is (1) the most prevalent cardiovascular 

condition, affecting 250 million US individuals and its occurrence increases with age6; and (2) the 

most prevalent comorbid condition in Alzheimer’s disease7,8. While Alzheimer’s disease is 

directly comorbid with hypertension, several studies have reported an inverse comorbidity 

between cancer and Alzheimer’s disease9. A multidimensional genetics approach has the potential 

to investigate comorbidity patterns due to confluences in transcriptomics, proteins, and 

genomics10.  

PROBLEM STATEMENT: In genetic association studies, the concept of genetic basis of comorbidity 

is often adjusted as covariate11; however, the genetic underpinnings remain understudied 

especially in the elderly population12. An in-depth investigation of genetic-variant influences on 

functional association13 may shed much-needed light on the age-related pathophysiology of 

chronic conditions and their co-prevalence to better therapeutic approaches and clinical trial cohort 

design.  HYPOTHESIS: Novel genetic risk factors underlie the observed patterns of co-occurrence 

in hypertension, cancer (and cancer therapy response), and Alzheimer’s disease. APPROACH: To 

investigate these divergent comorbidity patterns, this study proposes to leverage the genetic data 
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available from public repositories combined with an integrative genomics approach to identify 

gene expression and pathway interaction among these age-associated diseases.  

SPECIFIC AIM 1: To identify trends and association of genetic variants associated with adverse 

effects of radiation therapy in prostate cancer survivors. Hypothesis: Variants in genes responsible 

for DNA repair response and/or their associated pathways confer risk for radiosensitivity and 

increased severity of side effects.   Approach: Genetic data from prostate cancer individuals who 

have received radiation will be compared to age-matched controls with gene-based association 

study, followed by a multivariate GWAS to identify polymorphisms associated with the 

combination of sub-phenotypes of radiotoxicity.  

SPECIFIC AIM 2: To investigate direct comorbidity of hypertension and Alzheimer’s disease 

affected individuals.  Hypothesis:  Genetic variants associated with comorbid diseases confer 

higher risk by influencing changes at transcriptomic level. Approach:  Using cross-disorder 

association analysis of genetic data from each phenotype, shared etiologies will be identified which 

are unique to individuals with comorbidity when compared to individuals diagnosed with only 

hypertension. 

SPECIFIC AIM 3: To study genetic and functional networks to investigate possible inverse 

comorbidity pattern between Alzheimer’s disease and cancer.  Hypothesis:  SNP markers have 

opposite effects with specific cancer-type and Alzheimer’s, resulting in off-target effects in disease 

networks.  Approach: Multinomial logistic regression will be used to identify genetic variants with 

opposite effects, followed by gene-based association and functional prioritization of observed 

variants.  
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 BACKGROUND 

The advancement of medicine better 

therapeutics and lifestyle intervention 

awareness have resulted in one of the most 

significant demographic shift observed in 

the United States. The growth of the 

population ages 65 and older, has been 

steadily increasing since the 1960’s, and is 

projected to double from 46 million in 2014 

to more than 98 million by 2060 (Figure 2)1. 

This demographic shift places a global healthcare burden as aging is accompanied by increased 

incidences of chronic age-associated diseases, fueling the demand for more targeted medical 

interventions for the elderly14. 

1.2.1 Prevalent diseases in the aging population 

The aging process is described as gradual decline in overall physiological functions and is known 

to present itself as a risk factor for many chronic diseases: cancer, metabolic disease and 

neurodegeneration15. Cancer refers to a group of diseases, wherein the body cell’s which may 

originate in different tissues, start dividing rapidly without succumbing to self-regulated 

apoptosis16. Cancerous tumors may possess 

malignancy or benignity; malignant tumors spread 

into, or invade, nearby tissues and have been known 

to break off from the site of origin and travel to 

different parts of the body through the blood or lymph 

Figure 2: Incidence of aging population in the United States 

(Source: Population Reference Bureau, 2015) 

Figure 3: Percent of New Cancers by Age Group: All 

Cancer Sites (Source: SEER, 2007-2011) 
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nodes17. Mechanisms of aging and cancer development cross 

paths resulting in a time-dependent accumulation of cellular 

damage18. In 2018, an estimated number of cancer diagnosis 

are 1,735,350 and 609,640 people will die from the disease 

in the United States, and the worldwide cancer incidences are 

expected to rise to 21 million by 2030. Several cancers are 

age-dependent, whose median age at diagnosis varies from 

61 years for breast cancer, 66 years for prostate cancer, 68 

years for colorectal cancer, and 70 years for lung cancer. As 

the aging population continues to rise and with the high 

prevalence of cancer in the elderly population, a targeted 

investigation of cancer and associated morbidities in populations whose average age is 65 years 

and older is crucial4. 

Another prevalent chronic condition in the aging population is Alzheimer’s disease, affecting an 

estimated 5.5 million people aged 65 and older. Alzheimer’s disease is a neurodegenerative 

condition resulting in an irreversible and gradual cognitive and functional decline, eventually 

restricting the ability to carry out routine tasks. Alzheimer's disease is the sixth-leading cause of 

death in the United States and the fifth-leading cause of death among those age 65 and older. It 

also is a chief cause of disability and poor health in older individuals3. There are multiple factors 

that been known to cause age-associated brain changes in Alzheimer’s disease including genetics, 

family history, environmental, and lifestyle factors. Currently, there is no cure or treatment that 

limits the progression of cognitive decline in Alzheimer’s affected individuals, putting a burden of 

$277 billion in medical and care costs, and is estimated to reach $1.1 trillion by 2050 (Figure 4)19. 

Figure 4: Incidence of Alzheimer's 

disease in the United States. 

 (Source: Alzheimer’s Association) 
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1.2.2 Comorbidity and its impact in the aging population 

Aging is known to escalate the risk of developing concomitant chronic illnesses in older 

individuals creating a healthcare burden on the baby boomer generation20. Multimorbidity, the 

coexistence of two more chronic conditions has become widely prevalent, due to a decline in 

mortality rates and increase in the aging population (Figure 5)7. The concept of multimorbidity is 

a successor to comorbidity – defined in the 1970 as the presence of one or more diseases in addition 

to the primary disease in the same individual. Comorbidity and multimorbidity terms were 

originally derived to guide clinical diagnosis; treatment of comorbidity encompasses a primary 

diagnosis, while multimorbidity has a tailored approach to the patient’s diagnosis in which no 

disease is defined as primary. Thus, the two concepts are not mutually exclusive but consider the 

co-presence of two chronic from different clinical perspectives. The terminologies – comorbidity 

and multimorbidity are often used 

interchangeably, but hereon we will be using 

the clinical definition of comorbidity, to signify 

the co-presence of a chronic disease with a 

primary condition21. An epidemiological study 

investigated the incidence rates of 15 different 

chronic conditions and the percentage of 

comorbidities in individuals aged 65 years and 

older enrolled as Medicare beneficiaries. More 

than two-thirds of the population had comorbidities, which increased with age to 62% in older 

individuals aged 65-74 years and 81.5% for those aged 85 years or more. The presence of 

comorbidity is over 90% in all prevalent chronic conditions fueling the need to investigate and 

Figure 5: Percentage of Medicare FFS Beneficiaries by Number of 

Chronic Conditions and Age  

(Source: Chronic Conditions Among Medicare Beneficiaries, 

Chartbook, 2012 edition) 
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understand the relationship between the co-presence of two or more diseases in the aging 

demographic22. 

With the rapid increase in prevalence of multiple chronic diseases in the aging population, 

comorbidity incidence rates in individuals with cancer aged ≥ 65 years is even higher when 

compared to an age-matched population without cancer. While rate of survival varies among 

cancer sub-types, there are currently more than 12 million cancer survivors aged ≥ 65 years (Table 

1)5 with little known understanding on how other factors such as comorbidities affect quality-of-

life outcome after cancer treatment.  

Over the last few years, the importance of comorbid conditions in clinical oncology23 has gathered 

interest due to its impact on treatment associated toxicity in older adults24. More than half of the 

cancer types receive radiation therapy, often combined with chemotherapy and/or surgery, and 

with improvements in targeted delivery of radiation, radiotherapy outcomes have improved the 

overall survival rates. Even with the precision delivery of radiation, surrounding normal tissue may 

get irradiated and lead to acute or late side effects from radiotherapy25. It has been known that all 

individuals experience some level of toxicity, varying in severity (from minor to life-threatening) 

and in duration (from week to lifetime). There are many factors that may contribute to the 

Table 1: Estimated Number of US Cancer Survivors as of January 1, 2016, by Sex and Age at Prevalence. 

(Source: Miller et.al) 
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individual’s susceptibility to radiation side-effects, including cancer type, tumor site, age, 

comorbidities and genetics26. The role of comorbidities in overall survival rates is consistent 

among various age-dependent cancers, such as prostate and breast cancer.  In a study investigating 

comorbidity as predictor of overall survival in prostate cancer individuals treated with radiotherapy 

reported that comorbidity index was a stronger and independent predictor over age in a 

retrospective study spanning over 10 years27. The relationship between comorbidities and severity 

of radiation toxicity in older individuals remains ambiguous, due to the involvement of various 

factors such as severity of comorbidity, possible underlying genetic pathologies of complex 

diseases and lack of availability of research studies investigating the patients with and without 

comorbidities28. 

Similar to cancer, comorbidity burden in individuals affected with Alzheimer’s is far greater than 

in age-matched individuals without 

Alzheimer’s29. Increase in comorbidities among 

Alzheimer’s population has been associated with 

increased levels of cognitive decline as observed 

on mini-mental state examination adjusting for 

age, gender, education and care setting29. 

Comorbidities have also been known to be 

associated with lower interest in personal care, 

decreased agility, thus affecting everyday performance and independence30. The incidence of 

comorbidities present in the Alzheimer’s or other dementia-affected population is summarized in 

Table 2. Most of the comorbidities are vascular risk factors, with hypertension being most 

prevalent in the elderly individuals aged 65 and above with Alzheimer’s3. 

Table 2: Percentages of Medicare 

beneficiaries aged ≥65 years with Alzheimer’s 

disease (AD) and other dementias by specified 

coexisting medical conditions (Source: 

Alzheimer's Association Report 2011) 
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1.2.3 Hypertension as a 

comorbidity in Alzheimer’s 

disease 

Hypertension affects over 250 

million people in the Americas, with 

an overall prevalence of 29%. This 

increases with age, with 63% of 

individuals aged 60 and above being 

affected (Figure 6)6. Hypertension is 

clinically defined as systolic blood 

pressure over 140mmHg or diastolic blood pressure greater than or equal to 90 mmHg or currently 

taking medication to lower high blood pressure31. Hypertension remains a major healthcare 

challenge because it is not only a risk factor for cardiovascular diseases but is also the most 

prevalent comorbid condition in the elderly population as summarized in and Table 2.  

Hypertension is also the most prevalent comorbidity in Alzheimer’s disease affecting 60% 

individuals (Table 2). Studies have proven that there is a strong association between hypertension 

as a risk factor for Alzheimer’s disease32. Uncontrolled hypertension has been known to disrupt 

the blood-brain barrier around the brain capillaries resulting in dysfunction of subcortical vessels 

impeding the delivery of nutrients. Additionally, hypertension is implicated in endothelial damage 

to the brain via nitric oxide production, triggering inflammatory response and promoting plaque 

formation – one of the hallmarks of Alzheimer’s disease29. Association studies in Alzheimer’s 

subjects with hypertension observed poor performance on all cognition tests, supporting the idea 

that vascular dysfunctions affect cognitive decline 33. Hypertension and Alzheimer’s disease also 

share a genetic polymorphism of Apolipoprotein E4 allele, Sery O. et al reported a 1.5-fold 

Figure 6: Prevalence of hypertension among adults aged 18 and over, by sex 

and age: United States, 2015–2016 (Source: CDC) 
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increased risk to Alzheimer’s disease in subjects with hypertension and ApoE4 allele34. 

Furthermore, several studies have indicated that hypertension medications such as the angiotensin-

receptor blockers have protective effects, concluded from MRI studies showing higher volume of 

hippocampal and parenchymal region and improved performance on cognition assessment tests35. 

These findings suggest a critical need to investigate the genetic underpinnings of hypertension as 

a comorbidity in age-related diseases. 

1.2.4 Alzheimer’s disease and cancer: inverse comorbidity 

While Alzheimer’s disease and cancer share a direct comorbidity association with hypertension, 

several studies have reported an inverse comorbidity between cancer and Alzheimer’s disease36. 

Inverse comorbidity is defined as lower-than-expected probability of a disease occurring in 

individuals who have been diagnosed with other medical conditions21. More than a decade ago, 

Roe et al. found an inverse risk of cancer development in Alzheimer’s participants, and lower risk 

of Alzheimer’s development in participants with cancer history37. In their follow-up report in 2010, 

the study confirmed inverse association of sporadic Alzheimer’s and cancer, but not with vascular 

dementia38. White et al. reported a similar finding of reduced risk of Alzheimer’s in individuals 

with non-melanoma skin cancer in a longitudinal study with the average age 79 years of study 

participants39.  

However, some studies have reported conflicting findings for inverse association between cancer 

and Alzheimer’s disease quoting survival bias as the reason for inverse association rather than a 

true inverse relationship. In an association study conducted in Medicare population of over 

800,000 cancer cases, reported a moderate inverse relationship suspecting ascertainment bias or 

diagnostic misclassification as probable source of contradictory results40. Another study, also did 

not find association between early-stage cancer and risk of Alzheimer’s, but supported the findings 
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between aggressive cancer diagnosis and inverse incidence of Alzheimer’s disease41. Additionally, 

if the inverse relation between Alzheimer’s and cancer is due to competing risk of death, then 

similar risk would be expected with other age-related diseases; however in a 2013 study conducted 

using SEER data found the only inverse relationship, between Alzheimer’s and Parkinson’s with 

cancer out of 400 disease pair associations42.  Recently, in a retrospective study of more than 3 

million US veterans-cancer survivors aged ≥65 years were found to be at a lower risk of 

Alzheimer’s disease, than other age-related outcomes. The researchers also found the association 

of cancer treatment with lower risk of Alzheimer’s disease. The odds ratio was 0.89 in 14 cancer 

types after excluding prostate, colorectal and melanoma cancer43. In a meta-analysis study of 

association studies from 1966 to 2013, Alzheimer’s individuals had a decreased incident cancer 

by 42% and individuals with cancer history had 37% reduced risk of Alzheimer’s disease44. These 

epidemiological findings have also been investigated using gene expression and microRNA data, 

and have observed overexpression of Pin, p53, and Wnt signalling pathway in cancer, but 

decreased expression in Alzheimer’s, suggesting a possible mechanism behind the inverse 

relationship45-48. Additionally, functional analysis of differentially expressed genes revealed 

oxidative phosphorylation in the mitochondria to be inversely regulated in Alzheimer’s and lung 

cancer, but down regulated in both glioblastoma and Alzheimer’s disease leading to a state of 

chronic inflammation49. Epidemiological investigations into other neurodegenerative diseases – 

Parkinson’s, have also reported an inverse association with cancer50. Altogether, these findings 

necessitate the identification of potentially divergent genetic processes to design individualized 

therapeutic strategies for Alzheimer’s disease. Exploring genetic transformations during cancer 

and its treatment would also establish risk profiles for neurodegenerative diseases and identify 
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possible off-targets of drugs/underlying pathology providing protective effects against 

Alzheimer’s disease and improving quality-of-life outcome after cancer treatments.   

1.2.5 Studying comorbidity of complex diseases 

Comorbidity research is a complex domain, and 

although aging is naturally inherent to comorbidity 

there are other factors that influence the wide 

spectrum of comorbidity characterization51. A 

mapping of two complex diseases in an individual’s 

state of disease can be viewed in comorbidity space 

(Figure 7), where the axes represent quantitative 

measures influenced by environmental factors, 

genetic variants, stress and/or therapeutic 

interventions. The co-presence of two complex 

diseases suggest a shared pathology pathway, which 

can be environmental and/or genetic, or in the case 

of inverse comorbidity, may be due to an off-target effect from another disease state or treatment. 

To investigate these shared interactions, several approaches using health care data, to create 

networks of disease co-occurrence or using molecular procedures to identify functional products 

associated with disease phenotypes have been employed. These two-dimensional approaches 

clearly seem insufficient to understand the complexity of age-associated diseases since as networks 

of diseases change depending on variant, its protein-product, and its role in different tissues, giving 

rise to multiple models of multifunctionality52.  

Figure 7: Comorbidity space of an individual's state of 

disease.  

The axes represent disease outcomes and lighter bars 

between the axes are possible genetic polymorphisms and 

other factors that may be shared between two disease 

outcomes 
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A multidimensional genetics approach has the potential to investigate comorbidity patterns, as 

gene variants and gene products affect the stationary and dynamic spectrum of disease states53. 

Disease complexity and comorbid states can be understood in the light of genetic variants of 

disease under pleiotropic and multifunctionality models.  Summarized in Figure 8, these models 

elucidate the influence of genetic variants as polymorphisms that affect multiple genes and/or gene 

expression of more than one gene. Protein-products of genes contain domain of different functions 

or may have functional differences based on tissue types. A protein product may also exert direct 

influence over two phenotypes. The goal of an integrative genomics approach is to 1) embrace the 

development and progression of complex diseases and their co-presence due to confluences in 

transcriptomics, proteins, and genomics; and 2) to comprehensively catalog the entire spectrum of 

genomic and proteomic interaction networks in different complex disease states10,21. 

Figure 8: Models of multifunctionality and pleiotropy. (Source: Xin Hu et al.) 

Model 1: A genetic variant affects expression of more than one gene; Model 2: gene variant affects gene expression with multiple 

functional products; Model 3: The gene product has multiple functions, possibly in different tissues; Model 4: The same gene 

variant, expression and protein function involved in two phenotypes; Model 5: Mediated Pleiotropy- The effect on phenotype-B 

is mediated through phenotype-A, but the genetic variants or product are not associated with phenotype-B.   
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 SIGNIFICANCE 

With the increase in the aging population coupled with high incidence rates of chronic conditions 

and comorbidities, investigation of comorbidity is a critical public healthcare demand54. The 

development of comorbidities as an adverse effect of cancer treatment limits the quality of life for 

cancer survivors. In patients of Alzheimer’s, presence of comorbidity- hypertension - has been 

independently associated with cognitive decline29. The role of pleiotropy in co-presence of 

complex diseases is pertinent to understand the relationship between different chronic conditions 

and associated risk profiles21.  

INNOVATION: To date, genome wide association studies (GWAS) have successfully implicated 

several genetic variants in Mendelian disorders and many candidate loci for complex diseases. 

However, due to the multifactorial nature of complex diseases owing to polygenic and 

environmental influence, comparing allele frequencies between cases and controls, as done in 

GWAS, provides limited information55. Hypertension is a common comorbidity to Alzheimer’s34, 

but cancer and Alzheimer’s are inversely comorbid56. This research study aims to investigate 

multiple genetic dimensions of cancer, cancer-related radiation treatment, hypertension and 

Alzheimer’s disease in the aging population. Using this integrative genomics approach, 

computational tools and publicly available genetic data of disease-affected individuals will be 

analyzed to study multiple aspects of variation53– from SNPs, to protein expression levels, to 

pathway states– that are often altered in diseases. Leveraging multi-omics to understand network 

biology behind complex diseases in the context of comorbidity will allow for transformation of 

the large genomic data into biological insight that improves our capacity to better diagnose, treat 

and hopefully prevent complex diseases57. 
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CONTRIBUTION: Comorbidities affect clinical decision and management and patients of advanced 

age with comorbidities are less likely to receive aggressive treatment for their cancer than 

individuals without comorbid conditions12. The results from this study will contribute to the 

literature of genetic variants, expression levels and pathway interaction in the comorbid conditions 

in the elderly population. The integrative genomics including functional analysis of genetic data 

based on gene-sets, eQTL expression levels, in multiple tissue types, and network analysis in 

individual-disease and comorbidity-association studies will potentially explain the crossover 

influence between different chronic conditions58,59. This research study not only establishes a 

pipeline for analysis of comorbidity in complex disease, but it aims to specifically address the 

degree of functional overlap and molecular relationship among three of the most prevalent chronic 

conditions (hypertension, Alzheimer’s disease, and cancer/cancer treatments), to inform better 

screening profiles, diagnostic tests and therapeutics strategies in the understudied aging 

population. 

 PROBLEM STATEMENT & HYPOTHESIS 

PROBLEM STATEMENT: In genetic association studies, the concept of genetic basis of comorbidity 

is often adjusted as covariate; however, the genetic underpinnings remains understudied in the 

elderly population. Due to the multifactorial etiology of complex disease, GWA studies have not 

been successful in explaining the phenotypic heritability of age-associated chronic conditions60 

Alzheimer’s, cancer and hypertension, indicating a polygenic role in disease association61. These 

genetic markers have been known to have small effect size and increasing sample sizes of study 

population may not always be feasible or result in reproducible set of variants62. Complex diseases 

are also affected by environmental factors, which may alter biological activity without completing 

inhibiting the functional consequence of the genes63. Therefore, an in-depth investigation of 
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genetic-variant influences on functional association may shed much-needed light on the age-

related pathophysiology of chronic conditions and their co-prevalence to better therapeutic design 

and clinical trial cohort design64.   

GLOBAL HYPOTHESIS: Novel genetic risk factors underlie the observed patterns of co-occurrence 

in hypertension, cancer (and cancer therapy response), and Alzheimer’s disease.  

OVERALL APPROACH: As this study aims to investigate multiple disease associations our 

approach is to employ appropriate association analysis for unidirectional and divergent 

comorbidity patterns. Each association analysis is followed by integration of RNA-Sequence data, 

protein functional data and network analysis to identify multi-level biological changes influenced 

by individual’s genetic profile available from public repositories (dbGaP, ADNI etc). 

 RESEARCH STRATEGY AND METHODOLOGY 

1.5.1 Datasets 

The population data for studying co-presence of complex disorders have been obtained via 

authorized access application for Alzheimer’s Disease Neuroimaging Initiative (ADNI), and 

NCBI's Database of Genotype and Phenotype (dbGaP) for two datasets: 1) Breast and Prostate 

Cancer Cohort Consortium (BPC3) and 2) Genetic Predictors of Adverse Radiotherapy (Gene-

PARE).  

The Gene-PARE study sample was split into a discovery set (N=367) and a replication set 

(N=417). The phenotypes available with Gene-PARE are Subject ID, ethnicity, erectile 

dysfunction, prostatic rectal bleeding, AUASS (American Urological Association Symptom 

Score) score before and after radiotherapy, prostate resection, age at time of radiotherapy, 

radiotherapy type, anti-androgen therapy, prostate tumor stage, Gleason score, PSA, CT scan, 
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radiation dose, smoking, diabetes, and hypertension status, and use of alpha-blocker drugs among 

participants with or without prostate cancer. The Gene-PARE discovery dataset was provided in 

Affymetrix’s SNP 6 array files (*.CEL files), therefore genotypes were called using bird-seed v2 

algorithm, with thresholds of 97% call rate and HWE. Due to the absence of the reference files, R 

scripts were written and optimized to transform the individual genotype files for its use in Plink  

as .tped and .tfam files. 

The Breast and Prostate Cancer Cohort Consortium (BPC3) was established in 2003 to 

conduct research on gene-environment interactions in cancer etiology.  The sample size for 

prostate cancer individuals is 4069 and breast cancer is 595. The phenotypes available for BPC3 

are Subject ID, affection status - breast or prostate cancer, age, family history of cancer and 

ancestry. The dataset is genotyped on Human660W-Quad using hg18 build. 

The ADNI data includes 758 individuals with genotype data, and phenotypes of age, sex, ancestry, 

APOE status, affection status- mild cognitive impairment (MCI) and/Alzheimer’s Disease (AD) 

and years of education. The dataset is genotyped on Illumina Human610-Quad BeadChip using 

hg18 build. 

After two-level QC filtering (explained later), the datasets – Gene-PARE, ADNI, Breast and 

Prostate cancer– had 305, 677, 578 and 3857 individuals, respectively. The genome build for 

Gene-PARE is hg19, and hg18 for ADNI and BPC3, SNPs were mapped within 10kb to ~15,400 

to 18000 genes using appropriate build reference for annotation.  



Chapter 1 | Introduction 

19 
 

1.5.2 Quality Control Protocol 

Due to the large number of genetic loci being tested in genome wide studies, it is recommended to 

maximize the remaining number of markers in the study. Therefore, removing individuals with 

missing informations prior to removing to markers is a recommended quality-control approach. 

The quality control protocol was adapted from Nature Protocol by Anderson et al65 and Clark et 

al66 and the steps are outlined in Figure 9. 

 

 

 

 

 

1.5.3 Research Approach 

1.5.3.1 Rationale 

The genome wide association studies have been successful in discovering genetic variants for 

mendelian disorders and few replicable genetic loci for complex disease55 genetic variants. 

However, due to multifactorial etiology of complex diseases, SNP-based GWA studies, despite 

increase in sample sizes, explain only a portion of phenotypic heritability. This approach has 

guided our attention towards polygenic influence in complex diseases, therefore due to small effect 

sizes of individual genetic loci, SNP-based GWAS are under powered to detect disease 

associations when genetic markers are correlated and high in number. Gene-based or region-based 

association testing have comparatively more power to detect gene-disease relationship as it 

aggregates SNPs into genes to test for joint association of markers with phenotype. Several gene-

• Remove individuals with outlying missing 
and/heterozygosity rate

• Remove duplicate and/or related individuals

• Remove individuals with divergent ancestry

Individual-level 
filtering

• Remove SNPs with excessive missing genotype

• Remove SNPs with significant HW deviation

• Remove SNPs with significant missingness between cases 
and controls

• Remove markers with very low minor allele frequency

Marker-level filtering

Figure 9: Steps for two-level quality control approach of genotype 

data. (Summarized from Anderson et al.) 
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based association studies have found phenotypic-associations which were missed in SNP-based 

GWAS, and later confirmed by meta-analysis of different cohorts, indicating the importance of 

gene-based analysis over single-marker-based association testing67. Complex disease genetics 

requires understanding the effect of SNPs on gene expression and functional products, and their 

association with disease phenotype. Therefore, pathway enrichment analysis combines genetic 

markers based on their biological properties, supplementing genotype-association testing in small 

sample case-control studies68. Elucidating the functional interaction affected from genetic variants 

requires integration of protein network data and tissue-specific expression activity 69. Genetic 

variants have been proven to affect gene expression in multiple tissues, therefore integrating 

transcriptomic data with individual’s genetic profile can assist in constructing a comprehensive 

understanding of multilevel biological changes caused due to complex diseases70. 

1.5.3.2 Overall strategy for genetic data integration 

Since, this research 

study is investigating 

co-presence of complex 

diseases, the integrative 

pipeline to investigate 

genetic and trans-

criptional perturbations 

of disease genes and its 

products in multiple 

tissues to understand in-

teraction network of 

Figure 10: Proposed pipeline for integrative genomics data analysis strategy. 

(M.R. – Mendelian Randomization; GSEA- Gene Set Enrichment Analysis; PPIN- Protein-

Protein Interaction Network; NetWAS – Network guided GWAS analysis; Giant – Genome-scale 

Integrated Analysis of Gene Network in Tissues. The icons in the phenotypes category represent 

individual analyses of the phenotypes, and the two figures together represent pooled phenotypes 

for multivariate analyses.) 
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disease genes is outlined in Figure 10. The genotype (SNP) data, is mapped to genes within 10kb 

window, to conduct a gene-based genome wide association study to identify contributing disease 

genes in individual phenotypes, the results are observed in a functional context using Network-

assisted GWAS71 (NetWAS) and protein-protein interaction overlay (PPIN). The gene expression 

of cis-SNPs is imputed from the genotype data to perform a gene-expression association study in 

approximately 30-40 tissue types using Genotype-Tissue Expression dataset (GTEx)72, followed 

by conducting a differential gene network analysis. Mendelian Randomization (M.R.)73 will be 

performed to investigate the direction of causality between genes, gene expression and phenotype. 

Additionally, the multivariate-GWAS will be conducted to test the effect of each SNP variant, all 

phenotypes under investigation are pooled together against common controls to identify the 

direction of odds ratio using multinomial regression, and marginal likelihood ratio from Bayesian 

model selection to identify cross-phenotypic effects of the diseases, the results of which will be 

translated with tissue-specific networks of gene interaction (GIANT)71, and revalidated with gene 

expression association study from other data sources. The Joint-GWAS74 will help in identification 

of diseases with inverse relationship, in a case-case GWA test by reducing background noise of 

high number of genetic markers75. 

1.5.3.3 Aim-specific association analysis 

For SPECIFIC AIM 1, the side-effects of radiation therapy Erectile Dysfunction, Proctitis and 

Urinary Morbidity with IPSS/AUASS score monitered for 4 years after radiation therapy - will be 

analysed using direct and indirect method of multivariate GWAS. These traits have previously 

been investigated using single-phenotype-gene-variant association study for each phenotype. This 

study aims to increase the power of a smaller sample by analysing the adverse-effect phenotypes 

in a joint model using 1.a) multinomial regression (direct method) and 1.b) canonical corelation 
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analysis (indirect method) by reducing the number of tests and multiple testing burden. The 

multivariate approach will help in identification of genetic variants associated with multiple set of 

traits, to test for presence of pleiotropy. 

For SPECIFIC AIM 2, the impact of hypertension will be tested using gene-based association 

analysis in each cohort to identify parallel genetic signals, if present. Additionally,  comorbidity 

analysis is employed to test for association between hypertension-only diagnosis with individuals 

of Alzheimer’s diagnosis against the history of hypertension (Alz+ vs Hyp-/ Alz+ vs Hyp+). 

For SPECIFIC AIM 3, the inverse relationship is characterized using 3.a) separate gene-based 

GWAS for breast and prostate cancer, and Alzheimer’s disease to identify any changes in 

biological activity or off-target effects from tissue-specific network. For detecting 3.b) directional-

effect of SNPs, the controls are pooled and test against each phenotype (Alz+//B.CA+//P.CA+) 

using frequentist approach - multinomial regression analysis and Bayesian Model Selection, 

followed by to identify/negate influences of ascertainment or survival bias. 

The association analysis is different for each aim, followed by imputation of gene expression 

profiles using reference transcriptomic data in multiple-tissue types, and common application of 

pathway enrichment using Gene-Set Enrichment Analysis (GSEA). The functional interaction will 

also be investigated in all association analysis using protein-protein interaction data integrated 

from STRINGdb76 and NetWAS will be applied to identify tissue-based network priortized 

associations. The imputed gene expression data will be investigated using differential network 

analysis to identify network changes between cases and controls77.The genetic variants found to 

be significant in Joint/multivariate GWAS will be priortized using GIANT-- multigene based 

query facilitated by tissue-based networks. 
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1.5.4 Analytical Tools  

(Disclaimer: Description provided for the tools/software are included from excerpts from primary literature source) 

Plink78 is a C/C++ command based tool, and is used for conducting quality control procedure and 

generating binary bim/bed/fam files for association testing. 

EIGENSTRAT79 is used for principal component analysis for controlling population 

stratification. 

MAGMA80 is a software implementing multiple linear principal components regression to account 

for gene size and LD, and uses permutation up to 1,000,000 times to correct for multiple-testing. 

Their model projects the SNP matrix for a gene onto its principal components (PC), trimming 

away PCs with very small eigenvalues, and then uses those PCs as predictors for the phenotype in 

the linear regression model. This improves power by removing redundant parameters, and 

guarantees that the model is identifiable in the presence of highly collinear SNPs. It also allows 

covariate adjustment for association testing. 

PrediXcan70  predicts gene expression as a function of genetic variants using a reference dataset 

such as GTEx72, where individuals have been genotyped for variants and expression profiles using 

elastic net model. 

Trinculo81 is a open source C based command line program using plink binary files as input and 

allows covariate adjustment for conducting frequentist – multinomial regression, and bayesian 

approach – Bayesian Model Selection to identify multi-trait sub-phenotypes and cross-disorder 

association studies. 
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MV-Plink82 stands for multivariate-Plink, and uses Canonical Correlation Analysis (CCA) to 

identify a linear combination of multiple traits producing a F-test and p-value for each variant 

considered. 

FUMA83 is used for conducting Gene-Set Enrichment Analysis for priortizing genes based on 

functional charcateristics using hypergeometric test against gene sets obtained from different 

functional data repositories- MSigDB, Gene Ontology, Reactome and WikiPathways. 

STRINGdb76 is Search Tool for the Retrieval of Interacting Genes/Proteins, a web resource for 

known and predicted protein-protein, protein-DNA interaction network. 

NetWAS71 combines genes with nominally significant genome-wide association study (GWAS) 

P values and tissue-specific networks to identify disease-gene associations. 

CytoDDN77 is a cytoscape-plugin for analysis of differential dependency network (DDN) for  

detection and visualization of statistically significant topological changes in transcriptional 

networks representing two biological conditions. 

GIANT71 provides an interface to human tissue networks through multi-gene queries, network 

visualization enableing systematic exploration of the landscape of interacting genes that shape 

specialized cellular functions across more than a hundred human tissues and cell types. 

RStudio84 is a free and open-source integrated development environment (IDE) for R -- a 

programming language for statistical computing and graphics. 

1.5.5 Alternative Strategies 

To minimize low power of small sample sets, the approach of the study is to combine multiple 

data to prioritize the gene variant association, aggregating them based on region, functional activity 

and enrichment of set of markers with known pathways. However, it is possible that effect of 

*B.CA – Breast Cancer; P.CA – Prostate Cancer; Hyp- Hypertension; +  presence; -  absence 
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individual rare variants may not be detected, and therefore, the alternative is to utilize summary 

statistics from other GWA studies with bigger sample sizes to validate the associations with higher 

significance value (p<0.01). Additionally, associations with higher p-values can also be validated 

in datasets with genetic profile of a large sample size, however access to such large sample sizes 

is either not available or suffers from poor phenotype cataloguing. Mendelian randomization 

determines if there is a causal effect between a suspected risk factor and its associated outcome. 

Mendelian randomization rests on 3 assumptions: (1) the genetic variant is associated with the risk 

factor; (2) the genetic variant is not associated with confounders; and (3) the genetic variant 

influences the outcome only through the risk factor. The second and third assumptions are 

independent from biological pleiotropy, and since we testing under the hypothesis of multiple 

pleiotropic models, and if the hypothesis is failed to be rejected, then Mendelian Randomization 

at this juncture may prove to be biased73. Therefore, mendelian randomization approach to test for 

intermediate pleiotropy will be applied if the study fails to detect biological pleiotropic 

associations.  

For imputation of gene expression profile using transcriptomic data, the alternative approach is to 

apply Slinger85 which relies on unrestricted set of SNPs. At present, Slinger has been trained on 

genotype data from microarray technology, resulting in a large but still incomplete set of SNPs 

and lacks multiple tissue type prediction, but upcoming updates to this statistical tool would make 

this software a supplementary analytical approach to PrediXcan. 

 EXPECTED OUTCOMES 

This research study takes advantage of the publicly available genotype data to investigate two 

major comorbidity patterns by integrating transcriptomic level information, and protein-protein 
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interaction network. Since comorbidity patterns are prevalent in the aging population, this is the 

first study to contribute towards information on shared pathologies and possible off-target effects 

of hypertension, cancer, and Alzheimer’s disease. Additionally, the study will provide insights into 

multiple pleiotropic models that may be found to be associated with chronic conditions and can be 

used to suggest clinical decisions and management, screening measures, and polypharmacy 

concerns in the elderly population12. 
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ABSTRACT. Proctitis is an inflammation of the rectum and may be induced by radiation 

treatment for cancer. We investigated proctitis as a radiotoxic endpoint in prostate cancer 

patients who received radiotherapy (n=222). We analyzed the copy number variation and 

SNP-derived transcriptomic profiles of whole-blood and prostate tissue associated with 

proctitis. The SNP and copy number data were genotyped on Affymetrix® Genome-wide 

Human SNP Array 6.0. Following QC measures, the genotypes were used to obtain gene 

expression by leveraging GTEx, a reference dataset for gene expression association based 

on genotype and RNA-seq information for prostate (n= 132) and whole-blood tissue 

(n=369). In prostate tissue, 62 genes were significantly associated with proctitis, and 98 

genes in whole-blood tissue. Six genes - CABLES2, ATP6AP1L, IFIT5, ATRIP, TELO2, and 

PARD6G were common to both tissues. The copy number analysis identified seven regions 

associated with proctitis, one of which (ALG1L2) was also associated with proctitis based 

on transcriptomic profiles in the whole-blood tissue. The genes identified via 

transcriptomics and copy number variation association were further investigated for 

enriched pathways and gene ontology. Some of the enriched processes were DNA repair, 

mitochondrial apoptosis regulation, cell-to-cell signaling interaction processes for renal and 

urological system, and organismal injury. 
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  INTRODUCTION 

Prostate cancer is one of the most prevalent diseases in older men, with 66 years being the average 

age at the time of cancer diagnosis1. According to the cancer statistics of 2019, approximately 3 

million men have been previously diagnosed with prostate cancer and are still alive today. This 

feat can be credited to the advancement in cancer treatment which has contributed to the 5-year 

relative survival rate of 90% in prostate cancer survivors2. Radiation therapy is one of the primary 

forms of treatment for prostate cancer, delivered as external beam radiotherapy (EBRT) or 

brachytherapy. While the dose and precision of radiation delivery to the tumor tissue has improved 

over the years, surrounding normal tissue get irradiated leading to clinical side effects 3. Proctitis 

is the inflammation of the rectum, which can result from receiving radiation therapy around the 

pelvic region such as in prostate cancer treatment4. The inflammation of the rectum can either be 

acute or chronic. Acute proctitis appears within 3 months of receiving radiation therapy, and 

progression of rectal inflammation after 3 months of completing radiation therapy is identified as 

chronic proctitis 5. The development of radiation-induced chronic proctitis affects 5-20% of cancer 

survivors and is relatively more common6 than acute proctitis which affects approximately 13% 

of the cancer population5. As of 2016, the population of cancer survivors in the US was estimated 

to be approximately 15 million, and by the year 2026 is expected to reach 20 million individuals 

7. Given the prevalence of chronic proctitis affecting cancer individuals (5-20%), we can deduce 

that approximately 1-4 million cancer survivors experience proctitis from receiving radiotherapy. 

The goal of radiation therapy in treating cancer is to damage the DNA of cancer tissue by creating 

double-strand breaks (DSBs). While the cellular system is capable of repairing breaks in the DNA, 

strands with DSBs are difficult to restore leading to activation of apoptotic signals and ultimately 

killing cancer cells. Unfortunately, the normal tissue around the targeted region is also affected by 
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DNA damage from radiation, and have to rely on DNA repair mechanisms for rehabilitation of 

cellular functions 8. Recent twin-study has reported that certain SNPs and their transcriptomic 

influence is associated with individual radiation sensitivity and a heritability estimate of 66% 9. 

Therefore, it is vital to understand genetics underlying molecular mechanisms involved in adverse 

effects of radiotherapy and individual genetic variations that may induce radiation sensitivity. 

Genome-wide studies have been conducted to identify gene variants that may contribute towards 

developing radiotoxic side-effects. These studies have identified genetic variations involved in 

DNA repair pathways to be associated with overall radiotoxicity3,10. However, the role of altered 

gene expression9 from aggregated single nucleotide polymorphisms (SNPs) remains elusive in 

radiotoxicity phenotypes (e.g. proctitis). Regulatory variants are SNPs within coding regions 

which contribute towards tissue – specific gene expression alterations leading to wide variations 

in the phenotypic spectrum. Estimating the contribution of SNP aggregates to gene expression can 

be carried out using correlation weights derived from reference datasets which contain both SNP 

and RNA-seq information as modelled in PrediXcan11. One such dataset is the GTEx project, an 

NIH funded initiative that stores genotype and RNA-seq data of 53 tissues from 620 donors (v7). 

The majority of the donors in the GTEx dataset are Caucasian, and more than 50% of the donors 

are over the age of 50 years12. These characteristics make GTEx an excellent reference dataset to 

derive gene expression values from individual level SNP profiles of prostate cancer patients who 

have received radiation treatment. 

Beyond SNPs, genetic discordance from gene dosage and structural effects can be attributed to 

copy number variation (CNV). CNVs are segments of DNA that are greater than 1kb with 

differences in size between the two copies13. In a clinical setting, testing of CNVs is relatively 

more common than other genetic tests14 due to the majority of phenotypic changes associated with 
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these variations in segment size. CNVs associated with radiotoxicity phenotypes (e.g. proctitis) 

have not been investigated extensively and may prove to be significant contributors to phenotype 

risk.  

We hypothesize that genotype-derived gene expression profiles and variations in copy number will 

identify genetic alterations associated with a spectrum of DNA repair functions. Here, we 

investigate both CNV and tissue specific (prostate and whole-blood) transcriptomic profiles 

derived from individual-level SNPs that are associated with radiation induced proctitis in prostate 

cancer patients.  

 MATERIAL & METHODS 

The overall methodology is visually summarized in Fig S1.  

Data access to study subjects. The Gene-PARE was approved by the Institutional Review Board 

of the Icahn School of Medicine at Mount Sinai and Florida Radiation Oncology Group (Kerns et 

al.3,15). All patients provided informed consent under the parent study – Gene-PARE, at Icahn 

School of Medicine, Mount Sinai and Florida Radiation Oncology Group (Kerns et al.3,15).  We 

obtained access to anonymized individual level genotype data from Genetic Predictors of Adverse 

Radiotherapy Effects (Gene-PARE) (phs000772.v1.p1) via dbGaP’s authorized application 

(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000772.v1.p1&phv=202663&phd=&pha=&pht=3996&phvf=&phdf=

&phaf=&phtf=&dssp=1&consent=&temp=1)  under the approval of North Texas Regional IRB 

protocol 2016-090. The study described here was performed under the North Texas Regional IRB 

(formerly the University of North Texas Health Science Center IRB), and was given “EXEMPT” 

status based on the criteria that our study involved data available from public repository, i.e. dbGaP 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000772.v1.p1&phv=202663&phd=&pha=&pht=3996&phvf=&phdf=&phaf=&phtf=&dssp=1&consent=&temp=1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000772.v1.p1&phv=202663&phd=&pha=&pht=3996&phvf=&phdf=&phaf=&phtf=&dssp=1&consent=&temp=1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000772.v1.p1&phv=202663&phd=&pha=&pht=3996&phvf=&phdf=&phaf=&phtf=&dssp=1&consent=&temp=1
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and does not require approval of receiving informed consent.  We analyzed prostate cancer 

individuals from the discovery set (N=367), which were genotyped for 934,940 SNPs on 

Affymetrix® Genome-wide Human SNP Array 6.0. The dataset contains phenotypic information 

on prostate cancer patients who have received radiation treatment either via EBRT or 

brachytherapy. Out of three radiotoxicity phenotypes – erectile dysfunction, proctitis and urinary 

morbidity (IPSS/AUASS) – we focused our investigation on proctitis because (1) it is also 

prevalent in other pelvic region cancers16 and (2) the dataset for proctitis was complete for all 

individuals.  

SNP-QC. We extracted SNP data from the *.CEL files using Affymetrix® Genotyping Console 

using the BIRDSEED v2 algorithm and genotype call rate of 95% and default settings from the 

array, leaving 905,280 markers and total of 355 individuals. The files were then exported to plink17 

format to perform QC measures as suggested by Anderson et. al18. At the individual-level filtering, 

we removed 5 individuals for either failing heterozygosity or having greater than 9% missing 

genotypes. At the IBD filter of 0.1875, we removed 29 individuals; further, 120 individuals were 

removed who were not Caucasian or failed to cluster with the main patient population based on 

principal component (PC) analysis of PC1 and PC2. After SNP-level filtering on SNP missingness, 

minimum allele frequency and Hardy-Weinberg equilibrium, we were left with 746,684 SNPs and 

222 individuals. The final cohort characteristics after QC were analyzed using Fischer’s exact test 

for categorical variables and student t-test for continuous variables (Table 1). 
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Table1: Characteristics of individuals with prostate cancer who received radiotherapy. 

 Prostate cancer individuals 

without proctitis; Controls 

(N= 177) 

Prostate cancer individuals 

with proctitis; Cases 

(N=45) 

P-value 

Mean  SD    

Age 63.7  7.35 65. 28  7.69 0.25 

Gleason score 6.45  0.78 6.31  0.72 0.26 

N (%)    

Smoking    

Yes 67 (38%) 14 (31%) 0.48 

No 110 (62%) 31 (69%)  

Diabetes    

Yes 5 (3%) 3 (7%) 0.21 

No 172 (97%) 42 (93%)  

Hypertension    

Yes 55 (31%) 10 (22%) 0.28 

No 122 (69%) 35 (78%)  

Treatment    

EBRT & Brachytherapy 73 (41%) 21 (47%) 0.15 

EBRT 0 (0%) 1 (2%)  

Brachytherapy 104 (59%) 23 (51%)  

 

Gene Expression imputation and GSEA. Tissue specific gene expression prediction using 

individual’s genotype profile was performed using PrediXcan11. The weights of SNPs and tissue 

specific genes were trained using lasso regression and GTEx (v7)12 reference datasets, accessible 

at http://predictdb.org/. We downloaded model files for prostate and whole-blood tissues. In the 

GTEx (v7), there are 132 prostate tissue donors and 369 donors for whole-blood tissue. PrediXcan 

implements gene expression value prediction, followed by gene-based association. The z-scores 

identify the direction of expression19 for each genes and their corresponding p-values for 

association testing. For prostate tissue, 3113 genes were predicted and 5954 genes for whole-blood 

tissue. Following association tests, significant genes (identified as p-value <0.05) were 

investigated further by constructing tissue-specific protein-protein interaction (PPI) networks 

between query (significant genes) and interacting genes using DifferentialNet20 database and 

NetworkAnalyst3.0 21. The network was filtered on betweenness centrality of 4.0 in order to reduce 

isolated neighboring nodes (each gene is a node). All the genes in the network were subsequently 

http://predictdb.org/
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analyzed for gene set enrichment using clusterProfiler22 for gene ontology and visualized in 

GOPlot23.  

CNV association and GSEA. The *.CEL files of 222 individuals from the above QC protocol 

were extracted for copy number analysis using Affymetrix® Genotyping Console. Copy number 

segments were filtered to regions (minimum genomic size of 2kbps) with 10 marker per segment24. 

The copy number data was exported as tab-delimited file for copy number association in 

CNVRuler25. CNV regions were considered to be significantly associated at FDR p-value <0.05. 

The significant CNV regions were visualized using Phenogram26  then mapped to genes using 

UCSC browser for GRCh37/hg19 assembly (https://genome.ucsc.edu/). The genes within CNV 

regions were analyzed for functional and diseases processes and visualized using Ingenuity 

Pathway Analysis® (QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuity-

pathway-analysis).  

 RESULTS 

Genes identified in prostate tissue. In the association analysis between prostate cancer 

individuals who developed proctitis (cases) and who didn’t develop proctitis (controls), we found 

a total of 62 differentially expressed genes to be significantly associated. Based on z-score 

direction, 28 genes were downregulated, and 34 genes were upregulated in the prostate tissue 

(Table S1). We mapped the genes to tissue-specific protein-protein interaction (PPI) network to 

understand combined functional effects of differentially expressed genes followed by analyzing 

all the genes in the network for enriched gene ontology of biological processes, molecular 

functions and cellular components (Fig 1). Some of the key processes and their contributing genes 

identified, were protein deubiquitination (ARRB2, TP53, SHMT2, BRCA1, ESR1, NEDD8, MYC), 

https://genome.ucsc.edu/
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
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wnt signaling (MOV10, ARRB2, LRRK2, TNIK, ESR1, APP, CUL3) , regulation of apoptosis 

signaling (ARRB2, TP53, LRRK2, BRCA1, YWHAZ, PTTG1IP), response to radiation (CIRBP, 

TP53, BRCA1, APP, MYC) and mitochondrial organization & apoptotic mitochondrial changes 

(ARRB2, TP53, LRRK2, YWHAZ) (Table S2). 

Genes identified in whole blood tissue. We found a total of 98 genes to be associated with 

proctitis in whole blood tissue. 49 genes were upregulated, and 49 genes were downregulated 

(Table S3). Integrating PPI network information with the significant genes, highlighted DNA 

repair processes (Fig 2) such as DNA replication (TERF2, EGFR, CDC7, BRCA1, ATRIP, RBBP8, 

SLX4, ORC1, ORC6, RAD50, CDK2, MCM2, DTL, RPA1, RPA2, RPA3), DNA integrity 

checkpoint (FBXO6, BRCA1, CDC5L, ATRIP, MDM2, ORC1, FZR1, CDK2, TP53, DTL, RPA2), 

nucleotide excision repair (COPS6, RBBP8, DDB1, UBC, SLX4, TP53, RPA1, RPA2, RPA3), 

recombinational repair (CDC7, BRCA1, RBBP8, SLX4, RAD50, RPA1, RPA2, RPA3), detection of 

DNA damage and response (DDB1,UBC,DTL,RPA1,RPA2,RPA3) and telomeric maintenance 

(TERF2, CCT5, SLX4, RAD50, TELO2, RPA1, RPA2, RPA3) (Table S4). 

CNV association and GSEA of mapped genes. We found 7 CNV regions associated with 

proctitis on chromosomes 1, 3, 4, 11, 12 and 15 (Table S5). We identified genes within CNV 

regions using UCSC browser (hg19) (Table S6). Interestingly, out of the two regions on 

chromosome 11 that were significant, we observe a high number of TRIM family genes 

(chr11:89487937-89909274 bps). The mapped genes from copy number regions were investigated 

for gene interactions using biobase knowledge of Ingenuity Pathway Analysis®. The pathway with 

the highest number of query genes (Fig 4) was further analyzed for enriched disease and functional 

categories (Table S7). Cell-to-cell signaling interaction processes for renal and urological system, 

connective tissue development and function, and organismal injury were significantly associated 



Chapter 2 | Genetic Characterization of Radiotherapy Side-Effects 

 

41 
 

processes, and their functional categorization included synthesis, proliferation, apoptosis and 

transmembrane transport. It is interesting to note, that most of these processes were dominated by 

TRH and TRIM-family genes. Furthermore, we also observed that the ALG1L2 gene, which was 

one of the significantly downregulated genes in whole-blood tissue, was also mapped to significant 

CNV region on chr3:129690192-129896364 bps which observes both gain and loss of copy, 

referred to as mixed regions. 

 DISCUSSION  

Genetic susceptibility towards developing radiotoxic phenotypes is an upcoming research interest 

of significant clinical impact to improve the quality of life of cancer survivors8. Previously, GWAS 

studies have been conducted to identify genetic loci associated with overall toxicity, decreased 

urinary stream, and erectile dysfunction10,27 in prostate cancer individuals who received 

radiotherapy28. While these findings have shed much-needed light on SNP loci associated with 

susceptibility towards radiotoxicity, cumulative effects of exonic SNPs on gene expression and 

other genetic alterations such as copy number differences have not been previously studied. Here, 

we integrated genotyping data to identify genetic risk associated with proctitis by (1) employing 

genetic variant–derived gene expression of both prostate and whole-blood tissue, and (2) 

identifying associated genomic CNVs. The transcriptomic analyses points to several novel genes 

that play role in DNA-repair processes. In addition, we identified variable copy number regions 

had multiple members of TRIM-family genes to be associated with proctitis. Along with novel 

genes identified through the analysis, the incorporation of PPI map reveals convergence of the 

implicated gene sets on known DNA-repair, mitochondrial, and telomeric regulation processes, 

highlighting their involvement with radiotoxic phenotypes (e.g. proctitis). 



Chapter 2 | Genetic Characterization of Radiotherapy Side-Effects 

 

42 
 

Six genes from both prostate and whole-blood tissue were associated with proctitis. CABLES2, 

ATP6AP1L and IFIT5 were under expressed, and ATRIP and TELO2 were upregulated in both 

tissues, however PARD6G was over expressed in prostate tissue and under expressed in whole 

blood tissue. CABLES2 (Cdk5 And Abl Enzyme Substrate 2), which  is involved in regulation of 

the cell cycle, was also reported to be under expressed in lymphocytes of occupational workers 

who were exposed to ionizing radiation29. ATP6AP1L (ATPase H+ Transporting Accessory 

Protein 1 Like) is critical for proton transportation and ATP synthase activity in the mitochondria; 

it has a paralog, ATP6AP1, which is involved in secretory granules and regulating neuroendocrine 

responses30. IFIT5 (IFN-induced protein with tetratricopeptide repeats) has been reported to act as 

an enhancer in immune responses, with partial containment in mitochondria31. A recent study has 

reported that elevated IFIT5 gene expression was correlated with interferon-γ levels in prostate 

cancer individuals after radiation, and demonstrated that IFN-γ stimulated epithelial-to-

mesenchymal transition through the activation of JAK-STAT pathway32. ATRIP [TREX1] is an 

ATR interacting protein that is a DNA exonuclease33 that is known to initiate DNA repair 

pathway34. ATRIP has also been reported to provide telomere protection by recruiting ATM – a 

key player in regulating cellular damage responses— to telomeric and DNA damage sites unaided 

by ATR kinase activity35. Additionally, ATR responds to UV damage via the downregulation of 

Pin1 demonstrating anti-apoptotic activity in mitochondria36. ATRIP [TREX1] has been shown to 

be upregulated in radiation-induced immunogenicity of tumor cells37 by degrading cytosolic 

dsDNA and transferring cancer cells to dendritic cells under the stimulation of interferon-type138. 

In addition to ATRIP, TELO2 [CLK2] also interacts with ATM to stimulate cell cycle arrest in 

response to radiation induced double strand breaks39 via AKT activation40. High TELO2 

expression activity has been identified to be correlated with cell protection when exposed to high 
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radiation doses40; conversely, TELO2 overexpression can trigger inflammation by influencing 

PIKKs (via mTORC1 binding41) while responding to DNA damage42. PARD6G was found to have 

opposite direction of expression in prostate and whole-blood tissue, which could be attributed to 

tissue specific differences. Hypermethylation and downregulation of PARD6G was concluded to 

be involved in DNA repair mechanisms43 in bisphenol A (BPA, a xenoestrogen) exposed human-

derived breast cancer epithelial cells. 

Assessment of copy number variation associated with radiation toxicity phenotypes can help 

identify genetic alterations that may lead to functional changes in gene expression, and thus, 

phenotypic variation. While CNVs have recently gathered interest in cancer diagnosis and 

treatment, their importance in studying radiation toxicity phenotypes remains understudied. Here, 

analysis of copy number data identified 7 regions to be associated with proctitis. The ALG1L2 

mapped to the significant CNV region on chr3:129690192-129896364 (along with TRH and 

FAM86HP) was also found to be associated with proctitis in the transcriptomic analysis of whole-

blood tissue, while the other two genes (TRH & FAM86HP) were not predicted in either of the two 

tissues. Based on gene ontology annotations, ALG1L2 functions as a mannosyl transferase in 

protein glycosylation44. Another gene within chromosome 3 CNV region is TRH (Thyrotropin 

releasing hormone); its function includes carbohydrate and amino acid metabolism, and it has been 

involved in endocrine system disorders, metabolic disease, and organismal injury (Table S7). TRH 

has been shown to mobilize calcium from endoplasmic reticulum and mitochondria45, and plays 

role in mitochondrial endoxidation via mitochondrial complex I and IV enzyme activity in skin 

samples46, which is aligned with TRH’s known involvement in hair and skin development (as 

indicated in our IPA results, Table S7). Variants in FAM86HP (Family With Sequence Similarity 

86 Member H, Pseudogene) have been reported to be associated with BMI-adjusted waist-hip 
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ratio47. In the pathway analysis (Fig 4), we observed that FAM86HP has an indirect interaction 

with TGM2 (Transglutaminase 2), a stress-response gene48 involved in mRNA metabolism49 which 

has been reported to be upregulated during inflammation48. It is interesting to note that TGM2 was 

over expressed in individuals receiving chemo & radiation therapy, suggesting its involvement in 

sensitivity to radiation50,51. Both, TGM2 and NUPR1 (Fig 4) have been reported to be implicated 

in inflammation driven primarily via the JAK/Stat and IL-17A signaling pathway52. In the pathway 

we observe, NUPR1 has direct interaction with FAM72C/FAM27D and LOC100133315, both of 

which were identified from the copy number variation association. NUPR1 is known to repair 

double strand DNA breaks 53 and regulate cell cycle progression54 from damage induced by gamma 

irradiation53. The under expression of NUPR1 has been reported to result in increase in ROS 

production thus creating a deficit in mitochondrial membrane potential. This alteration in 

OXPHOS activity has been associated with ER stress and triggers programmed necrosis in cancer 

cells55. During angiogenesis in cancer cells, NUPR1 was reported to be upregulated in association 

with triiodothyronine thyroid hormone receptor56, which is regulated with TRH - Thyrotropin 

releasing hormone57. It is interesting to note that NUPR1 has been reported to play different roles 

before cancer development, during cancer progression and in response to cancer treatment. 

Normal tissues receive varying amount of radiation depending on their proximity to the tumor 

tissue, thus exhibiting a spectrum of toxicity effects. Genome-wide and molecular studies have 

shown that alterations in the DNA-damage response (DDR) from ATM (ataxia-telangiectasia 

mutation) mutations influence intraindividual variations to radiation toxicity58. The findings in this 

study observe that genes such as ATRIP, NUPR1, TELO2, and TRH have multiple roles in damage 

detection and response mechanism. The genes and their PPI networks highlight their involvement 

in cell cycle arrest upon detection of DNA damage, affecting DNA replication and repair. During 
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course of DDR, ROS from radiation seems to promote mitochondrial-induced apoptosis59. Further, 

a constant but varying amount of inflammatory responses due to tissue injury (normal and tumor) 

appears to trigger ROS–induced mitochondrial oxidation60, which exacerbates local inflammation 

in nearby tissues and propagates this DNA repair-inflammation stress cycle. Our findings report 

several novel genes which have been observed to be associated with known BRCA1-ATM-RAD50 

damage response complex61 which are activated in response to radiation, thus extending our 

understanding of these new players and their multifactorial roles associated with proctitis. 

Our study has several limitations. The sample size is small, and our findings should be replicated 

and functionally validated in future studies. Our study concentrated on prostate cancer survivors 

of Caucasian ethnicity, hence to understand if similar or different genes are associated with 

proctitis developed during treatment of other cancers, it is imperative that our methods be applied 

to other races/ethnicities and other cancers. In the CNV regions, we mapped several noncoding 

regions, including lcRNA and snRNAs that would require fine mapping to further understand their 

involvement with proctitis. Unfortunately, there are only handful of studies that investigate 

genetics underlying radiotoxicity phenotypes. 

There are also many strengths to our study. Leveraging SNPs for reference transcriptomic data and 

copy number association, we identified several novel genes associated with proctitis – an 

inflammation of the rectum resulting from radiation therapy received for prostate cancer. The 

integration of tissue - specific PPI network aided in understanding the biological interactions 

between known and reported genes. Analysis of copy number variation identified several genes in 

the reported regions and their pathways analysis highlighted two primary genes that have 

distinctive roles before cancer development and in response to cancer treatment. 
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In conclusion, this investigation highlights genes primarily involved in DNA repair processes and 

mitochondrial malfunction threaded via inflammation. The field of radiogenomics –work 

investigating the role of genetics in developing radiation toxicity—calls for investigation of 

genetic risk that can help inform dose management of radiation treatment and toxicity monitoring 

during treatment8. We anticipate that understanding genetic data from both CNV and SNPs would 

contribute towards optimization of radiation treatment on an individual basis. Similar studies in 

the future would play strong role in early clinical interventions or periodic checkups for individuals 

who have high expression of DNA damage activity and alterations in copy number within specific 

regions.  
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Figure 1: Gene Expression of prostate tissue. (Top). Genes that are upregulated are shown as orange nodes in the network and 

downregulated genes are shown as blue nodes. The grey nodes are interacting nodes derived from prostate tissue specific PPI-

information. (Bottom). The chord plot summarizes enriched gene ontology pathways of the genes from the network shown in the 

top panel. The FDR p-value of each pathway is shown under the name of the GO category. See Table S2 in Supplementary file for 

more details. 
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Figure 211: Gene expression for whole blood tissue. (Top). Genes that are upregulated are shown as orange nodes in the 

network and downregulated genes are shown as blue nodes. The grey nodes are interacting nodes derived from whole-blood 

specific PPI-information. (Bottom). The chord plot summarizes enriched gene ontology pathways of the genes from the network 

shown in the top panel. The FDR p-value of each pathway is shown under the name of the GO category. See Table S4 in 

Supplementary file for more details. 
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Figure 3: Copy Number Variation Analysis. Significant CNV regions are labelled on the ideogram with their corresponding p-values. 

Each region is highlighted with circles and its legend is shown at the bottom. The coding genes within each CNV region is shown in the 

same color as the regions color from the legend. For full list of annotated molecules, please see Table S6. 
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Figure 4: Network identified for genes identified in significant CNV regions. The network was generated using IPA®, the grey filled circles 

are query genes from the identified CNV regions. Two genes – NUPR1 and TGM2 were found to interact with the query genes. 



Chapter 2 | Genetic Characterization of Radiotherapy Side-Effects 

 

52 
 

 REFERENCES 

1 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2017.  67, 7-30, 

doi:10.3322/caac.21387 (2017). 

2 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA Cancer J Clin 69, 7-

34, doi:10.3322/caac.21551 (2019). 

3 Fachal, L. et al. A three-stage genome-wide association study identifies a susceptibility 

locus for late radiotherapy toxicity at 2q24.1. Nature Genetics 46, 891, 

doi:10.1038/ng.3020 

https://www.nature.com/articles/ng.3020#supplementary-information (2014). 

4 Do, N. L., Nagle, D. & Poylin, V. Y. Radiation proctitis: current strategies in management. 

Gastroenterol Res Pract 2011, 917941-917941, doi:10.1155/2011/917941 (2011). 

5 Tabaja, L., Sidani, S. M. J. D. D. & Sciences. Management of Radiation Proctitis.  63, 

2180-2188, doi:10.1007/s10620-018-5163-8 (2018). 

6 Vanneste, B. G. L. et al. Chronic radiation proctitis: tricks to prevent and treat. Int J 

Colorectal Dis 30, 1293-1303, doi:10.1007/s00384-015-2289-4 (2015). 

7 Miller, K. D. et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 

66, 271-289, doi:10.3322/caac.21349 (2016). 

8 West, C. M. & Barnett, G. C. Genetics and genomics of radiotherapy toxicity: towards 

prediction. Genome medicine 3, 52, doi:10.1186/gm268 (2011). 

9 Zyla, J. et al. Combining CDKN1A gene expression and genome-wide SNPs in a twin 

cohort to gain insight into the heritability of individual radiosensitivity.  19, 575-585, 

doi:10.1007/s10142-019-00658-3 (2019). 

10 Barnett, G. C. et al. A genome wide association study (GWAS) providing evidence of an 

association between common genetic variants and late radiotherapy toxicity. Radiotherapy 

and oncology : journal of the European Society for Therapeutic Radiology and Oncology 

111, 178-185, doi:10.1016/j.radonc.2014.02.012 (2014). 

11 Gamazon, E. R. et al. A gene-based association method for mapping traits using reference 

transcriptome data. Nature genetics 47, 1091-1098, doi:10.1038/ng.3367 (2015). 

12 Consortium, G. T. et al. Genetic effects on gene expression across human tissues. Nature 

550, 204-213, doi:10.1038/nature24277 (2017). 

13 Valsesia, A., Macé, A., Jacquemont, S., Beckmann, J. S. & Kutalik, Z. The Growing 

Importance of CNVs: New Insights for Detection and Clinical Interpretation. Frontiers in 

genetics 4, 92-92, doi:10.3389/fgene.2013.00092 (2013). 

14 Yang, X. et al. Constructing a database for the relations between CNV and human genetic 

diseases via systematic text mining.  19, 528, doi:10.1186/s12859-018-2526-2 (2018). 

15 Kerns, S. L. et al. A 2-stage genome-wide association study to identify single nucleotide 

polymorphisms associated with development of erectile dysfunction following radiation 

therapy for prostate cancer. International journal of radiation oncology, biology, physics 

85, e21-28, doi:10.1016/j.ijrobp.2012.08.003 (2013). 

16 Grodsky, M. B. & Sidani, S. M. Radiation proctopathy. Clin Colon Rectal Surg 28, 103-

111, doi:10.1055/s-0035-1547337 (2015). 

17 Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer 

datasets. GigaScience 4, 7, doi:10.1186/s13742-015-0047-8 (2015). 

https://www.nature.com/articles/ng.3020#supplementary-information


Chapter 2 | Genetic Characterization of Radiotherapy Side-Effects 

 

53 
 

18 Anderson, C. A. et al. Data quality control in genetic case-control association studies. Nat 

Protoc 5, 1564-1573, doi:10.1038/nprot.2010.116 (2010). 

19 Gaspar, H. A., Hübel, C. & Breen, G. Drug Targetor: a web interface to investigate the 

human druggome for over 500 phenotypes. Bioinformatics, 

doi:10.1093/bioinformatics/bty982 %J Bioinformatics (2018). 

20 Basha, O., Shpringer, R., Argov, C. M. & Yeger-Lotem, E. The DifferentialNet database 

of differential protein-protein interactions in human tissues. Nucleic Acids Res 46, D522-

d526, doi:10.1093/nar/gkx981 (2018). 

21 Zhou, G. et al. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene 

expression profiling and meta-analysis. Nucleic Acids Research, doi:10.1093/nar/gkz240 

%J Nucleic Acids Research (2019). 

22 Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing 

biological themes among gene clusters. OMICS 16, 284-287, doi:10.1089/omi.2011.0118 

(2012). 

23 Walter, W., Sanchez-Cabo, F. & Ricote, M. GOplot: an R package for visually combining 

expression data with functional analysis. Bioinformatics 31, 2912-2914, 

doi:10.1093/bioinformatics/btv300 (2015). 

24 Yu, Y. P. et al. Genomic Copy Number Variations in the Genomes of Leukocytes Predict 

Prostate Cancer Clinical Outcomes. PLOS ONE 10, e0135982, 

doi:10.1371/journal.pone.0135982 (2015). 

25 Kim, J. H. et al. CNVRuler: a copy number variation-based case-control association 

analysis tool. Bioinformatics 28, 1790-1792, doi:10.1093/bioinformatics/bts239 (2012). 

26 Wolfe, D., Dudek, S., Ritchie, M. D. & Pendergrass, S. A. Visualizing genomic 

information across chromosomes with PhenoGram. BioData Min 6, 18-18, 

doi:10.1186/1756-0381-6-18 (2013). 

27 Kerns, S. L. et al. Genome-wide association study identifies a region on chromosome 

11q14.3 associated with late rectal bleeding following radiation therapy for prostate cancer. 

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology 

and Oncology 107, 372-376, doi:10.1016/j.radonc.2013.05.001 (2013). 

28 Kerns, S. L. et al. Meta-analysis of Genome Wide Association Studies Identifies Genetic 

Markers of Late Toxicity Following Radiotherapy for Prostate Cancer. EBioMedicine 10, 

150-163, doi:10.1016/j.ebiom.2016.07.022 (2016). 

29 Fachin, A. L. et al. Gene Expression Profiles in Radiation Workers Occupationally 

Exposed to Ionizing Radiation. Journal of Radiation Research 50, 61-71, 

doi:10.1269/jrr.08034 %J Journal of Radiation Research (2009). 

30 Logue, M. W. et al. An analysis of gene expression in PTSD implicates genes involved in 

the glucocorticoid receptor pathway and neural responses to stress. 

Psychoneuroendocrinology 57, 1-13, doi:10.1016/j.psyneuen.2015.03.016 (2015). 

31 Zhang, B., Liu, X., Chen, W. & Chen, L. IFIT5 potentiates anti-viral response through 

enhancing innate immune signaling pathways. Acta biochimica et biophysica Sinica 45, 

867-874, doi:10.1093/abbs/gmt088 (2013). 

32 Lo, U. G. et al. IFNgamma-Induced IFIT5 Promotes Epithelial-to-Mesenchymal 

Transition in Prostate Cancer via miRNA Processing. Cancer research 79, 1098-1112, 

doi:10.1158/0008-5472.Can-18-2207 (2019). 

33 Komaki, R. et al. [Retinal vasculopathy with cerebral leukoencephalopathy carrying 

TREX1 mutation diagnosed by the intracranial calcification: a case report]. Rinsho 



Chapter 2 | Genetic Characterization of Radiotherapy Side-Effects 

 

54 
 

shinkeigaku = Clinical neurology 58, 111-117, doi:10.5692/clinicalneurol.cn-001096 

(2018). 

34 Shigechi, T. et al. ATR-ATRIP kinase complex triggers activation of the Fanconi anemia 

DNA repair pathway. Cancer research 72, 1149-1156, doi:10.1158/0008-5472.Can-11-

2904 (2012). 

35 Subramanian, L. & Nakamura, T. M. A kinase-independent role for the Rad3(ATR)-

Rad26(ATRIP) complex in recruitment of Tel1(ATM) to telomeres in fission yeast. PLoS 

Genet 6, e1000839, doi:10.1371/journal.pgen.1000839 (2010). 

36 Hilton, B. A. et al. ATR Plays a Direct Antiapoptotic Role at Mitochondria, which Is 

Regulated by Prolyl Isomerase Pin1. Mol Cell 60, 35-46, 

doi:10.1016/j.molcel.2015.08.008 (2015). 

37 Vanpouille-Box, C. et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour 

immunogenicity. Nat Commun 8, 15618, doi:10.1038/ncomms15618 (2017). 

38 Diamond, J. M. et al. Exosomes Shuttle TREX1-Sensitive IFN-Stimulatory dsDNA from 

Irradiated Cancer Cells to DCs. Cancer immunology research 6, 910-920, 

doi:10.1158/2326-6066.Cir-17-0581 (2018). 

39 Garcia-Muse, T. & Boulton, S. J. Distinct modes of ATR activation after replication stress 

and DNA double-strand breaks in Caenorhabditis elegans. Embo j 24, 4345-4355, 

doi:10.1038/sj.emboj.7600896 (2005). 

40 Nam, S. Y. et al. Phosphorylation of CLK2 at serine 34 and threonine 127 by AKT controls 

cell survival after ionizing radiation. The Journal of biological chemistry 285, 31157-

31163, doi:10.1074/jbc.M110.122044 (2010). 

41 Brown, M. C. & Gromeier, M. MNK Controls mTORC1:Substrate Association through 

Regulation of TELO2 Binding with mTORC1. Cell reports 18, 1444-1457, 

doi:10.1016/j.celrep.2017.01.023 (2017). 

42 Quek, H., Lim, Y. C., Lavin, M. F. & Roberts, T. L. PIKKing a way to regulate 

inflammation. Immunology and cell biology 96, 8-20, doi:10.1111/imcb.1001 (2018). 

43 Fernandez, S. V. et al. Expression and DNA methylation changes in human breast 

epithelial cells after bisphenol A exposure. International journal of oncology 41, 369-377, 

doi:10.3892/ijo.2012.1444 (2012). 

44 Rouillard, A. D. et al. The harmonizome: a collection of processed datasets gathered to 

serve and mine knowledge about genes and proteins. Database 2016, baw100-baw100, 

doi:10.1093/database/baw100 (2016). 

45 Ronning, S. A., Heatley, G. A. & Martin, T. F. Thyrotropin-releasing hormone mobilizes 

Ca2+ from endoplasmic reticulum and mitochondria of GH3 pituitary cells: 

characterization of cellular Ca2+ pools by a method based on digitonin permeabilization. 

Proc Natl Acad Sci U S A 79, 6294-6298, doi:10.1073/pnas.79.20.6294 (1982). 

46 Knuever, J. et al. Thyrotropin-releasing hormone controls mitochondrial biology in human 

epidermis. J Clin Endocrinol Metab 97, 978-986, doi:10.1210/jc.2011-1096 (2012). 

47 Southam, L. et al. Whole genome sequencing and imputation in isolated populations 

identify genetic associations with medically-relevant complex traits. Nat Commun 8, 

15606, doi:10.1038/ncomms15606 (2017). 

48 Agnihotri, N., Kumar, S. & Mehta, K. Tissue transglutaminase as a central mediator in 

inflammation-induced progression of breast cancer. Breast Cancer Res 15, 202, 

doi:10.1186/bcr3371 (2013). 



Chapter 2 | Genetic Characterization of Radiotherapy Side-Effects 

 

55 
 

49 Ooko, E., Kadioglu, O., Greten, H. J. & Efferth, T. Pharmacogenomic Characterization and 

Isobologram Analysis of the Combination of Ascorbic Acid and Curcumin-Two Main 

Metabolites of Curcuma longa-in Cancer Cells. Frontiers in pharmacology 8, 38, 

doi:10.3389/fphar.2017.00038 (2017). 

50 Leicht, D. T. et al. TGM2: a cell surface marker in esophageal adenocarcinomas. Journal 

of thoracic oncology : official publication of the International Association for the Study of 

Lung Cancer 9, 872-881, doi:10.1097/jto.0000000000000229 (2014). 

51 Garnier, D. et al. Divergent evolution of temozolomide resistance in glioblastoma stem 

cells is reflected in extracellular vesicles and coupled with radiosensitization. Neuro-

oncology 20, 236-248, doi:10.1093/neuonc/nox142 (2018). 

52 Rajamani, D. et al. Temporal retinal transcriptome and systems biology analysis identifies 

key pathways and hub genes in Staphylococcus aureus endophthalmitis. Sci Rep 6, 21502, 

doi:10.1038/srep21502 (2016). 

53 Gironella, M. et al. p8/nupr1 regulates DNA-repair activity after double-strand gamma 

irradiation-induced DNA damage. J Cell Physiol 221, 594-602, doi:10.1002/jcp.21889 

(2009). 

54 Hamidi, T. et al. Nupr1-aurora kinase A pathway provides protection against metabolic 

stress-mediated autophagic-associated cell death. Clinical cancer research : an official 

journal of the American Association for Cancer Research 18, 5234-5246, 

doi:10.1158/1078-0432.Ccr-12-0026 (2012). 

55 Santofimia-Castano, P. et al. Inactivation of NUPR1 promotes cell death by coupling ER-

stress responses with necrosis. Sci Rep 8, 16999, doi:10.1038/s41598-018-35020-3 (2018). 

56 Chen, C. Y. et al. Induction of nuclear protein-1 by thyroid hormone enhances platelet-

derived growth factor A mediated angiogenesis in liver cancer. Theranostics 9, 2361-2379, 

doi:10.7150/thno.29628 (2019). 

57 Brent, G. A. Mechanisms of thyroid hormone action. J Clin Invest 122, 3035-3043, 

doi:10.1172/JCI60047 (2012). 

58 De Ruysscher, D. et al. Radiotherapy toxicity. Nature Reviews Disease Primers 5, 13, 

doi:10.1038/s41572-019-0064-5 (2019). 

59 Li, X. et al. ROS Induced by KillerRed Targeting Mitochondria (mtKR) Enhances 

Apoptosis Caused by Radiation via Cyt c/Caspase-3 Pathway. Oxid Med Cell Longev 2019, 

4528616-4528616, doi:10.1155/2019/4528616 (2019). 

60 Zorov, D. B., Juhaszova, M. & Sollott, S. J. Mitochondrial reactive oxygen species (ROS) 

and ROS-induced ROS release. Physiol Rev 94, 909-950, doi:10.1152/physrev.00026.2013 

(2014). 

61 Jang, E. R. & Lee, J.-S. DNA damage response mediated through BRCA1. Cancer 

research and treatment : official journal of Korean Cancer Association 36, 214-221, 

doi:10.4143/crt.2004.36.4.214 (2004). 

 

 



Chapter 2 | Genetic Characterization of Radiotherapy Side-Effects 

 

56 
 

 SUPPLEMENTARY FILE 

 

Table S1: Significantly associated genes with proctitis in prostate tissue 

Gene (Ensemble ID) Z-score P-value Gene Symbol Gene symbol definition 

Downregulated genes based on Z-scores 

ENSG00000149679.7 -3.07 2.15E-03 CABLES2 Cdk5 and Abl enzyme substrate 2 [Source:HGNC Symbol;Acc:16143] 

ENSG00000109794.9 -3.04 2.40E-03 FAM149A 
family with sequence similarity 149, member A [Source:HGNC 

Symbol;Acc:24527] 

ENSG00000205464.7 -3.01 2.59E-03 ATP6AP1L 
ATPase, H+ transporting, lysosomal accessory protein 1-like [Source:HGNC 

Symbol;Acc:28091] 

ENSG00000152778.7 -2.99 2.79E-03 IFIT5 
interferon-induced protein with tetratricopeptide repeats 5 [Source:HGNC 

Symbol;Acc:13328] 

ENSG00000270614.1 -2.96 3.03E-03 CTC-325H20.7 NA 

ENSG00000235192.1 -2.92 3.50E-03 AC009495.2 NA 

ENSG00000230847.4 -2.89 3.79E-03 RP11-195E2.1 NA 

ENSG00000225864.1 -2.88 3.97E-03 HCG4P11 HLA complex group 4 pseudogene 11 [Source:HGNC Symbol;Acc:22930] 

ENSG00000047056.10 -2.84 4.46E-03 WDR37 WD repeat domain 37 [Source:HGNC Symbol;Acc:31406] 

ENSG00000149380.7 -2.79 5.28E-03 P4HA3 prolyl 4-hydroxylase, alpha polypeptide III [Source:HGNC Symbol;Acc:30135] 

ENSG00000254974.1 -2.78 5.38E-03 RP11-702H23.2 NA 

ENSG00000145214.9 -2.76 5.77E-03 DGKQ diacylglycerol kinase, theta 110kDa [Source:HGNC Symbol;Acc:2856] 

ENSG00000196683.6 -2.75 5.90E-03 TOMM7 
translocase of outer mitochondrial membrane 7 homolog (yeast) [Source:HGNC 

Symbol;Acc:21648] 

ENSG00000177144.5 -2.74 6.09E-03 NUDT4P1 
nudix (nucleoside diphosphate linked moiety X)-type motif 4 pseudogene 1 

[Source:HGNC Symbol;Acc:18012] 

ENSG00000234882.1 -2.72 6.50E-03 EIF3EP1 
eukaryotic translation initiation factor 3, subunit E pseudogene 1 [Source:HGNC 

Symbol;Acc:6102] 
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ENSG00000255987.1 -2.70 7.03E-03 RP11-1094M14.4 NA 

ENSG00000136367.12 -2.67 7.66E-03 ZFHX2 zinc finger homeobox 2 [Source:HGNC Symbol;Acc:20152] 

ENSG00000167971.14 -2.66 7.76E-03 CASKIN1 CASK interacting protein 1 [Source:HGNC Symbol;Acc:20879] 

ENSG00000185482.3 -2.55 1.06E-02 STAC3 SH3 and cysteine rich domain 3 [Source:HGNC Symbol;Acc:28423] 

ENSG00000143630.5 -2.52 1.18E-02 HCN3 
hyperpolarization activated cyclic nucleotide-gated potassium channel 3 

[Source:HGNC Symbol;Acc:19183] 

ENSG00000175749.11 -2.47 1.37E-02 EIF3KP1 
eukaryotic translation initiation factor 3, subunit K pseudogene 1 

[Source:HGNC Symbol;Acc:44016] 

ENSG00000188687.11 -2.46 1.38E-02 SLC4A5 
solute carrier family 4, sodium bicarbonate cotransporter, member 5 

[Source:HGNC Symbol;Acc:18168] 

ENSG00000165055.11 -2.45 1.43E-02 METTL2B methyltransferase like 2B [Source:HGNC Symbol;Acc:18272] 

ENSG00000105767.2 -2.43 1.51E-02 CADM4 cell adhesion molecule 4 [Source:HGNC Symbol;Acc:30825] 

ENSG00000085563.10 -2.42 1.55E-02 ABCB1 
ATP-binding cassette, sub-family B (MDR/TAP), member 1 [Source:HGNC 

Symbol;Acc:40] 

ENSG00000174238.10 -2.38 1.73E-02 PITPNA phosphatidylinositol transfer protein, alpha [Source:HGNC Symbol;Acc:9001] 

ENSG00000245556.2 -2.38 1.75E-02 CTD-2037K23.2 NA 

ENSG00000101751.6 -2.34 1.95E-02 POLI polymerase (DNA directed) iota [Source:HGNC Symbol;Acc:9182] 

Upregulated genes based on Z-scores 

ENSG00000168993.10 2.33 1.98E-02 CPLX1 complexin 1 [Source:HGNC Symbol;Acc:2309] 

ENSG00000256682.1 2.34 1.95E-02 TAS2R12 NA 

ENSG00000205809.5 2.34 1.93E-02 KLRC2 
killer cell lectin-like receptor subfamily C, member 2 [Source:HGNC 

Symbol;Acc:6375] 

ENSG00000206127.6 2.35 1.90E-02 GOLGA8O golgin A8 family, member O [Source:HGNC Symbol;Acc:44406] 

ENSG00000204520.8 2.36 1.83E-02 MICA MHC class I polypeptide-related sequence A [Source:HGNC Symbol;Acc:7090] 

ENSG00000064886.9 2.37 1.76E-02 CHI3L2 chitinase 3-like 2 [Source:HGNC Symbol;Acc:1933] 

ENSG00000178184.11 2.40 1.66E-02 PARD6G 
par-6 partitioning defective 6 homolog gamma (C. elegans) [Source:HGNC 

Symbol;Acc:16076] 

ENSG00000259865.1 2.41 1.61E-02 RP11-488L18.10 NA 

ENSG00000069493.10 2.42 1.55E-02 CLEC2D C-type lectin domain family 2, member D [Source:HGNC Symbol;Acc:14351] 
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ENSG00000100439.6 2.44 1.48E-02 ABHD4 abhydrolase domain containing 4 [Source:HGNC Symbol;Acc:20154] 

ENSG00000100030.10 2.45 1.44E-02 MAPK1 mitogen-activated protein kinase 1 [Source:HGNC Symbol;Acc:6871] 

ENSG00000104228.8 2.49 1.28E-02 TRIM35 tripartite motif containing 35 [Source:HGNC Symbol;Acc:16285] 

ENSG00000260911.1 2.49 1.28E-02 RP11-196G11.2 NA 

ENSG00000173272.9 2.50 1.25E-02 MZT2A mitotic spindle organizing protein 2A [Source:HGNC Symbol;Acc:33187] 

ENSG00000185619.13 2.52 1.17E-02 PCGF3 polycomb group ring finger 3 [Source:HGNC Symbol;Acc:10066] 

ENSG00000183255.7 2.53 1.14E-02 PTTG1IP 
pituitary tumor-transforming 1 interacting protein [Source:HGNC 

Symbol;Acc:13524] 

ENSG00000214376.5 2.55 1.08E-02 VSTM5 
V-set and transmembrane domain containing 5 [Source:HGNC 

Symbol;Acc:34443] 

ENSG00000184672.7 2.55 1.07E-02 RALYL RALY RNA binding protein-like [Source:HGNC Symbol;Acc:27036] 

ENSG00000213676.6 2.57 1.02E-02 ATF6B activating transcription factor 6 beta [Source:HGNC Symbol;Acc:2349] 

ENSG00000164053.13 2.60 9.46E-03 ATRIP ATR interacting protein [Source:HGNC Symbol;Acc:33499] 

ENSG00000240494.2 2.62 8.73E-03 RPS12P28 ribosomal protein S12 pseudogene 28 [Source:HGNC Symbol;Acc:36972] 

ENSG00000145495.10 2.64 8.39E-03 MARCH6 
membrane-associated ring finger (C3HC4) 6, E3 ubiquitin protein ligase 

[Source:HGNC Symbol;Acc:30550] 

ENSG00000131711.10 2.68 7.31E-03 MAP1B microtubule-associated protein 1B [Source:HGNC Symbol;Acc:6836] 

ENSG00000113430.5 2.70 6.93E-03 IRX4 iroquois homeobox 4 [Source:HGNC Symbol;Acc:6129] 

ENSG00000159479.12 2.71 6.77E-03 MED8 mediator complex subunit 8 [Source:HGNC Symbol;Acc:19971] 

ENSG00000123545.5 2.71 6.67E-03 NDUFAF4 
NADH dehydrogenase (ubiquinone) complex I, assembly factor 4 

[Source:HGNC Symbol;Acc:21034] 

ENSG00000180992.5 2.84 4.57E-03 MRPL14 mitochondrial ribosomal protein L14 [Source:HGNC Symbol;Acc:14279] 

ENSG00000186468.8 2.87 4.07E-03 RPS23 ribosomal protein S23 [Source:HGNC Symbol;Acc:10410] 

ENSG00000099622.9 2.89 3.91E-03 CIRBP cold inducible RNA binding protein [Source:HGNC Symbol;Acc:1982] 

ENSG00000244753.2 2.89 3.79E-03 RPL15P21 ribosomal protein L15 pseudogene 21 [Source:HGNC Symbol;Acc:36190] 

ENSG00000120063.5 3.04 2.39E-03 GNA13 
guanine nucleotide binding protein (G protein), alpha 13 [Source:HGNC 

Symbol;Acc:4381] 

ENSG00000163491.12 3.20 1.39E-03 NEK10 NIMA-related kinase 10 [Source:HGNC Symbol;Acc:18592] 
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ENSG00000100726.10 3.42 6.29E-04 TELO2 
TEL2, telomere maintenance 2, homolog (S. cerevisiae) [Source:HGNC 

Symbol;Acc:29099] 

ENSG00000072786.8 3.44 5.76E-04 STK10 serine/threonine kinase 10 [Source:HGNC Symbol;Acc:11388] 

 

 

 

Table S2: Gene set enrichment for genes identified in the prostate tissue network in Fig.1 

GO ID Gene Ontology Term Genes Adjusted p.val 

GO:0016579 protein deubiquitination 
ARRB2,TP53,SHMT2,BRCA1,ESR1,NEDD8,

MYC 
1.69E-03 

GO:0016055 Wnt signaling pathway 
MOV10,ARRB2,LRRK2,TNIK,ESR1,APP,CU

L3 
5.66E-03 

GO:2001233 regulation of apoptotic signaling pathway 
ARRB2,TP53,LRRK2,BRCA1,YWHAZ,PTTG

1IP 
9.32E-03 

GO:0010821 regulation of mitochondrion organization ARRB2,TP53,LRRK2,YWHAZ 1.42E-02 

GO:0008637 apoptotic mitochondrial changes ARRB2,TP53,YWHAZ 2.63E-02 

GO:0009314 response to radiation CIRBP,TP53,BRCA1,APP,MYC 2.68E-02 
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Table S3: Significant genes associated with proctitis in whole blood tissue 

Gene (Ensemble ID) Z-score P-value Gene Symbol Gene symbol definition 

Downregulated genes based on Z-scores 

ENSG00000205464.7 -3.62 2.93E-04 ATP6AP1L 
ATPase, H+ transporting, lysosomal accessory protein 1-like 

[Source:HGNC Symbol;Acc:28091] 

ENSG00000106077.14 -3.55 3.92E-04 ABHD11 
abhydrolase domain containing 11 [Source:HGNC 

Symbol;Acc:16407] 

ENSG00000116786.7 -3.33 8.63E-04 PLEKHM2 
pleckstrin homology domain containing, family M (with RUN 

domain) member 2 [Source:HGNC Symbol;Acc:29131] 

ENSG00000197566.5 -3.13 1.74E-03 ZNF624 zinc finger protein 624 [Source:HGNC Symbol;Acc:29254] 

ENSG00000008513.10 -3.11 1.88E-03 ST3GAL1 
ST3 beta-galactoside alpha-2,3-sialyltransferase 1 

[Source:HGNC Symbol;Acc:10862] 

ENSG00000171766.11 -3.11 1.89E-03 GATM 
glycine amidinotransferase (L-arginine:glycine 

amidinotransferase) [Source:HGNC Symbol;Acc:4175] 

ENSG00000149679.7 -3.09 1.98E-03 CABLES2 
Cdk5 and Abl enzyme substrate 2 [Source:HGNC 

Symbol;Acc:16143] 

ENSG00000137819.9 -2.95 3.17E-03 PAQR5 
progestin and adipoQ receptor family member V [Source:HGNC 

Symbol;Acc:29645] 

ENSG00000251287.4 -2.94 3.25E-03 ALG1L2 
ALG1, chitobiosyldiphosphodolichol beta-mannosyltransferase-

like 2 [Source:HGNC Symbol;Acc:37258] 

ENSG00000107798.13 -2.89 3.79E-03 LIPA 
lipase A, lysosomal acid, cholesterol esterase [Source:HGNC 

Symbol;Acc:6617] 

ENSG00000166669.9 -2.89 3.91E-03 ATF7IP2 
activating transcription factor 7 interacting protein 2 

[Source:HGNC Symbol;Acc:20397] 

ENSG00000197774.8 -2.84 4.44E-03 EME2 
essential meiotic endonuclease 1 homolog 2 (S. pombe) 

[Source:HGNC Symbol;Acc:27289] 

ENSG00000097046.8 -2.83 4.66E-03 CDC7 cell division cycle 7 [Source:HGNC Symbol;Acc:1745] 

ENSG00000143643.8 -2.81 5.01E-03 TTC13 
tetratricopeptide repeat domain 13 [Source:HGNC 

Symbol;Acc:26204] 

ENSG00000100360.10 -2.80 5.06E-03 IFT27 
intraflagellar transport 27 homolog (Chlamydomonas) 

[Source:HGNC Symbol;Acc:18626] 
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ENSG00000118690.8 -2.73 6.27E-03 ARMC2 
armadillo repeat containing 2 [Source:HGNC 

Symbol;Acc:23045] 

ENSG00000211451.7 -2.73 6.37E-03 GNRHR2 
gonadotropin-releasing hormone (type 2) receptor 2 

[Source:HGNC Symbol;Acc:16341] 

ENSG00000106638.11 -2.72 6.47E-03 TBL2 transducin (beta)-like 2 [Source:HGNC Symbol;Acc:11586] 

ENSG00000093167.13 -2.71 6.64E-03 LRRFIP2 
leucine rich repeat (in FLII) interacting protein 2 [Source:HGNC 

Symbol;Acc:6703] 

ENSG00000104093.9 -2.70 6.83E-03 DMXL2 Dmx-like 2 [Source:HGNC Symbol;Acc:2938] 

ENSG00000236056.1 -2.67 7.47E-03 GAPDHP14 
glyceraldehyde-3-phosphate dehydrogenase pseudogene 14 

[Source:HGNC Symbol;Acc:4160] 

ENSG00000166664.9 -2.67 7.59E-03 CHRFAM7A 
CHRNA7 (cholinergic receptor, nicotinic, alpha 7, exons 5-10) 
and FAM7A (family with sequence similarity 7A, exons A-E) 

fusion [Source:HGNC Symbol;Acc:15781] 

ENSG00000170458.9 -2.67 7.69E-03 CD14 CD14 molecule [Source:HGNC Symbol;Acc:1628] 

ENSG00000122034.8 -2.65 8.08E-03 GTF3A 
general transcription factor IIIA [Source:HGNC 

Symbol;Acc:4662] 

ENSG00000167220.7 -2.57 1.01E-02 HDHD2 
haloacid dehalogenase-like hydrolase domain containing 2 

[Source:HGNC Symbol;Acc:25364] 

ENSG00000142046.10 -2.55 1.08E-02 TMEM91 transmembrane protein 91 [Source:HGNC Symbol;Acc:32393] 

ENSG00000178184.11 -2.51 1.20E-02 PARD6G 
par-6 partitioning defective 6 homolog gamma (C. elegans) 

[Source:HGNC Symbol;Acc:16076] 

ENSG00000152778.7 -2.50 1.24E-02 IFIT5 
interferon-induced protein with tetratricopeptide repeats 5 

[Source:HGNC Symbol;Acc:13328] 

ENSG00000107745.12 -2.50 1.24E-02 MICU1 
mitochondrial calcium uptake 1 [Source:HGNC 

Symbol;Acc:1530] 

ENSG00000215302.4 -2.50 1.25E-02 CTD-3092A11.1 NA 

ENSG00000205810.4 -2.48 1.31E-02 KLRC3 
killer cell lectin-like receptor subfamily C, member 3 

[Source:HGNC Symbol;Acc:6376] 

ENSG00000150764.9 -2.46 1.38E-02 DIXDC1 DIX domain containing 1 [Source:HGNC Symbol;Acc:23695] 

ENSG00000149503.8 -2.46 1.38E-02 INCENP 
inner centromere protein antigens 135/155kDa [Source:HGNC 

Symbol;Acc:6058] 
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ENSG00000183955.8 -2.46 1.40E-02 SETD8 
SET domain containing (lysine methyltransferase) 8 

[Source:HGNC Symbol;Acc:29489] 

ENSG00000196189.8 -2.45 1.41E-02 SEMA4A 
sema domain, immunoglobulin domain (Ig), transmembrane 
domain (TM) and short cytoplasmic domain, (semaphorin) 4A 

[Source:HGNC Symbol;Acc:10729] 

ENSG00000163684.7 -2.45 1.43E-02 RPP14 
ribonuclease P/MRP 14kDa subunit [Source:HGNC 

Symbol;Acc:30327] 

ENSG00000134884.9 -2.44 1.45E-02 ARGLU1 
arginine and glutamate rich 1 [Source:HGNC 

Symbol;Acc:25482] 

ENSG00000217930.3 -2.44 1.45E-02 PAM16 
presequence translocase-associated motor 16 homolog (S. 

cerevisiae) [Source:HGNC Symbol;Acc:29679] 

ENSG00000111325.12 -2.43 1.49E-02 OGFOD2 
2-oxoglutarate and iron-dependent oxygenase domain 

containing 2 [Source:HGNC Symbol;Acc:25823] 

ENSG00000108107.8 -2.42 1.54E-02 RPL28 ribosomal protein L28 [Source:HGNC Symbol;Acc:10330] 

ENSG00000170323.4 -2.42 1.54E-02 FABP4 
fatty acid binding protein 4, adipocyte [Source:HGNC 

Symbol;Acc:3559] 

ENSG00000228716.2 -2.41 1.58E-02 DHFR dihydrofolate reductase [Source:HGNC Symbol;Acc:2861] 

ENSG00000227775.3 -2.40 1.63E-02 RP1-283E3.4 NA 

ENSG00000114541.10 -2.40 1.65E-02 FRMD4B FERM domain containing 4B [Source:HGNC Symbol;Acc:24886] 

ENSG00000136824.14 -2.39 1.68E-02 SMC2 
structural maintenance of chromosomes 2 [Source:HGNC 

Symbol;Acc:14011] 

ENSG00000000457.9 -2.37 1.76E-02 SCYL3 SCY1-like 3 (S. cerevisiae) [Source:HGNC Symbol;Acc:19285] 

ENSG00000242588.2 -2.35 1.87E-02 RP11-274B21.1 NA 

ENSG00000141086.13 -2.35 1.88E-02 CTRL chymotrypsin-like [Source:HGNC Symbol;Acc:2524] 

ENSG00000127561.10 -2.35 1.89E-02 SYNGR3 synaptogyrin 3 [Source:HGNC Symbol;Acc:11501] 

Upregulated genes based on Z-scores 

ENSG00000204516.5 2.33 1.99E-02 MICB 
MHC class I polypeptide-related sequence B [Source:HGNC 

Symbol;Acc:7091] 

ENSG00000239736.2 2.33 1.99E-02 CEACAMP3 
carcinoembryonic antigen-related cell adhesion molecule 

pseudogene 3 [Source:HGNC Symbol;Acc:1825] 
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ENSG00000175538.6 2.35 1.90E-02 KCNE3 
potassium voltage-gated channel, Isk-related family, member 3 

[Source:HGNC Symbol;Acc:6243] 

ENSG00000155542.7 2.35 1.89E-02 SETD9 SET domain containing 9 [Source:HGNC Symbol;Acc:28508] 

ENSG00000104731.9 2.35 1.86E-02 KLHDC4 kelch domain containing 4 [Source:HGNC Symbol;Acc:25272] 

ENSG00000244733.4 2.36 1.85E-02 RP11-506M13.3 NA 

ENSG00000251584.1 2.36 1.85E-02 RP11-440I14.3 NA 

ENSG00000198961.5 2.36 1.84E-02 PJA2 
praja ring finger 2, E3 ubiquitin protein ligase [Source:HGNC 

Symbol;Acc:17481] 

ENSG00000233297.4 2.36 1.82E-02 RASA4DP 
RAS p21 protein activator 4CD, pseudogene [Source:HGNC 

Symbol;Acc:44226] 

ENSG00000184350.8 2.37 1.77E-02 MRGPRE 
MAS-related GPR, member E [Source:HGNC 

Symbol;Acc:30694] 

ENSG00000173559.8 2.37 1.76E-02 NABP1 
nucleic acid binding protein 1 [Source:HGNC 

Symbol;Acc:26232] 

ENSG00000136250.7 2.38 1.74E-02 AOAH 
acyloxyacyl hydrolase (neutrophil) [Source:HGNC 

Symbol;Acc:548] 

ENSG00000078114.14 2.39 1.70E-02 NEBL nebulette [Source:HGNC Symbol;Acc:16932] 

ENSG00000076248.6 2.40 1.66E-02 UNG uracil-DNA glycosylase [Source:HGNC Symbol;Acc:12572] 

ENSG00000272787.1 2.41 1.58E-02 NA NA 

ENSG00000154511.7 2.43 1.52E-02 FAM69A 
family with sequence similarity 69, member A [Source:HGNC 

Symbol;Acc:32213] 

ENSG00000186283.9 2.43 1.51E-02 TOR3A torsin family 3, member A [Source:HGNC Symbol;Acc:11997] 

ENSG00000260807.2 2.44 1.46E-02 RP11-161M6.2 NA 

ENSG00000184752.8 2.46 1.39E-02 NDUFA12 
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 12 

[Source:HGNC Symbol;Acc:23987] 

ENSG00000151470.8 2.47 1.36E-02 C4orf33 
chromosome 4 open reading frame 33 [Source:HGNC 

Symbol;Acc:27025] 

ENSG00000143036.12 2.48 1.30E-02 SLC44A3 
solute carrier family 44, member 3 [Source:HGNC 

Symbol;Acc:28689] 

ENSG00000139083.6 2.49 1.27E-02 ETV6 ets variant 6 [Source:HGNC Symbol;Acc:3495] 
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ENSG00000064666.10 2.50 1.26E-02 CNN2 calponin 2 [Source:HGNC Symbol;Acc:2156] 

ENSG00000168090.5 2.50 1.23E-02 COPS6 COP9 signalosome subunit 6 [Source:HGNC Symbol;Acc:21749] 

ENSG00000101773.12 2.53 1.14E-02 RBBP8 
retinoblastoma binding protein 8 [Source:HGNC 

Symbol;Acc:9891] 

ENSG00000107614.17 2.55 1.09E-02 TRDMT1 
tRNA aspartic acid methyltransferase 1 [Source:HGNC 

Symbol;Acc:2977] 

ENSG00000263006.2 2.55 1.08E-02 ROCK1P1 
Rho-associated, coiled-coil containing protein kinase 1 

pseudogene 1 [Source:HGNC Symbol;Acc:37832] 

ENSG00000183506.12 2.55 1.06E-02 PI4KAP2 
phosphatidylinositol 4-kinase, catalytic, alpha pseudogene 2 

[Source:HGNC Symbol;Acc:33577] 

ENSG00000117593.8 2.55 1.06E-02 DARS2 
aspartyl-tRNA synthetase 2, mitochondrial [Source:HGNC 

Symbol;Acc:25538] 

ENSG00000108106.9 2.58 9.84E-03 UBE2S 
ubiquitin-conjugating enzyme E2S [Source:HGNC 

Symbol;Acc:17895] 

ENSG00000168246.5 2.65 7.98E-03 UBTD2 
ubiquitin domain containing 2 [Source:HGNC 

Symbol;Acc:24463] 

ENSG00000110274.10 2.67 7.67E-03 CEP164 centrosomal protein 164kDa [Source:HGNC Symbol;Acc:29182] 

ENSG00000164053.13 2.68 7.28E-03 ATRIP ATR interacting protein [Source:HGNC Symbol;Acc:33499] 

ENSG00000150753.7 2.71 6.70E-03 CCT5 
chaperonin containing TCP1, subunit 5 (epsilon) [Source:HGNC 

Symbol;Acc:1618] 

ENSG00000141068.9 2.74 6.06E-03 KSR1 kinase suppressor of ras 1 [Source:HGNC Symbol;Acc:6465] 

ENSG00000100726.10 2.76 5.86E-03 TELO2 
TEL2, telomere maintenance 2, homolog (S. cerevisiae) 

[Source:HGNC Symbol;Acc:29099] 

ENSG00000138468.11 2.83 4.63E-03 SENP7 
SUMO1/sentrin specific peptidase 7 [Source:HGNC 

Symbol;Acc:30402] 

ENSG00000168016.9 2.85 4.38E-03 TRANK1 
tetratricopeptide repeat and ankyrin repeat containing 1 

[Source:HGNC Symbol;Acc:29011] 

ENSG00000107679.10 2.89 3.87E-03 PLEKHA1 
pleckstrin homology domain containing, family A 

(phosphoinositide binding specific) member 1 [Source:HGNC 
Symbol;Acc:14335] 

ENSG00000152229.14 2.92 3.50E-03 PSTPIP2 
proline-serine-threonine phosphatase interacting protein 2 

[Source:HGNC Symbol;Acc:9581] 
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ENSG00000215908.5 2.94 3.29E-03 CROCCP2 
ciliary rootlet coiled-coil, rootletin pseudogene 2 [Source:HGNC 

Symbol;Acc:28170] 

ENSG00000105707.9 3.05 2.32E-03 HPN hepsin [Source:HGNC Symbol;Acc:5155] 

ENSG00000134265.8 3.09 2.02E-03 NAPG 
N-ethylmaleimide-sensitive factor attachment protein, gamma 

[Source:HGNC Symbol;Acc:7642] 

ENSG00000148180.12 3.29 9.99E-04 GSN gelsolin [Source:HGNC Symbol;Acc:4620] 

ENSG00000095917.9 3.30 9.66E-04 TPSD1 tryptase delta 1 [Source:HGNC Symbol;Acc:14118] 

ENSG00000132604.6 3.42 6.22E-04 TERF2 
telomeric repeat binding factor 2 [Source:HGNC 

Symbol;Acc:11729] 

ENSG00000089351.10 3.45 5.61E-04 GRAMD1A GRAM domain containing 1A [Source:HGNC Symbol;Acc:29305] 

ENSG00000105711.6 3.57 3.51E-04 SCN1B 
sodium channel, voltage-gated, type I, beta subunit 

[Source:HGNC Symbol;Acc:10586] 

ENSG00000145423.4 3.78 1.55E-04 SFRP2 
secreted frizzled-related protein 2 [Source:HGNC 

Symbol;Acc:10777] 

 

 

Table S4: Gene set enrichment for genes identified in the whole blood tissue network in Fig.2 

GO ID Gene Ontology Term Genes Adjusted p.val 

GO:0006260 DNA replication TERF2, EGFR, CDC7, BRCA1, ATRIP, RBBP8, SLX4, ORC1,O 
RC6,RAD50,CDK2,MCM2,DTL,RPA1,RPA2,RPA3 

1.12E-10 

GO:0031570 DNA integrity checkpoint FBXO6, BRCA1, CDC5L, ATRIP, MDM2,ORC1,FZR1,CDK2,TP53,DTL,RPA2 6.32E-08 

GO:0006289 nucleotide-excision repair COPS6,RBBP8,DDB1,UBC,SLX4,TP53,RPA1,RPA2,RPA3 4.27E-07 

GO:0042769 DNA damage response, detection of 
DNA damage 

DDB1, UBC,DTL,RPA1,RPA2,RPA3 3.25E-06 

GO:0000725 recombinational repair CDC7,BRCA1,RBBP8,SLX4,RAD50,RPA1,RPA2,RPA3 7.81E-06 

GO:0000723 telomere maintenance TERF2,CCT5,SLX4,RAD50,TELO2,RPA1,RPA2,RPA3 3.52E-05 

GO:0035825 homologous recombination SLX4,RAD50,RPA2 2.47E-02 
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Table S5: Significant copy number variation associated with proctitis 

CNVR ID 
Ch

r 
Start End Size 

Descriptio

n 
z value p value Odds Ratio Lower CI 

Upper 

CI 
FDR 

CNVR_2810_

3 
4 3900840 4206068 305229 mixed 

5.23929

5 
1.61E-07 

7.04545454

5 

3.39398211

7 

14.6254

2 

0.00072

1 

CNVR_2535_

2 
3 129690192 

12989636

4 
206173 mixed 

4.49109

1 
7.09E-06 

4.90885415

6 

2.45144910

1 

9.82963

5 

0.01258

4 

CNVR_7565_

1 
11 71293875 71600786 306912 mixed 

4.45355

8 
8.45E-06 

5.11538461

5 

2.49403573

8 

10.4918

9 

0.01258

4 

CNVR_7646_

1 
11 89487937 89909274 421338 mixed 4.19543 2.72E-05 

4.98412698

4 

2.35338447

5 

10.5556

6 

0.03043

6 

CNVR_505_1 1 121343784 
14454693

4 

2320315

1 
mixed 

4.10330

6 
4.07E-05 

4.21052631

6 

2.11891529

4 

8.36679

6 

0.03641

2 

CNVR_9133_

2 
15 25392077 25506567 114491 mixed 

4.02793

3 
5.62E-05 4.0625 

2.05377742

2 

8.03587

9 

0.04192

1 

CNVR_7863_

1 
12 8329500 8498267 168768 mixed 

3.99043

8 
6.59E-05 

4.90421451

1 

2.24584390

9 

10.7092

6 

0.04211

5 
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Table S6: Gene annotation of significant CNV regions from UCSC Browser (GRCh37/hg19) 

Chromosome 
Stran

d 
Transcription 
Start Position 

Transcriptio
n Stop 

Position 
Gene Symbol Gene Symbol Description 

chr4 + 3941972 3941998 DQ584669 Homo sapiens piRNA piR-51781, complete sequence. 

chr4 - 3943668 3957148 FAM86EP 
Homo sapiens family with sequence similarity 86, member E, 

pseudogene (FAM86EP), non-coding RNA. 

chr4 - 3943668 3957148 FAM86EP 
Homo sapiens family with sequence similarity 86, member E, 

pseudogene (FAM86EP), non-coding RNA. 

chr4 + 4034896 4076783 BC042823 Homo sapiens cDNA clone IMAGE:5275587. 

chr4 - 4190529 4228621 OTOP1 Homo sapiens otopetrin 1 (OTOP1), mRNA. 

chr3 + 129693235 129696781 TRH Homo sapiens thyrotropin-releasing hormone (TRH), mRNA. 

chr3 + 129800673 129817233 ALG1L2 
Homo sapiens ALG1, chitobiosyldiphosphodolichol beta-

mannosyltransferase-like 2 (ALG1L2), mRNA. 

chr3 + 129800673 129817233 ALG1L2 
Homo sapiens ALG1, chitobiosyldiphosphodolichol beta-

mannosyltransferase-like 2 (ALG1L2), mRNA. 

chr3 - 129816624 129822720 FAM86HP 
Homo sapiens family with sequence similarity 86, member H, 

pseudogene (FAM86HP), non-coding RNA. 

chr3 - 129816624 129830276 FAM86HP 
Homo sapiens family with sequence similarity 86, member H, 

pseudogene (FAM86HP), non-coding RNA. 

chr11 - 71292900 71293921 KRTAP5-11 Homo sapiens keratin associated protein 5-11 (KRTAP5-11), mRNA. 

chr11 + 71498556 71512280 FAM86C1 
Homo sapiens family with sequence similarity 86, member C1 

(FAM86C1), transcript variant 1, mRNA. 

chr11 + 71498556 71512280 FAM86C1 
Homo sapiens family with sequence similarity 86, member C1 

(FAM86C1), transcript variant 3, mRNA. 

chr11 + 71498556 71512280 FAM86C1 
Homo sapiens family with sequence similarity 86, member C1 

(FAM86C1), transcript variant 2, mRNA. 

chr11 + 71498556 71512280 FAM86C1 
Homo sapiens family with sequence similarity 86, member C1 

(FAM86C1), transcript variant 3, mRNA. 

chr11 + 71498556 71512280 FAM86C1 
Homo sapiens family with sequence similarity 86, member C1 

(FAM86C1), transcript variant 2, mRNA. 
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chr11 - 71505408 71524905 ALG1L9P 
Homo sapiens asparagine-linked glycosylation 1-like 9, pseudogene 

(ALG1L9P), transcript variant 3, non-coding RNA. 

chr11 - 71506860 71524905 ALG1L9P 
Homo sapiens asparagine-linked glycosylation 1-like 9, pseudogene 

(ALG1L9P), transcript variant 1, non-coding RNA. 

chr11 - 71521023 71524905 ALG1L9P 
Homo sapiens asparagine-linked glycosylation 1-like 9, pseudogene 

(ALG1L9P), transcript variant 2, non-coding RNA. 

chr11 + 71544245 71548608 DEFB108B Homo sapiens defensin, beta 108B (DEFB108B), mRNA. 

chr11 - 71576554 71639493 
LOC10013331

5 
Homo sapiens transient receptor potential cation channel, subfamily C, 

member 2-like (LOC100133315), non-coding RNA. 

chr11 + 71589498 71595607 
LOC10012921

6 
Homo sapiens beta-defensin 131-like (LOC100129216), mRNA. 

chr11 - 89530822 89541743 TRIM49 Homo sapiens tripartite motif containing 49 (TRIM49), mRNA. 

chr11 + 89553492 89559667 LOC642414 
Homo sapiens clone E1 LOC642414 pseudogene mRNA, partial 

sequence. 

chr11 + 89575164 89584136 TRIM53AP 
Homo sapiens tripartite motif containing 53A, pseudogene (TRIM53AP), 

non-coding RNA. 

chr11 - 89603605 89609185 TRIM64B Homo sapiens tripartite motif containing 64B (TRIM64B), mRNA. 

chr11 - 89644578 89653576 TRIM49D2P 
Homo sapiens tripartite motif containing 49D2, pseudogene 

(TRIM49D2P), mRNA. 

chr11 + 89657231 89666229 TRIM49D2P 
Homo sapiens tripartite motif containing 49D2, pseudogene 

(TRIM49D2P), mRNA. 

chr11 + 89673687 89673722 MIR5692A1 Homo sapiens microRNA 5692a-1 (MIR5692A1), microRNA. 

chr11 + 89701671 89707240 TRIM64 Homo sapiens tripartite motif containing 64 (TRIM64), mRNA. 

chr11 - 89726708 89735676 TRIM53AP 
Homo sapiens tripartite motif containing 53A, pseudogene (TRIM53AP), 

non-coding RNA. 

chr11 - 89751201 89757434 LOC642414 
Homo sapiens clone E1 LOC642414 pseudogene mRNA, partial 

sequence. 

chr11 + 89764273 89775193 TRIM49C Homo sapiens tripartite motif containing 49C (TRIM49C), mRNA. 

chr11 - 89794201 89796159 LOC440061 Homo sapiens unknown mRNA sequence. 

chr11 + 89819117 89820299 UBTFL1 
Homo sapiens upstream binding transcription factor, RNA polymerase 

I-like 1 (UBTFL1), mRNA. 
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chr11 + 89867817 89892505 NAALAD2 
Homo sapiens N-acetylated alpha-linked acidic dipeptidase 2 

(NAALAD2), mRNA. 

chr11 + 89867817 89897369 NAALAD2 
Homo sapiens N-acetylated alpha-linked acidic dipeptidase 2 

(NAALAD2), mRNA. 

chr11 + 89867817 89925779 NAALAD2 
Homo sapiens N-acetylated alpha-linked acidic dipeptidase 2 

(NAALAD2), mRNA. 

chr11 + 89867817 89925779 NAALAD2 
Homo sapiens N-acetylated alpha-linked acidic dipeptidase 2 

(NAALAD2), mRNA. 

chr11 + 89867817 89925779 NAALAD2 
Homo sapiens N-acetylated alpha-linked acidic dipeptidase 2 

(NAALAD2), mRNA. 

chr1 + 142618798 143257763 CR936796 Homo sapiens PNAS-130 mRNA, complete cds. 

chr1 + 142660105 142660135 DQ579288 Homo sapiens piRNA piR-47400, complete sequence. 

chr1 - 142672190 142672219 DQ586768 Homo sapiens piRNA piR-53880, complete sequence. 

chr1 + 142688238 142688268 DQ579288 Homo sapiens piRNA piR-47400, complete sequence. 

chr1 - 142689205 142689235 DQ583161 Homo sapiens piRNA piR-50272, complete sequence. 

chr1 + 142689523 142689553 DQ590589 Homo sapiens piRNA piR-32372, complete sequence. 

chr1 - 142697420 142713605 ANKRD20A12P 
Homo sapiens ankyrin repeat domain 20 family, member A12, 

pseudogene (ANKRD20A12P), non-coding RNA. 

chr1 - 142803223 142888797 BC053679 Homo sapiens cDNA: FLJ22715 fis, clone HSI13726. 

chr1 + 142803530 142826645 BC071797 Homo sapiens, clone IMAGE:4720764, mRNA. 

chr1 - 142804898 142890670 BC029473 
Homo sapiens cDNA clone IMAGE:4723680, **** WARNING: chimeric 

clone ****. 

chr1 - 142851394 142851424 DQ590126 Homo sapiens piRNA piR-47400, complete sequence. 

chr1 + 142853227 142855999 DQ592442 Homo sapiens cDNA FLJ35140 fis, clone PLACE6009524. 

chr1 + 143119060 143163748 AK056396 Homo sapiens PNAS-130 mRNA, complete cds. 

chr1 - 143168647 143168675 DQ586768 Homo sapiens piRNA piR-53880, complete sequence. 

chr1 + 143184707 143184737 DQ579288 Homo sapiens piRNA piR-47400, complete sequence. 

chr1 + 143185980 143186010 DQ590589 Homo sapiens piRNA piR-32372, complete sequence. 
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chr1 - 143286955 143286985 DQ587539 Homo sapiens piRNA piR-32372, complete sequence. 

chr1 - 143289062 143289092 DQ590126 Homo sapiens piRNA piR-47400, complete sequence. 

chr1 - 143402283 143402313 DQ587539 Homo sapiens piRNA piR-32372, complete sequence. 

chr1 - 143403553 143403583 DQ590126 Homo sapiens piRNA piR-47400, complete sequence. 

chr1 + 143419286 143419314 DQ596206 Homo sapiens piRNA piR-53880, complete sequence. 

chr1 - 143424332 143467651 BC070106 Homo sapiens cDNA clone IMAGE:30343207. 

chr1 - 143431367 143431397 DQ590126 Homo sapiens piRNA piR-47400, complete sequence. 

chr1 - 143647638 143744587 LINC00875 
Homo sapiens long intergenic non-protein coding RNA 875 

(LINC00875), non-coding RNA. 

chr1 + 143687129 143705973 
LOC10013000

0 
Homo sapiens phosphodiesterase 4D interacting protein pseudogene 

(LOC100130000), non-coding RNA. 

chr1 + 143687129 143714180 
LOC10013000

0 
Homo sapiens phosphodiesterase 4D interacting protein pseudogene 

(LOC100130000), non-coding RNA. 

chr1 + 143690027 143690101 TRNA_Asn transfer RNA Asn (anticodon GTT) 

chr1 + 143702303 143702331 DQ571491 Homo sapiens piRNA piR-31603, complete sequence. 

chr1 - 143717587 143744587 LINC00875 
Homo sapiens long intergenic non-protein coding RNA 875 

(LINC00875), non-coding RNA. 

chr1 - 143718512 143744587 LINC00875 
Homo sapiens long intergenic non-protein coding RNA 875 

(LINC00875), non-coding RNA. 

chr1 - 143719238 143744587 LINC00875 
Homo sapiens long intergenic non-protein coding RNA 875 

(LINC00875), non-coding RNA. 

chr1 - 143767143 143767881 PPIAL4G 
Homo sapiens peptidylprolyl isomerase A (cyclophilin A)-like 4G 

(PPIAL4G), mRNA. 

chr1 - 143879831 143879905 TRNA_Asn transfer RNA Asn (anticodon GTT) 

chr1 - 143896451 143913143 FAM72D 
Homo sapiens family with sequence similarity 72, member D 

(FAM72D), mRNA. 

chr1 - 143896451 143913143 FAM72D 
Homo sapiens family with sequence similarity 72, member D 

(FAM72D), mRNA. 

chr1 + 143915747 144094477 SRGAP2B 
Homo sapiens SLIT-ROBO Rho GTPase activating protein 2B 

(SRGAP2B), mRNA. 
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chr1 + 144146810 144830407 NBPF8 
Homo sapiens neuroblastoma breakpoint family, member 8 (NBPF8), 

transcript variant 3, non-coding RNA. 

chr1 + 144146810 146467744 
LOC10028814

2 
Homo sapiens neuroblastoma breakpoint family member 

(LOC100288142), mRNA. 

chr1 + 144146810 144830407 NBPF9 
Homo sapiens neuroblastoma breakpoint family, member 9 (NBPF9), 

transcript variant 2, mRNA. 

chr1 + 144148789 144830407 NBPF8 
Homo sapiens neuroblastoma breakpoint family, member 8 (NBPF8), 

transcript variant 3, non-coding RNA. 

chr1 + 144150981 144167711 
LOC10028814

2 
Homo sapiens neuroblastoma breakpoint family member 

(LOC100288142), mRNA. 

chr1 + 144151518 144830407 
LOC10028814

2 
Homo sapiens neuroblastoma breakpoint family member 

(LOC100288142), mRNA. 

chr1 + 144160410 144201052 
LOC10028814

2 
Homo sapiens neuroblastoma breakpoint family member 

(LOC100288142), mRNA. 

chr1 + 144162000 144167711 
LOC10028814

2 
Homo sapiens neuroblastoma breakpoint family member 

(LOC100288142), mRNA. 

chr1 + 144162000 144186823 
LOC10028814

2 
Homo sapiens neuroblastoma breakpoint family member 

(LOC100288142), mRNA. 

chr1 + 144162887 144182059 
LOC10028814

2 
Homo sapiens neuroblastoma breakpoint family member 

(LOC100288142), mRNA. 

chr1 + 144171303 144172451 AF420437 Homo sapiens AB13 precursor RNA, partial cds. 

chr1 + 144176438 144830407 NBPF8 
Homo sapiens neuroblastoma breakpoint family, member 8 (NBPF8), 

transcript variant 3, non-coding RNA. 

chr1 + 144179473 144223374 
LOC10028814

2 
Homo sapiens neuroblastoma breakpoint family member 

(LOC100288142), mRNA. 

chr1 + 144181950 144186823 
LOC10028814

2 
Homo sapiens neuroblastoma breakpoint family member 

(LOC100288142), mRNA. 

chr1 + 144183587 144830407 NBPF8 
Homo sapiens neuroblastoma breakpoint family, member 8 (NBPF8), 

transcript variant 3, non-coding RNA. 

chr1 + 144184251 145339512 
LOC10028814

2 
Homo sapiens neuroblastoma breakpoint family member 

(LOC100288142), mRNA. 

chr1 + 144185827 144223374 
LOC10028814

2 
Homo sapiens neuroblastoma breakpoint family member 

(LOC100288142), mRNA. 
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chr1 + 144189011 144827928 
LOC10028814

2 
Homo sapiens neuroblastoma breakpoint family member 

(LOC100288142), mRNA. 

chr1 + 144190581 144830407 NBPF8 
Homo sapiens neuroblastoma breakpoint family, member 8 (NBPF8), 

transcript variant 3, non-coding RNA. 

chr1 + 144190581 144209025 
LOC10028814

2 
Homo sapiens neuroblastoma breakpoint family member 

(LOC100288142), mRNA. 

chr1 + 144196230 144201052 
LOC10028814

2 
Homo sapiens neuroblastoma breakpoint family member 

(LOC100288142), mRNA. 

chr1 + 144196230 144209025 
LOC10028814

2 
Homo sapiens neuroblastoma breakpoint family member 

(LOC100288142), mRNA. 

chr1 + 144209457 144212180 AL050141 
Homo sapiens mRNA; cDNA DKFZp586O031 (from clone 

DKFZp586O031). 

chr1 + 144218498 144830407 NBPF8 
Homo sapiens neuroblastoma breakpoint family, member 8 (NBPF8), 

transcript variant 3, non-coding RNA. 

chr1 - 144275887 144290006 AX746564 Homo sapiens cDNA FLJ33341 fis, clone BRACE2002582. 

chr1 - 144300511 144340773 LINC00623 
Homo sapiens long intergenic non-protein coding RNA 623 

(LINC00623), non-coding RNA. 

chr1 - 144300511 144340773 LINC00623 
Homo sapiens long intergenic non-protein coding RNA 623 

(LINC00623), non-coding RNA. 

chr1 - 144300511 144341755 LOC728875 
Homo sapiens uncharacterized LOC728875 (LOC728875), non-coding 

RNA. 

chr1 + 144301610 144301684 TRNA_Asn transfer RNA Asn (anticodon GTT) 

chr1 - 144308613 144308687 TRNA_Asn transfer RNA Asn (anticodon GTT) 

chr1 - 144339562 144340773 LINC00623 
Homo sapiens long intergenic non-protein coding RNA 623 

(LINC00623), non-coding RNA. 

chr1 - 144340773 144341077 BC047032 Homo sapiens cDNA FLJ33341 fis, clone BRACE2002582. 

chr1 - 144363461 144364246 PPIAL4B 
Homo sapiens peptidylprolyl isomerase A (cyclophilin A)-like 4B 

(PPIAL4B), mRNA. 

chr1 - 144456162 144470244 AX746564 Homo sapiens cDNA FLJ33341 fis, clone BRACE2002582. 

chr1 - 144480744 144521009 LOC728875 
Homo sapiens uncharacterized LOC728875 (LOC728875), non-coding 

RNA. 
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chr1 - 144480745 144521969 LOC728875 
Homo sapiens uncharacterized LOC728875 (LOC728875), non-coding 

RNA. 

chr1 - 144480745 144521009 LOC728875 
Homo sapiens uncharacterized LOC728875 (LOC728875), non-coding 

RNA. 

chr1 + 144481839 144481913 TRNA_Asn transfer RNA Asn (anticodon GTT) 

chr1 - 144488842 144488916 TRNA_Asn transfer RNA Asn (anticodon GTT) 

chr1 - 144514872 144519720 AK094156 
Homo sapiens primary neuroblastoma cDNA, clone:Nbla04072, full 

insert sequence. 

chr15 + 25362556 25420017 IPW 
Homo sapiens imprinted in Prader-Willi syndrome (non-protein coding) 

(IPW), non-coding RNA. 

chr15 + 25415869 25415951 SNORD115-1 
Homo sapiens small nucleolar RNA, C/D box 115-1 (SNORD115-1), 

small nucleolar RNA. 

chr15 + 25417781 25417863 SNORD115-2 
Homo sapiens small nucleolar RNA, C/D box 115-2 (SNORD115-2), 

small nucleolar RNA. 

chr15 + 25418125 25427252 SNURF-SNRPN 
Homo sapiens clone Rt-5 SNURF-SNRPN mRNA, downstream 

untranslated exons, alternatively spliced. 

chr15 + 25420073 25420155 SNORD115-3 
Homo sapiens small nucleolar RNA, C/D box 115-3 (SNORD115-3), 

small nucleolar RNA. 

chr15 + 25421978 25422060 SNORD115-4 
Homo sapiens small nucleolar RNA, C/D box 115-4 (SNORD115-4), 

small nucleolar RNA. 

chr15 + 25423884 25423966 SNORD115-5 
Homo sapiens small nucleolar RNA, C/D box 115-5 (SNORD115-5), 

small nucleolar RNA. 

chr15 + 25425643 25425725 SNORD115-6 
Homo sapiens small nucleolar RNA, C/D box 115-6 (SNORD115-6), 

small nucleolar RNA. 

chr15 + 25426956 25430721 SNURF-SNRPN 
Homo sapiens clone Rt-7 SNURF-SNRPN mRNA, downstream 

untranslated exons, alternatively spliced. 

chr15 + 25427531 25427613 SNORD115-7 
Homo sapiens small nucleolar RNA, C/D box 115-7 (SNORD115-7), 

small nucleolar RNA. 

chr15 + 25427858 25431154 SNURF-SNRPN 
Homo sapiens clone Rt-9 SNURF-SNRPN mRNA, downstream 

untranslated exons, alternatively spliced. 

chr15 + 25429452 25429534 SNORD115-8 
Homo sapiens small nucleolar RNA, C/D box 115-8 (SNORD115-8), 

small nucleolar RNA. 
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chr15 + 25430777 25430859 SNORD115-9 
Homo sapiens small nucleolar RNA, C/D box 115-9 (SNORD115-9), 

small nucleolar RNA. 

chr15 + 25432682 25432763 SNORD115-10 
Homo sapiens small nucleolar RNA, C/D box 115-10 (SNORD115-10), 

small nucleolar RNA. 

chr15 + 25434560 25434642 SNORD115-11 
Homo sapiens small nucleolar RNA, C/D box 115-11 (SNORD115-11), 

small nucleolar RNA. 

chr15 + 25436386 25442649 SNURF-SNRPN 
Homo sapiens clone Rt-11 SNURF-SNRPN mRNA, downstream 

untranslated exons, alternatively spliced. 

chr15 + 25436562 25436644 SNORD115-9 
Homo sapiens small nucleolar RNA, C/D box 115-9 (SNORD115-9), 

small nucleolar RNA. 

chr15 + 25438467 25438549 SNORD115-13 
Homo sapiens small nucleolar RNA, C/D box 115-13 (SNORD115-13), 

small nucleolar RNA. 

chr15 + 25440067 25440148 SNORD115-14 
Homo sapiens small nucleolar RNA, C/D box 115-14 (SNORD115-14), 

small nucleolar RNA. 

chr15 + 25442574 25459165 SNURF-SNRPN 
Homo sapiens clone Rt-13I SNURF-SNRPN mRNA, downstream 

untranslated exons, alternatively spliced. 

chr15 + 25442574 25459165 SNURF-SNRPN 
Homo sapiens clone Rt-13I SNURF-SNRPN mRNA, downstream 

untranslated exons, alternatively spliced. 

chr15 + 25444594 25444676 SNORD115-16 
Homo sapiens small nucleolar RNA, C/D box 115-16 (SNORD115-16), 

small nucleolar RNA. 

chr15 + 25446469 25446551 SNORD115-17 
Homo sapiens small nucleolar RNA, C/D box 115-17 (SNORD115-17), 

small nucleolar RNA. 

chr15 + 25448373 25448455 SNORD115-17 
Homo sapiens small nucleolar RNA, C/D box 115-17 (SNORD115-17), 

small nucleolar RNA. 

chr15 + 25449503 25449585 SNORD115-17 
Homo sapiens small nucleolar RNA, C/D box 115-17 (SNORD115-17), 

small nucleolar RNA. 

chr15 + 25451408 25477615 SNORD115-15 
Homo sapiens small nucleolar RNA, C/D box 115-15 (SNORD115-15), 

small nucleolar RNA. 

chr15 + 25455064 25455146 SNORD115-22 
Homo sapiens small nucleolar RNA, C/D box 115-22 (SNORD115-22), 

small nucleolar RNA. 

chr15 + 25456838 25457180 PAR4 
Homo sapiens Prader-Willi/Angelman region gene 4 (PAR4), non-

coding RNA. 
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chr15 + 25458605 25467437 SNURF-SNRPN 
Homo sapiens clone Rt-13I SNURF-SNRPN mRNA, downstream 

untranslated exons, alternatively spliced. 

chr15 + 25458805 25458876 SNORD115-24 
Homo sapiens small nucleolar RNA, C/D box 115-24 (SNORD115-24), 

small nucleolar RNA. 

chr15 + 25460687 25460769 SNORD115-25 
Homo sapiens small nucleolar RNA, C/D box 115-25 (SNORD115-25), 

small nucleolar RNA. 

chr15 + 25463498 25479764 SNURF-SNRPN 
Homo sapiens clone Rt-15 SNURF-SNRPN mRNA, downstream 

untranslated exons, alternatively spliced. 

chr15 + 25463763 25463845 SNORD115-26 
Homo sapiens small nucleolar RNA, C/D box 115-26 (SNORD115-26), 

small nucleolar RNA. 

chr15 + 25465649 25465725 SNORD115-27 
Homo sapiens small nucleolar RNA, C/D box 115-27 (SNORD115-27), 

small nucleolar RNA. 

chr15 + 25467500 25467574 SNORD115-28 
Homo sapiens small nucleolar RNA, C/D box 115-28 (SNORD115-28), 

small nucleolar RNA. 

chr15 + 25468392 25468474 SNORD115-11 
Homo sapiens small nucleolar RNA, C/D box 115-11 (SNORD115-11), 

small nucleolar RNA. 

chr15 + 25470349 25470431 SNORD115-30 
Homo sapiens small nucleolar RNA, C/D box 115-30 (SNORD115-30), 

small nucleolar RNA. 

chr15 + 25472255 25472337 SNORD115-31 
Homo sapiens small nucleolar RNA, C/D box 115-31 (SNORD115-31), 

small nucleolar RNA. 

chr15 + 25474113 25474195 SNORD115-32 
Homo sapiens small nucleolar RNA, C/D box 115-32 (SNORD115-32), 

small nucleolar RNA. 

chr15 + 25475984 25476066 SNORD115-33 
Homo sapiens small nucleolar RNA, C/D box 115-33 (SNORD115-33), 

small nucleolar RNA. 

chr15 + 25479393 25479475 SNORD115-35 
Homo sapiens small nucleolar RNA, C/D box 115-35 (SNORD115-35), 

small nucleolar RNA. 

chr15 + 25481231 25481313 SNORD115-11 
Homo sapiens small nucleolar RNA, C/D box 115-11 (SNORD115-11), 

small nucleolar RNA. 

chr15 + 25481555 25620623 SNURF-SNRPN 
Homo sapiens clone Rt-16 SNURF-SNRPN mRNA, downstream 

untranslated exons, alternatively spliced. 

chr15 + 25483132 25483214 SNORD115-37 
Homo sapiens small nucleolar RNA, C/D box 115-37 (SNORD115-37), 

small nucleolar RNA. 
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chr15 + 25484984 25485066 SNORD115-38 
Homo sapiens small nucleolar RNA, C/D box 115-38 (SNORD115-38), 

small nucleolar RNA. 

chr15 + 25486892 25486974 SNORD115-39 
Homo sapiens small nucleolar RNA, C/D box 115-39 (SNORD115-39), 

small nucleolar RNA. 

chr15 + 25488760 25488842 SNORD115-40 
Homo sapiens small nucleolar RNA, C/D box 115-40 (SNORD115-40), 

small nucleolar RNA. 

chr15 + 25490624 25490706 SNORD115-41 
Homo sapiens small nucleolar RNA, C/D box 115-41 (SNORD115-41), 

small nucleolar RNA. 

chr15 + 25492491 25492573 SNORD115-10 
Homo sapiens small nucleolar RNA, C/D box 115-10 (SNORD115-10), 

small nucleolar RNA. 

chr15 + 25494344 25494426 SNORD115-11 
Homo sapiens small nucleolar RNA, C/D box 115-11 (SNORD115-11), 

small nucleolar RNA. 

chr15 + 25496005 25496087 SNORD115-44 
Homo sapiens small nucleolar RNA, C/D box 115-44 (SNORD115-44), 

small nucleolar RNA. 

chr12 + 8325149 8332642 ZNF705A Homo sapiens zinc finger protein 705A (ZNF705A), mRNA. 

chr12 + 8332804 8353596 FAM66C 
Homo sapiens family with sequence similarity 66, member C 

(FAM66C), non-coding RNA. 

chr12 + 8332804 8353596 FAM66C 
Homo sapiens family with sequence similarity 66, member C 

(FAM66C), non-coding RNA. 

chr12 + 8332804 8356982 FAM66C 
Homo sapiens family with sequence similarity 66, member C 

(FAM66C), non-coding RNA. 

chr12 + 8332804 8368747 FAM66C 
Homo sapiens family with sequence similarity 66, member C 

(FAM66C), non-coding RNA. 

chr12 - 8373855 8380214 FAM90A1 
Homo sapiens family with sequence similarity 90, member A1 

(FAM90A1), mRNA. 

chr12 - 8373855 8380214 FAM90A1 
Homo sapiens family with sequence similarity 90, member A1 

(FAM90A1), mRNA. 

chr12 - 8383644 8395542 FAM86FP 
Homo sapiens family with sequence similarity 86, member F, 

pseudogene (FAM86FP), non-coding RNA. 
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Table S7: Significant functions identified for the network constructed in IPA® (Fig.4) of genes in CNV regions 

Categories Functions 
Diseases or Functions 

Annotation 
p-Value Molecules 

Hair and Skin Development and Function anagen Anagen 6.97E-04 TRH 

Endocrine System Disorders, Hereditary Disorder, 
Metabolic Disease, Organismal Injury and 

Abnormalities 

thyrotropin-releasing 
hormone deficiency 

Thyrotropin-releasing 
hormone deficiency 

6.97E-04 TRH 

Molecular Transport 
transmembrane 

transport 
Transmembrane 
transport of H+ 

1.66E-02 OTOP1 

Cell Death and Survival, Organismal Injury and 
Abnormalities 

apoptosis 
Apoptosis of 
keratinocytes 

2.00E-02 TRH 

Cancer, Organismal Injury and Abnormalities, 
Reproductive System Disease 

uterine carcinoma Uterine carcinoma 2.03E-02 

KRTAP5-11, FAM72C/FAM72D, 
OTOP1, FAM90A1, 

TRIM49/TRIM49C, DEFB108B, 
TRIM64/TRIM64B 

Cancer, Organismal Injury and Abnormalities adenoma formation Adenoma 2.53E-02 TRH, NBPF10 (includes others) 

Developmental Disorder, Hereditary Disorder, 
Organismal Injury and Abnormalities 

Prader-Willi 
syndrome 

Prader-Willi 
syndrome 

2.55E-02 IPW 

Cancer, Endocrine System Disorders, Organismal 
Injury and Abnormalities, Reproductive System 

Disease 

pituitary gland 
adenoma 

Pituitary gland 
adenoma 

3.23E-02 TRH 

Carbohydrate Metabolism, Small Molecule 
Biochemistry 

synthesis 
Synthesis of inositol 

phosphate 
3.43E-02 TRH 

Amino Acid Metabolism, Small Molecule Biochemistry synthesis 
Synthesis of amino 

acids 
3.70E-02 NAALAD2 

Cell-To-Cell Signaling and Interaction, Embryonic 
Development 

response 
Response of 

embryonic cell lines 
3.83E-02 TRIM49/TRIM49C 

Cell-To-Cell Signaling and Interaction, Hair and Skin 
Development and Function 

response 
Response of epithelial 

cell lines 
3.83E-02 TRIM49/TRIM49C 

Cell-To-Cell Signaling and Interaction, Renal and 
Urological System Development and Function 

response 
Response of kidney 

cell lines 
3.83E-02 TRIM49/TRIM49C 

Cellular Development, Cellular Growth and 
Proliferation, Connective Tissue Development and 

proliferation 
Proliferation of 
keratinocytes 

4.30E-02 TRH 
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Function, Hair and Skin Development and Function, 
Organ Development, Tissue Development 

 

 

Figure S112: Visual summary of methodology 

 

 



 

79 
 

 

 

Chapter 3 

 

3. INVESTIGATING HYPERTENSION AS A SOURCE OF 

VASCULAR DEMENTIA OR A COMORBIDITY TO 

ALZHEIMER’S DISEASE  
  

ABSTRACT. Age-related comorbidity is common and significantly increases the burden for 

healthcare of the elderly. Alzheimer’s disease (AD) – a type of dementia– and hypertension are 

the two most prevalent age-related conditions and are highly comorbid. While hypertension is a 

risk factor for vascular dementia (VaD) – a distinct subtype of dementia– the presence of 

hypertension with AD (AD+Hyp+) is often characterized as probable vascular dementia. In the 

absence of imaging and other diagnostic tests, differentiating the two pathological states is 

difficult. 

Our goals are to (1) identify differences in vascular dementia profiles, if any, between individuals 

who have AD only (AD+Hyp-), and individuals with AD+Hyp+ using CSF levels of amyloid β, 

tau and p-tau, and (2) compare genome-wide DNA profiles of AD+Hyp- and AD+Hyp+ with an 

unaffected control population. We hypothesize that genetic variants underlying AD+Hyp+ 

comorbidity pattern will be different than variants associated with VaD, AD, or hypertension 

independently. 
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Short Title:  Investigating Alzheimer’s- Hypertension comorbidity

Genotype and clinical data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were 

used to conduct comorbidity analyses comparing healthy controls to AD+/Hyp- vs AD+/Hyp+. 

We compared the CSF biomarkers in three cohorts using one-way ANOVA. We, then evaluated 

genome wide profiles in three groups, and mapped SNPs to genes based on position and lowest 

p-value. The significant genes are further examined for co-expression patterns and known disease 

networks. 

Through this exploratory study using a novel cohort stratification design, we highlight the genetic 

differences in clinically similar phenotypes, indicating the utility of genetic profiling in aiding 

differential diagnosis of AD+Hyp+ and VaD. 
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 INTRODUCTION 

In the recent years, there has been a huge shift in the demographics of the population ages 65 years 

and older, which is expected to double by 2060 reaching 98 million 1.  Alzheimer’s disease (AD) 

is a neurodegenerative condition affecting 5.5 million people worldwide, with the majority of the 

affected population being 65 years and older 2. According to the 2011 Alzheimer’s Association 

report, hypertension is the most prevalent comorbid condition, affecting 60% of the Alzheimer’s 

population 2. While hypertension is a known risk factor for vascular dementia – a subtype of 

dementia 3 – the presence of hypertension with AD is often categorized as vascular dementia (VD) 

4. Clinical diagnosis of vascular cognitive decline is associated with presence of cerebral vascular 

damage from subcortical ischemia resulting in symptoms of small vessel disease including infarcts 

and white matter hyperintensity (WMH)5. These lesions are detected using MRI/tomography 

images of the brain and signify regions of the brain with water content indicating possible damage 

to axons and brain tissue. Increase in age is associated with enlarged white matter lesions followed 

by hypertension6. However, studies have shown that presence of hypertension presents different 

risk ratios in AD and vascular dementia. In a longitudinal study of 8.2 years, the risk of systolic 

blood pressure in causing dementia was higher for vascular dementia than AD7. Hypertension has 

been associated with increased risk of cognitive impairment in AD8. A study investigating multiple 

cardiovascular factors including hypertension as risk factors to multiple neurodegenerative 

diseases in ~17,000 individuals reported hypertension as the highest risk to vascular dementia 

followed by AD9. However, not all individuals diagnosed with AD have hypertension. In this 

study, we hypothesize that hypertension as a comorbidity to AD is different than its association 

with vascular dementia. We first investigated characteristics that are known vascular dementia risk 

characteristics prevalent in individuals diagnosed with Alzheimer’s disease, with and without 
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hypertension. Studies have shown that clinical vascular dementia can be diagnosed with the 

cerebellar spinal fluids (CSF) biomarkers - amyloid β, tau and p-tau, by using the following 

calculation10.  

Vascular Dementia (VD) =  
tau(T)∙ tau(p−181)

Aβ42
  

We evaluated vascular dementia profiles between individuals with AD only (ADHyp-), and 

individuals with AD and hypertension (ADHyp+). However, VD profiles in our cohort is 

indistinguishable between individuals of AD with or without hypertension (Hyp), requiring 

investigation of other possible pathogenic causes. We, therefore hypothesized that genetic variants 

underlying ADHyp+ comorbidity pattern, will be different than AD only pathology.  

. 

 METHODS & MATERIALS 

We received authorized access to Alzheimer’s Disease Imaging Initiative (ADNI), which contains 

clinical and genotype data of AD individuals. The research protocol for this project was reviewed 

by University of North Texas Health Science Center Institutional Review Board on June 24, 2016 

and determined to be exempt human subject research under IRB–2016-090. 

We compared CSF biomarkers – amyloid β, tau and p-tau in three cohorts using one-way ANOVA. 

For this pilot study phase, we used ADNI-111 (a subset of the data) to conduct a gene-based GWAS 

comparing genome-wide profiles using 535,762 SNP markers in 677 individuals (after QC)on 

Illumina – 610W genotyping platform. We compared genome-wide profiles using multinomial 

regression (Trinculo12), to compare multi-category disease populations (ADHyp- and ADHyp+) 

with a control population (unaffected by either AD or hypertension). The associations were 
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adjusted for age, sex, and the first two principal components of genetic similarity as covariates. In 

addition to the overall p-value for the likelihood ratio test, we identified individual p-value for 

each disease using Wald statistics. We then used p-values to run a gene-based association testing 

using VEGAS 2.013, which maps suggestive SNPs (p-value <0.05) to genes-based position ( 

50kb). The most significant SNPs annotated to genes was visualized in LocusZoom for a 100kb 

window. We further investigated these top gene hits using the DisGeNET 14 database for associated 

diseases and visualized using diseasegent2r, an R package for overlapping diseases in gene-disease 

associations. We additionally used GeneMania15 to (1) identify top hits from each association that 

have been reported to be co-expressed, and (2) to visualize gene networks that have common co-

expression. ADHyp- vs ADHyp+ groups were compared using MAGMA 16 which uses a principal 

component-based regression approach to conduct gene associations. We investigated the 

neighboring genes mapped to the reported variants as candidates for differences in gene expression 

in independent cohort. We used the second phase of the ADNI cohort, ADNI-2/GO to assess the 

mean differences in gene expression between disease status groups. Continuous variables were 

analyzed using one-way ANOVA followed by Tukey’s post hoc for pairwise comparisons. 

Categorical variables were analyzed using chi-square test, and p-value < 0.05 was considered 

significant. 

 RESULTS 

We first compared known clinical characteristics of vascular dementia in AD individuals with 

normal (ADHyp-) and high blood pressure (ADHyp+) along with Alzheimer’s disease. Very few 

cases of history of stroke and prior neurological symptoms were present in all three groups. 

However, upon comparing white matter hyperintensity (WMH), we observe significant differences 

between ADHyp- vs ADHyp+, and control vs ADHyp+ group (Figure 1). The age of disease onset 



Chapter 3 | Investigating Alzheimer’s – Hypertension comorbidity 

Page | 84  

 

for Alzheimer’s disease in the ADHyp- and ADHyp+ group and age in controls group was not 

significantly different in the pairwise comparison (Figure 2). We investigated possible correlation 

trends between a) metabolic variables – white matter hyperintensity, body mass index, 

triglycerides, cholesterol, and systolic blood pressure, b) cerebral spinal fluid (CSF) biomarkers – 

Aβ, tau, p-tau, and alpha-synuclein and c) other dementia risk factors – age and MMSE score in 

ADNI-1 cohort. We observe strong positive correlation between the CSF biomarkers – Aβ, tau 

and p-tau. All three were weakly negatively correlated with systolic blood pressure. While Aβ was 

positively (weak) correlated with MMSE scores, tau and p-tau were negatively correlated (weak) 

with MMSE scores. Although WMH is a sign of cerebrovascular damage caused by stroke or 

hypertension, we did not observe significant correlation between systolic blood pressure and 

WMH; we did observe a positive correlation (weak)of WMH with age and negative correlation 

(weak) with MMSE scores (Figure 3). The vascular dementia profiles between controls, ADHyp- 

and ADHyp+ group were not statistically different between AD groups, however both groups were 

different when compared to control individuals (Figure 4). The gene based GWAS identified 

KMO, TOMM40, and PML for control vs ADHyp- group, and genes – TCTE1, PML, GFER, 

STOML1, TBL3, NOXO1, SYNGR3, NPW, ZNF598, NPW and SLC9A3R2 for control vs ADHyp+. 

The gene-based association detected UBE4B, TINAG, PRRX2, TUBE1, RGR and TMX1 for 

ADHyp- vs ADHyp+ group. Genes identified in each of comparisons were investigated further to 

determine existing relationships using GeneMania. We observed that several of the genes were co-

expressed and shared protein domains and pathways (Figure 5). Our study found several novel 

genes for the association of AD and AD-hypertension comorbidity. Using the DisGeNET database, 

we observe that PML, KMO and TOMM40 are associated with other neuropathological disorders 

such as depression, and schizophrenia14 (Figure 6). Furthermore, the genes identified for control 
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vs AD-hypertension comorbidity were found to be associated with various cognitive decline 

symptoms, and SLC9A3R2 was associated with hypertension (Figure 7)14. The gene-based GWAS 

is comprised of SNPs which are annotated to genes within a 50kb window. In order to test that 

our identified genes (based on differences in variant frequency between controls and AD-

hypertension comorbidity) are potentially different in three groups, we did a candidate gene 

expression study using a separate set of individuals – ADNI-2/GO cohort. We compared 

normalized RPM values (Reads per million mapped reads) between controls, AD and AD-

hypertension group in the ADNI-2/GO. We first compared the WMH profile in ADNI-2/GO 

cohort, wherein we observed similar trend of higher WMH in individuals with AD-hypertension 

comorbidity (Figure 8). We investigated genes which were significantly associated between 

control and ADHyp+ individuals. PML was found to be associated in both pairwise comparisons 

between control vs ADHyp- and control vs ADHyp+. The most significant SNP for PML gene was 

rs1052242, the gene expression between the disease status was not significant, but after sex-based 

stratification, significant differences were seen between males with ADHyp+ and females with 

ADHyp- (Figure 9). Another gene, KMO is located on chromosome 1, and the most significant 

SNP was rs1932441, significant differences in KMO gene expression were observed between 

males with ADHyp+ and females with ADHyp- (Figure 10). The rs8045288 on chromosome 16 

was annotated to multiple genes, herein we investigated gene expression of neighboring genes 

around the SNP. We found significant differences between ADHyp- and ADHyp+ for GFER, 

SLC9A3R2, ZNF598 and NOXO1.  We did not see differences for NPW, NTHL1, TBL3, and 

SYNGR3 (Figure 11).  
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 DISCUSSION 

This study identified possible differences between vascular dementia and AD-hypertension 

comorbidity. We observed that known risk factors of vascular dementia were not significantly 

present in individuals with AD-hypertension comorbidity except for differences in white matter 

hyperintensity.  While WMH was found to be correlated with the expected dementia risk factors 

– age and decline in MMSE scores, it was not correlated with systolic pressure. Furthermore, while 

the CSF biomarkers- amyloid β, tau and p-tau are known for their diagnostic contribution in 

vascular dementia, their profile is unaltered in Alzheimer’s-hypertension comorbidity, providing 

the motivation for investigating other possible pathogenic causes.  Through this exploratory study 

using a novel cohort stratification design, several suggestive signals emerged, although none of 

the genes reach genome-wide significance (likely due to the small number of individuals). Our 

results point to known genes as well as several novel genes which are known to have role in 

multiple CNS disorders. When comparing the control individuals with AD+Hyp- individuals, we 

observe TOMM40, PML and KMO as top hits. Gene-disease associations from DisGeNET 

database highlight their common association to psychiatric disorders. Interestingly, when 

comparing Controls vs AD+Hyp+, we observe several genes in the chromosome 16 region. While 

not all the genes implicated in the signal were present in the DisGeNET database, three of the four 

genes were associated with CNS disorders and SLC9A3R2 is associated with hypertension. We 

also conducted data mining to identify gene expression patterns within our top gene set using 

GeneMANIA; remarkably, all top hits were known to be co-expressed via other intermediate 

genes. PML was a top hit, in both AD+Hyp- and AD+Hyp+ when compared to controls; although 

the gene network in these two disease states is distinct, there is commonality of PML gene which 

is known to be responsible for cancer and various CNS disorders 17. We also observed that gene 
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expression of PML, KMO, GFER and SLC9A3R2 are significantly different in the three groups, 

the stratification based on sex documents indicates potential differences in sub-groups. PML was 

first identified in acute promyelocytic leukemia, thus deriving its gene name. PML has been 

reported to be expressed in brain regions including hippocampus, cortex, cerebellum and neuronal 

cells of the brain. PML dysregulation has been associated with synaptic plasticity, abnormal 

circadian rhythms and frontotemporal dementia. In the aging neuron, an overexpression of PML 

has been suspected to provide neuroprotection by clearing accumulation of toxic proteins 17. KMO 

- kynurenine 3-monooxygenase, is involved in kynurenine pathway for tryptophan degeneration, 

and is primary source of investigation in neurodegenerative conditions such as Huntington’s 

disease18. Dysregulation in the kynurenine pathway leads to decreased tryptophan levels which is 

inversely correlation with the progression of hypertension in rat models19.In AD patients, 

metabolites of kynurenine pathway including tryptophan were lower than age-matched controls20. 

GFER – growth factor erv1-like, encodes ALR protein (Augmenter of Liver Regeneration) which 

is primarily localized in the mitochondria. Mutations in this gene has been suspected to be 

influenced by histone acetylation and reported to cause infantile mitochondrial disorder. The over 

expression of ALR is reported to lower mitochondrial ROS damage, reduce apoptosis, fibrosis, 

ER stress and inflammation21. SLC9A3R2 - Solute Carrier Family 9 Subfamily A , encodes 

NHERF2 gene responsible for increased sodium-hydrogen exchange in rat model of 

hypertension22. Furthermore, variants in SLC9A3R2 have been associated with systolic and 

diastolic pressure in GWAS of 750,000 individuals23.The NOXO1- NADPH oxidase organizer 1 

is located on the cellular membrane and its phosphorylation by protein kinase A leads to 

superoxide anion production by NOX1 and NOX3. The over expression of NOXO1 has been 

suspected to be associated with high ROS production in the activated microglia24.  
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The molecular function of the identified genes indicates presence of oxidative stress and 

neurodegeneration. The association of SLC9A3R2 in ADHyp+ is consistent with its previously 

known association with hypertension. Additionally, we observe an overlapping theme of reported 

genes to regulate ROS damage. Our findings indicate possible involvement of dysregulated 

oxidation and tryptophan associated with hypertension, furthermore contributing to 

neurodegeneration. 

There are several limitations to this study: our sample size was small and increasing the number 

of subjects would provide power to detect other genes responsible for differences in AD and AD-

hypertension status. Differences in gene expression could be attributed to methylation changes, 

therefore comparing epigenomic profiles cross-sectionally or longitudinally would provide deeper 

insights into the comorbid pathogenicity. While studies have reported that hypertension is a 

stronger risk to vascular dementia than AD, our findings indicate that known risk factors of 

vascular dementia are less prevalent (or absent) in our cohort of AD-hypertension comorbidity. 

This observation along with different significant genes in ADHyp- and ADHyp+ profiles leads us 

to postulate that AD-hypertension comorbidity is different than vascular dementia. Our results did 

not support relationship between systolic blood pressure, WMH and MMSE, indicating that there 

could be other factors associated with WMH. One study found association of diastolic and not 

systolic blood pressure with WMH6. Therefore, it is imperative that we conduct future studies to 

identify other factors that may be playing a role to exacerbate WMHs, and how the reported genes 

contribute towards phenotypic heterogeneity of AD and AD-hypertension disease type. We believe 

this study not only enhances risk stratification for AD-hypertension comorbidity but also sheds 

light on the underlying pathogenesis. 
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Figure 13: Characteristics in ADNI-1 population for history of stroke, neurological symptoms and white hyperintensity. The traits were compared between controls (CN), Alzheimer’s 

disease without hypertension (ADHyp-) and Alzheimer’s disease with hypertension comorbidity (ADHyp+). Tukey’s post-hoc revealed significant differences between ADHyp- vs 

ADHyp+ (p = 0.005), and CN vs ADHyp+ group (p=0.001).  

** 

** 
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Figure 15: The age of Alzheimer’s disease onset compared within controls (CN), 

Alzheimer’s disease without hypertension (ADHyp-) and Alzheimer’s disease with 

hypertension comorbidity (ADHyp+) in ADNI-1 cohort. The mean differences in age 

between the groups is not statistically significant. 

CN vs ADHyp+ (p=0.99); ADHyp- vs ADHyp+ (p=0.06); CN vs ADHyp- (p=0.07) 

Figure 14: Correlation plot between metabolic variables – white matter 

hyperintensity (WMH), body mass index (BMI), triglycerides (TRIG), 

cholesterol, and systolic blood pressure (VSBPSYS), cerebral spinal fluid 

(CSF) biomarkers – Aβ, tau, p-tau, and alpha-synuclein and risk factors – age 

and MMSE score in ADNI-1 cohort. The color scale signifies correlation 

coefficient, and asterisk represent significance for p-values <0.05 *; <0.01 **; 

<0.001 *** 
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Vascular Dementia (VD) =  
tau(T)∙ tau(p−181)

Aβ42
 

 

 

Figure 16: The vascular dementia profile based on CSF biomarkers – Aβ, tau and p-tau, in controls, Alzheimer’s disease without hypertension (Alz) and Alzheimer’s disease with 

hypertension comorbidity (AlzHyp). The pairwise comparison between the three groups reveals control vs AlzHyp and control vs Alz is significant (p<0.05) and Alz vs Alzhyp is not 

significant (p>0.05). 

** 

** 
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Figure 17: Gene-based GWAS. Manhattan plot for gene-based association between control vs Alzheimer’s disease without hypertension (top), control vs Alzheimer’s disease with hypertension 

comorbidity (middle), and Alzheimer’s disease without hypertension vs Alzheimer’s disease with hypertension comorbidity (bottom). The genes that are suggestively significant are labelled with 

the names. Network relationship of the labelled genes are shown next to the corresponding Manhattan plot. The query genes are highlighted in green squares. The log10(p-value) is shown on the 

y-axis; the dashed lines represent suggestive significance and solid lines represent genome-wide significance based on Bonferroni correction. 
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Figure 18: Disease-gene network for genes identified for the association between control vs Alzheimer’s disease without hypertension. The diseases 

(blue circles) overlapping between genes (pink circles) are bolded. 
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Figure 19: Disease-gene network for genes identified for the association between control vs Alzheimer’s disease with hypertension. The diseases (blue circles) overlapping between 

genes (pink circles) are bolded. 
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Figure 20: Disease-based comparison of White Matter Hyperintensity (WMH) in ADNI-2/Go cohort (N=494) based on disease status – controls (CN), Alzheimer’s disease without 

hypertension (ADHyp-) and Alzheimer’s disease with hypertension comorbidity (ADHyp+).  
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Figure 21: The gene expression values of genes identified from the gene-based GWAS. (Left panel) Overall and sex-based differences in gene expression of PML gene in 

ADNI-2/GO cohort. Significant differences were seen for ADHyp-:Male-ADHyp+:Female, p = 0.046. (Right panel) The regional plot for rs1052242, which is the leading 

significant SNP for PML gene as observed in the gene based GWAS. 
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Figure 22: The gene expression values of genes identified from the gene-based GWAS. (Left panel) Overall and sex-based differences in gene expression of KMO 

gene Significant differences were seen for ADHyp+:Male-ADHyp-:Female, p = 0.012. (Right panel) The regional plot for rs1932441, which is the leading 

significant SNP for KMO gene as observed in the gene based GWAS. 
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Figure 23: The gene expression values of genes identified from the gene-based GWAS. The top panel shows the regional plot for rs8045288, which was annotated to 

multiple genes due to proximity (50kb) from the SNP site. The gene expression of these genes was tested in ADNI-2/GO dataset as candidate genes affected by the SNP. 

Four genes – GFER, SLC9A3R2, ZNF598 and NOXO1 were found to have significant differences based on disease status. The gene expression values of other genes – 

NPW, NTHL1, TBL3, and SYNGR3, marked with gray dashed lines were not statistically significant between the three groups. 
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Short Title: Bayesian GWAS of inverse comorbidity between Alzheimer’s and cancer 

ABSTRACT.  

INTRODUCTION: We compared genetic variants between Alzheimer’s disease and two age-

related cancers – breast and prostate cancer– to identify variants (SNPs) that are associated with 

inverse comorbidity of AD and cancer.  

METHODS: Bayesian multinomial regression was used to compare sex-stratified cases (AD and 

cancer) against controls in a two-stage study. A ±500 KB region around each replicated hit was 

imputed and analyzed after merging individuals from the two stages. The miRNAs that target the 

genes involving these SNPs were analyzed for miRNA family enrichment. 

RESULTS: We identified 137 variants with inverse odds ratios for AD and cancer located on 

chromosomes 19, 4 and 5. The mapped miRNAs within the network were enriched for miRNA-

17 and miR-515 families. 

DISCUSSION: The identified SNPs were rs4298154 (intergenic), within 

TOMM40/APOE/APOC1, MARK4, CLPTM1, and near the VDAC1/FSTL4 locus. The 

miRNAs identified in our network have been previously reported to have inverse expression in 

AD and cancer. 
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 INTRODUCTION 

The aging population, defined as 65 years or older, is expected to experience a substantial 

demographic shift. By the year 2060, this group is expected to reach 98 million in US, placing an 

unprecedented burden on the healthcare system [1]. Due to the role of aging in accumulation of 

physiological deterioration, the number of chronic diseases affecting this population continues to 

rise and many individuals suffer the co-occurrence of two or more diseases (i.e. comorbidity) [2]. 

In contrast to the more common direct coexistence of diseases, some chronic age-associated 

diseases have been identified to be inversely comorbid – a lower-than-expected occurrence of the 

secondary disease after the index/first diagnosis [3]. These intriguing inverse associations between 

select diagnoses have garnered much attention in the last few years, as they shed light on the 

heterogeneity of age - associated multifactorial diseases.  

Alzheimer’s disease (AD) and cancer are two predominant age-associated diseases which are 

inversely comorbid as reported by several epidemiological findings. In a meta-analysis of 

association studies from 1966 to 2013, AD patients had a decreased incidence of cancer by 42% 

and individuals with cancer history had 37% reduced risk of Alzheimer’s disease [4]. In a recent 

retrospective study of more than 3 million US veterans, cancer survivors aged ≥65 years had a 

lower risk of AD than other age-related outcomes. The odds ratio was 0.89 in fourteen cancer types 

after excluding melanoma, prostate, and colorectal cancer [5]. These findings have fueled 

numerous exploratory investigations into possible genetic mechanisms that may be responsible for 

this inverse association between two common age-related diseases.  

While genome wide association studies (GWAS) have identified multiple genetic loci contributing 

to either AD or cancer, no study has reported cross-phenotypic effects of individual genetic 



Chapter 4 | Bayesian GWAS of inverse comorbidity between Alzheimer’s and cancer 

 

Page | 103  

 

variants [6-8]. Therefore, we sought to detect variants that confer inverse risk for AD and cancer 

by (1) harmonizing the intermediate risk factor – age, between the two disease populations, and 

(2) directly comparing cases which represent the two extremes of the phenotypic variance to a 

common set of controls. The comparison of multiple cases to controls (also known as cross-

disorder studies) warrants the use of multinomial regression. Multiple GWAS scenarios such as 

fine-mapping of variants[9], pleiotropic and regulatory variants employ Bayesian methods in 

genome-wide studies to achieve higher accuracy and prediction than frequentist approach[10]. The 

use of priors in Bayesian approach allows for investigation of multiple directionalities among 

phenotypes [11]. Here, we used flat/ default priors [12] to test the relationship between AD and 

cancer in a conservative setting of no SNP effect exists between the two diseases[11]. We aimed 

to address this goal by conducting a Bayesian multinomial GWAS (B-GWAS)  to identify genetic 

variants that confer inverse risk in the aging population between 60-80 years for AD and cancer, 

using the two most prevalent age-related cancers: breast cancer and prostate cancer [13]. We 

conducted a B-GWAS in two phases – discovery and replication, comparing AD and cancer to 

common controls. All data sets were stratified by gender and harmonized on age. Replicated hits 

were further investigated in the merged data set (discovery and replication) via B-GWAS of 

imputed genotypes within 1Mbp window (± 500 KB) of each hit, and conditional analysis was 

used to identify secondary hits. 

 METHODS AND MATERIALS 

4.2.1 Data description 

We obtained access to datasets from Alzheimer’s Disease Genetics Consortium (ADGC) 

(phs000372.v1.p1) [14] and Breast Prostate Cancer Care Consortium (BPC3) (phs000812.v1.p1) 

[15] via dbGaP’s authorized application to individual level genotype data. We also obtained access 
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to Alzheimer’s Disease Neuroimaging Initiative (ADNI) (www.adni-info.org) (see Supplementary 

file3 – Text S1 for details). These datasets were chosen because they all were genotyped on the 

same genotyping platform – Illumina Human660W-QuaSd, to minimize any technical bias and 

harmonization issues while merging the datasets and potential array specific inaccuracies during 

imputation. The research protocol for this project was reviewed by University of North Texas 

Health Science Center Institutional Review Board on June 24, 2016 and determined to be exempt 

human subject research under IRB–2016-090. 

The first cohort in the BPC3 dataset [15] - phs00812.BreastProstateCancer.v1.p1.c1 (BPC3-c1) - 

had a total of 4915 participants. There were 2314 individuals in the prostate cancer group with 

genotype data for 583132 SNPs. The total number of individuals in the breast cancer group was 

2601 with genotyped data of 541219 SNPs.  The second cohort in BPC3 - 

phs00812.BreastProstateCancer.v1.p1.c4 (BPC3-c4) - had 4664 participants. The total number of 

individuals in the prostate cancer group in this cohort was 4069 with genotype data for 583132 

SNPs. The total number of individuals in the breast cancer group was 595 with genotyped data of 

541219 SNPs on hg18 build. The ADGC dataset [14] had genetic variant data of 6065 individuals 

genotyped on the Illumina platform via Human660WQuad array. The ADC1 dataset had 2905 

individuals with 657366 genotyped markers, and the ADC2 dataset had 1170 individuals with 

657366 genotyped markers on hg19 build. We combined these two datasets for the final ADGC 

dataset. From the ADNI cohort, we used the ADNI-1 dataset as it was also genotyped on Illumina 

Human660W-Quad array. The ADNI-1 dataset had 757 individuals with 620902 typed SNP 

markers. 

http://www.adni-info.org/
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4.2.2 Merging and Quality Control of datasets 

For the discovery stage, we merged individual level genotype data from ADGC and BPC3 (c1) by 

aligning strand and genomic build to hg19 using PLINK (v1.9) [16]. A total of 8990 individuals 

(self -described European ancestry) remained in the merged dataset with 539774 common 

genotyped SNPs. We then followed quality control protocol outlined by Anderson et al.[17], 

principal components were calculated using R package – ‘SNPRelate’ [18]. Details of QC protocol 

and number of individuals removed at each stage are outlined in Supplementary file3 FigureS2. 

For the replication stage, we merged individual level genotype data from ADNI and BPC3 (c4) by 

harmonizing strand using the array manufacturer’s documentation and converted to genomic build 

hg19. After QC, we were left with 486308 markers in 4226 individuals. This QC’d dataset was 

stratified on sex, with 3580 male and 646 females. 

4.2.3 B-GWAS 

For the discovery stage, we conducted genome-wide Bayesian multinomial logistic regression (B-

GWAS) adjusted for age, and ancestry - PCs 1-10 (self-described as Caucasian/European ancestry) 

using Trinculo [11] with the default prior parameter. The variance proportion for each first three 

PCs was less than 2% for each dataset. There was no significant difference (p > 0.05) in means of 

eigenvalues between phenotypes after first three PCs; calculated in EIGENSTRAT [19] for both 

stages of datasets. We compared 900 males with AD and 997 males with prostate cancer to a 

combined male control population of 802 individuals from the two datasets. Similarly, we 

conducted B-GWAS in females, comparing 946 females with AD and 460 females with breast 

cancer to a combined female control population of 1307 individuals. We then selected SNPs that 

were significant with a joint log Bayes factor ≥3 and odds ratio in the opposite direction for the 

two diseases (OR_Alzheimer’s disease > 1 & OR_Breast/Prostate <1 or OR_Alzheimer’s disease 
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< 1 & OR_Breast/Prostate > 1). Next, in a replication phase, these top significant variants were 

analyzed in independent sample sets. Consideration of significance threshold and comparison to 

P-values was motivated by works of Dr. Wakefield [20, 21]. 

For the replication stage, we followed the same QC protocol, comparing 149 males with AD, and 

1046 males with prostate cancer, to a combined control male population of 2385 individuals. 

Correspondingly, association analysis was performed in 107 females with AD and 229 females 

with breast cancer to a combined female control population of 310 individuals. 

4.2.4 Regional GWAS  

Imputation was performed using IMPUTE2 [22] with 1000 genomes Phase 3 dataset for each of 

significant hit regions. The datasets from the two stages were merged for a 1Mb region ( 500 KB) 

of the replicated hits that were identified in the B-GWAS. Following SNP-level QC, a regional 

GWAS was performed in 6279 males comparing AD and prostate cancer against controls on 

chromosome 4. Similarly, following QC, regional GWAS was performed in 3359 females 

comparing AD and breast cancer against common controls on chromosome 19 and 5. For the 

regional GWAS on chromosome 19, we identified haploblocks of the 1Mb region using plink v1.9. 

There were four TOMM40 haploblocks of 21, 6, 2 and 11 SNPs and one APOE haploblock 

containing 6 SNPs. To identify higher risk SNPs between TOMM40 and APOE, a total of four 

separate haploblock-based associations were conducted merging each of the TOMM40 and APOE 

haploblocks, keeping only individuals with all SNPs. To identify secondary hits on chromosome 

19, conditional tests were performed using APOE SNPs – rs429358 and rs769449. For other 

regions, the top two significant SNPs were used to perform conditional analysis.  
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4.2.5 SNP annotations and testing for enriched processes 

All significant SNPs were mapped to genes using Ensembl’s Ch37 Variant Effect Predictor 

(http://grch37.ensembl.org/Homo_sapiens/Tools/VEP), and functional annotations were retrieved 

from SNP nexus [23]. Figures were plotted using ggplot2, gene annotations were visualized with 

Gviz package, and LD map was created using LDheatmap package in R. The mapped genes were 

tested for functional and diseases processes and visualized using Ingenuity Pathway Analysis® 

(QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis).  

4.2.6 miRNA enrichment analysis and text mining for miRNA expression 

All the annotated significant genes were used as input in miRNet [24]. The miRNA nodes in 

network were filtered on degree filter of 1.0, to reduce orphan miRNAs. The filtering prioritizes 

miRNAs with at least two connecting query genes. The miRNAs in the network were then assessed 

for miRNA family enrichment using hypergeometric test, with a p-value less than 0.05 considered 

as significant.  

 RESULTS 

4.3.1 GWAS in sex-stratified Alzheimer’s disease and cancer 

We found 422 SNPs to be significant as shown in the bokeh plot (Figure 1, top panel) by comparing 

control males with males with AD and males with prostate cancer (Supplementary file1 TableS1). 

Similarly, we tested the relationship of AD and breast cancer, by comparing females with AD, and 

females with breast cancer against female controls, which resulted in 324 significant loci 

(Supplementary file1 TableS3) with inverse odds ratios between AD and breast cancer (Figure 1, 

bottom panel). 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
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We evaluated these top significant SNP loci in another dataset of individuals, merging Alzheimer’s 

population of ADNI-1, and breast & prostate cancer population of BPC3 (c4) followed by QC 

procedures. The QC’d dataset was then separated by sex. In this replication stage, out of 422 

significant SNPs from the discovery stage, 411 SNPs were present in the replication dataset (Figure 

2, top panel). The association analysis, adjusted for age and PCs 1-10, revealed one SNP that 

replicated in this dataset - SNP_allele : rs4298154_C an intergenic SNP on chromosome 4, had 

the odds ratio of 0.77 for AD (logBF – 1.9) and 1.251 for prostate cancer (logBF – 3.7) with an 

overall logBF of 5.14 (Supplementary file1 TableS2). 

In females, out of 324 significant SNPs from the discovery stage, 309 were present in the 

replication stage. The association test replicated two significant loci (Supplementary file1 

TableS4) : a) rs2075650_A had odds ratio of 0.52 for AD (logBF – 13.418)  and 1.245 for breast 

cancer (logBF – 3.17), with an overall logBF of 14.458 ;  b) rs17700949_A, mapped on 

chromosome 5 near C5orf15 and VDAC1 gene, had odds ratio of 0.817 for AD (logBF –  1.74)  

and 1.256 for breast cancer (logBF – 2.483), with an overall logBF of 3.33 (Figure 2, bottom 

panel). 

4.3.2 Regional GWAS of replicated SNP hits and Conditional analysis 

In order to achieve finer SNP resolution, a 1Mb region was imputed around the replicated hits ( 

500 KB), here after referred to as ‘risk region’ in each dataset. The two datasets for this risk region 

analysis were merged to improve power by increasing sample size. Following SNP-level QC, a 

regional B-GWAS with default prior and adjustment for age and PCs 1-10 from the merged 

datasets was performed in 6279 males comparing AD and prostate cancer against controls on 

chromosome 4. For the risk region in chromosome 4, a total of 3107 variants were analyzed by B-

GWAS and 21 SNPs were found to be significant (Supplementary file1 TableS5), the most 
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significant SNPs were a) rs4298154_C having odds ratio of 0.813 and 1.223 for AD and prostate 

cancer, respectively, with overall logBF of 10.68, and b) rs57139228_G having odds ratio of 0.885 

and 1.156 for AD and prostate cancer, respectively, with overall logBF of 5.63 (Figure 3). After 

conditioning on these hits, no SNPs remained significant. 

Similarly, regional B-GWAS was performed in 3359 females comparing AD and breast cancer 

against common controls on chromosome 19 and 5. Of 1499 variants in the risk region on 

chromosome 19, 113 SNPs were found to be significant (Supplementary file1 TableS6). The top 

significant SNPs were a) rs34404554_C having odds ratios of 0.321 and 1.199 for AD and breast 

cancer, respectively, with overall logBF of 181.5, b) rs71352238_T with odds ratio of 0.321 and 

1.206 for AD and breast cancer, respectively, with overall logBF of 180.83, and c) rs2075650 

having odds ratio of 0.325 and 1.18 for AD and breast cancer respectively with overall logBF of 

177.63. All three SNPs were mapped to TOMM40. Select top significant SNPs are labelled in 

Figure 4 (left panel). To identify which SNPs between TOMM40 and APOE were most significant, 

we conducted association with SNPs in each haploblock of TOMM40 and APOE keeping 

individuals who had complete set of SNPs. Here, we found the same results: APOE SNPs were 

more significant than TOMM40, and after conditioning on the top two APOE SNPs, none of the 

TOMM40 were significant for both diseases; significance was observed only for Alzheimer’s 

disease (logBF > 1.5).  Since the TOMM40 SNPs were not independent of APOE we conditioned 

the association analysis using APOE SNPs – rs429358 and rs769449. After conditioning, none of 

the SNPs were significant for both diseases.  

The second replicated hit between AD and breast cancer was in chromosome 5, we analyzed 2340 

SNPs in this 1Mb region for inverse association. A total of three SNPs remained significant 

including the replicated hit a) rs17700949_A having odds ratios of 0.875 (logBF – 4.09) and 1.175 
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(logBF – 4.54) for AD and breast cancer, respectively, with overall logBF of 6.09, b) 

rs10068691_G having odds ratios of 1.13 (logBF – 2.64) and 0.88 (logBF – 2.2) for AD and breast 

cancer, respectively, with overall logBF of 3.19, and c) rs1109309_G having odds ratio of 0.905 

(logBF – 2.05) and 1.14 (logBF – 2.77) for AD and breast cancer, respectively, with overall logBF 

of 3.15 (Figure 4 ; right panel) (Supplementary file1 TableS7). All three SNPs are in close 

proximity to one another and mapped to an intergenic region between FSTL4 and VDAC1 based 

on GRCh37/hg19. 

The significant SNPs on chromosome 4 are in the intergenic region, and the nearby genes are 

ARAP2, DTHD1, and KIAA1239. Additionally, annotation was retrieved from the Genetic 

Association Database using SNP-nexus, which showed association of these SNPs with HTRA3, 

AREG, and NRAS (Supplementary file2). Interestingly, some of the variants in this region had a 

slightly higher CADD score: rs4565101 had a score of 7.741, and rs58262946 at 6.342; suggesting 

that these SNPs are deleterious. 

In the regional B-GWAS of AD and breast cancer on chromosome 19, the significant SNPs 

mapped to PVRL2, CTB-129P6.4, TOMM40, APOE, APOC1, APOC2, APOC4, APOC4-APOC2, 

CTB-129P6.11, CLPTM1, RELB, AC005779.1, MARK4, AC006126.3, and AC005779.2, and their 

functional annotation identified  BCAM, ZNF107, ZNF92 and ZNF138 (Supplementary file2). 

SNPs in the chromosome 5 risk region are intergenic to FSTL4 and VDAC1. Other genes within 

300 kb include TCF7, SKP1, PPP2CA, CDKL3 and UBE2B. The top significant SNP - rs17700949 

had CADD score of 4.224, GWAVA score of 0.53 and ReMM score of 0.603, indicating a slightly 

deleterious effect. 
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4.3.3 Gene network analysis using Ingenuity Pathway Analysis 

We analyzed the query genes to test for enriched processes using IPA’s biobase knowledge. Some 

of the represented processes were inflammatory and cellular interactions, including LXR/RXR 

activation, Wnt/β-catenin, PI3K/Akt and sirtuin signaling pathway (Supplementary file3 

FigureS3). The query genes resulted in two networks (Supplementary file3 FigureS4), we merged 

the networks and examined for leading canonical pathways (Figure 5). 

4.3.4 miRNA annotation and enrichment analysis 

 We used the query genes to identify interacting miRNAs, the network was constructed using 

miRNet [24] (Figure 6). All the miRNAs in the network were assessed for miRNA family 

enrichment; we observed miR-515 (15 members) and miR-17 family (6 members - miR-17, 20a, 

20b 106a, 106b and 93) to be significant (Supplementary file3 TableS2). The miRNAs with the 

highest number of interactions (Supplementary file3 Table S3) were investigated to find the 

direction of their expression changes in AD and cancer in the same tissue wherever possible. 

Intriguingly, when comparing their expression direction in the same tissues, we see an inverse 

direction for these miRNA expression levels in the two diseases. Examining for miRNA-SNP 

binding site, we observed two SNPs – rs6859 and rs11556505 to disrupt binding sites for multiple 

miRNAs (Supplementary file3 TableS4 & S5).  

 DISCUSSION 

Several GWAS have been conducted for Alzheimer’s disease, breast and prostate cancer and 

recently a few meta-analyses have investigated the relationship between AD and cancer. Feng et 

al. (2017), Sanchez-Valle (2017) and Ibanez (2014) have reported that the genetic relationship 

between AD and cancer varies based on cancer subtypes. This is the first study that focuses on 
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analyzing cross-phenotypic differences of SNPs using individual-level genotype and targeting two 

most common age-associated cancers – breast and prostate cancer. 

4.4.1 Genic context of SNP hits in Alzheimer’s disease and cancer 

Since the top hits for breast cancer were in the TOMM40/APOE region, we conducted separate 

association analysis for SNPs in the TOMM40 and APOE haplotypes among individuals with no 

missing SNPs to determine if TOMM40 was independent of APOE. After conditioning on the two 

APOE SNPs – rs429358 and rs769449, we found that TOMM40 SNPs were either marginally 

significant for AD, or insignificant for both AD and cancer. Therefore, our findings indicate that 

the cross-phenotypic effects of SNPs exist in the TOMM40/APOE region. Multiple GWAS  have 

reported APOE’s association with risk for AD [25]. Intriguingly, APOE also has been a subject of 

investigation for carcinogenesis. A meta-analysis conducted by Anand et. al [26] reported a 

negative association between APOE4+ genotypes and the overall risk for cancer subtypes. Studies 

have reported that genotyping TOMM40’523 loci leads to a better prediction of AD over APOE 

predictions alone [27]. In cancer, TOMM40 expression surface antigens were elevated in 

pancreatic cell lines, and gene expression was upregulated in ovarian cancer cell lines [28, 29]. 

This heterogeneous phenotypic association of TOMM40/APOE/APOC1 region is evinced in our 

association for AD and cancer and is also summarized by Yashin et. al [30]. 

In the chromosome 19 region, we also identified SNPs within MARK4 exhibiting an inverse 

relation between the two diseases. MARK4 belongs to the microtubule affinity-regulating kinases 

family. MARK4 and its family play role in phosphorylation of tau, mediated by co-expression of 

APP (Amyloid Precursor Protein) and MARK/Par-1, as evidenced by their phosphorylated 

products in granulovacuolar bodies in brain tissues of AD patients [31]. In cancer, elevated 

MARK4 expression is found to be correlated with cancer severity in breast, lung and prostate 
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neoplasms [32] mediating via the upregulation of the Wnt signaling and negative regulation of 

mTORC. Elevated MARK4 has also been shown to stimulate tumorigenic properties in breast 

cancer cells by impeding Hippo signaling [33]. Another neighboring gene – CLPTM1 (Cleft Lip 

and Palate Associated Transmembrane Protein 1) in this region was recently found to be 

independently associated with AD in GWAS-derived expression study [34]. An interesting finding 

here was that CLPTM1L/CRR9, a paralogue of CLPTM1 is widely attributed as a risk-factor for 

multiple cancer subtypes as informed by genome-wide association and experimental studies [35-

37]. Inoue et. al detected elevated expression of both CLPTM1 and CRR9 in oral squamous cancer 

cells [35]. APOC1 in this region is associated with the formation Aβ plaques in Alzheimer’s 

disease and is under expressed in subjects with APOE4 genotype [38]. Conversely, APOC1 is 

overexpressed in cancer tissues and influences the MAPK pathway triggering cellular expansion 

and motility [39]. RELB expression is correlated with tumor development and inflammatory 

processes [40] and the cumulative effect of rare variants in RELB is associated with amyloid 

burden in the cortical region of AD patients [41]. 

In the chromosome-4 risk region, the top variants are intergenic and the nearest pseudogene 

SEC63P2 (SEC63 Homolog (S. Cerevisiae) Pseudogene 2) – has been associated with coronary 

artery calcification [42] and body mass index [43]. The closest (~850KB) coding gene to this 

region is ARAP2. Expression of ARAP2 also has been reported as part of a risk score prediction 

for pancreatic cancer by Liu et. al [44]. Variants in ARAP2 are known to be TP53 binding sites, 

and are associated with advanced prostate cancer [45]. Experimental studies have highlighted the 

role of ARAP2 in cytoskeleton remodeling and axonal transport mediated by neurotoxin-stress and 

dysregulating motor neurons [46]. 
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Other loci implicated in inverse risk for breast cancer and AD are mapped between FSTL4 and 

VDAC1 on chromosome 5 using GrCh37 build. VDAC1 – Voltage Dependent Anion Channel 1 -

is a key mitochondrial-mediated apoptotic protein that acts via BCL-2 pathway, VDAC1 also 

interacts with TOMM40 for mitochondrial transport in the PINK-1/PARK pathway. In AD brain 

tissue, higher VDAC1 expression is found in neurites with Aβ deposits [47]. In cancer, metabolic 

reprogramming has been attributed to VDAC1, and its apoptotic properties have become a 

pharmacological target of interest [48]. The upstream gene to our significant variants was FSTL4 

– Follistatin Like 4 - known for its role in extracellular calcium ion binding. Interestingly, in the 

latest genome build – GrCh38, our significant variants are mapped within the FSTL4 gene. 

Genome-wide studies have reported variants in this gene to be associated with lung carcinoma 

[49], cognitive impairment [50, 51] and hypertension [52].  

Overall, the genes containing the cross-phenotypic SNPs have known pathological roles in both 

AD and cancer.  

4.4.2 Role of enriched processes in Alzheimer’s disease and cancer 

The enriched biological processes involved with our query genes were sirtuin pathway, Wnt-

signaling, LXR-RXR and PI3K/Akt mechanism. Our findings are consistent with Ibanez et. al, 

who reported dysregulation in Wnt-signaling - upregulation in cancer, and downregulation in 

neurological diseases. Wnt-signaling is implicated in metastatic cell proliferation [53]. The 

PI3K/Akt signaling is associated with metabolic dysfunction inducing insulin stress via 

deregulation of insulin receptors. While cancer cells are suspected to thrive on glycolytic 

byproducts from insulin stress, the brain is affected by the disturbances in PI3K/Akt signaling and 

exhibits cognitive deficits [54]. LXR-RXR are a class of transcription factors that also affect 

metabolic activity by regulating lipids and inflammatory responses [55]. Their expression in AD 
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animal models has been associated with cognitive deficits and increased Aβ levels in cerebrospinal 

fluid [55]. In cancer, LXR ligands interact with both Wnt and AKT signaling pathways and induce 

pyroptosis –  inflammation-induced cell death [56]. Sirtuin proteins are involved in both cancer 

and Alzheimer probably due to their involvement in regulating mitochondrial biogenesis, 

interacting with TOMM40 and VDAC1, and can detect peripheral metabolic dysregulation [57]. 

Altogether, the observed processes seem to regulate metabolic activities of metastatic cellular 

expansion and accumulation of amyloid burden in AD and cancer. 

4.4.3 Inverse expression of miRNAs and their role in Alzheimer’s disease and cancer  

To investigate the potential mechanisms that underlie the observed genetic associations with 

inverse risk of AD and cancer, we turned our focus to genetic-based regulatory system – miRNAs 

[58].This provided the rationale for asking the following question: could the inverse effect of the 

genetic variants be due to miRNA mediated differential regulation of our candidate genes? 

miRNAs are small non-coding RNA molecules that target multiple regions in a gene and are 

expected to regulate ~60% of transcripts, thus altering cellular metabolism. Due to their exosomal 

packaging, they allow cross-talk through the blood brain barrier and interact with other organs 

[59]. The reported genes are primarily targeted by select miRNAs including the miRNA-17 and 

515 cluster, 125b, 335, and 26b which are differentially expressed in Alzheimer’ disease and 

cancer (Table 1). This SNP-miRNA relationship highlights the role of these miRNAs in altering 

regulation of target regions identified from our study in Alzheimer’s disease. The miRNA-17 

cluster (including miRNA-106, 20 and 93) has been reported to regulate APP expression in brain 

and neuronal cells of sporadic AD patients [60]. Additionally, miRNA-106 is downregulated in 

the frontal cortex of AD patients, which increases Aβ1-42 and induces tau phosphorylation [61]. 

As underscored in our results (Table1), members of this ‘onco-miR’ [62] family show inverse 
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expression in the setting of AD versus cancer. MiR-515 family was also found to be enriched in 

our network. The upregulation of miR-515 in cancer is inversely correlated with survival of cancer 

patients [63]. The miR-515 suppresses p21 which is required for inducing senescence, which is 

also modulated by miR-106b’s overexpression [64]. MiR-515 has been reported to be 

downregulated in the temporal cortex of AD patients [65]. The upregulation of miR-125b in 

multiple regions of the AD brain has been known to correspond with neurofibrillary tangles, 

primarily in gray matter region of post-mortem AD brains [66]. In human neuronal cells, activation 

of NF-κB pathways from deposition of Aβ results in overexpression of miR-125b [67]. On the 

other hand, 125b is under expressed in cancer cells which initiates cancer hallmarks [68]. 125b has 

also been observed to target BCL-2 and increase its apoptotic activity via BMF in Alzheimer’s 

disease [66]. miR-335 is found to be under expressed in multiple cancer, which is regulated in a 

cyclical mode by p53 [69]. In contrariety, upregulation of miR-335 triggers p21 and lowers p53 

expression which leads to increase in tau levels in AD patients [70, 71]. In mouse model of AD, 

miR-335 was overexpressed in hippocampus and lowering its expression was demonstrated to 

reduce cellular cholesterol and alleviate cognitive impairment [72]. The upregulation of miR-26b 

triggers expression of cyclin-dependent kinase 5 which initiates phosphorylation of tau and 

apoptosis in AD [73]. Conversely, increasing 26b results in anti-tumorigenic properties [74]. 

Multiple cancer types have been found to have under expression of miR-26b [75]. miR-34a has 

been reported to be over expressed in brain regions of AD possibly resulting in dysregulation of 

synaptic and metabolic activity [76]. The dysfunction of p53 governs the expression of miR-34a 

[77]which is deficient in most cancers[78]. In animal models of APP and presenilin 1 knockout, 

lowering miR-34a mitigates cognitive symptoms of AD [79].  
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Overall, the identified miRNAs play a dominant role in AD pathology and their targets reported 

here warrant functional studies to characterize their sequence-specific multi-gene regulation. 

4.4.4 Role of SNPs in disrupting miRNAs and their target binding sites  

Our analyses provide evidence of potential connections between miRNAs and genetic variants 

resulting in bidirectional effects between AD and cancer. Studies have shown that variants present 

in the 3’UTR (untranslated region) of mRNAs, known as poly-miRTs, change the half-life of 

mRNAs and thus alter protein expression [80]. Two of our reported cross-phenotypic SNPs – 

rs6859 (PVLR2/NECTIN2) and rs11556505 (TOMM40) alter miRNA binding sites. SNP rs6859 

is found to alter binding site for miRNAs- 143, 147, 199, 584 and 648. The elevation of miRNA-

143 reduces glucose uptake and promotes cellular apoptosis in cancer cells [81]. However, in AD, 

the elevation of miR-143 is localized in neurons and is proportional to Braak stages of 

neurofibrillary tangles in locus coeruleus region of AD brains [82]. Other miRNAs- 147, 199 and 

584 are understudied in AD, but share a common function of suppressing the tumor and inhibiting 

cancer progression [83-85]. This demonstrates that a single nucleotide variation can alter sites for 

multiple miRNAs leading to variability in gene expression. Using polymiRTs database [86], 

rs11556505 is documented to modify miRsite for miR-484 (Supplementary file3 Table S5). 

Among several targets, miR-484 is reported to inversely alter Fis1 expression that promotes 

mitochondrial fission[87]. Fis1 interacts with sirtuin complex to trigger cell migration and 

invasion, and is over expressed in cancer [88]. In AD-brain derived fibroblasts and hippocampal 

tissue, mitochondrial fission proteins including Fis1 is upregulated [89]. While the exact 

underpinnings of the interaction of Fis1 on the reported TOMM40 site are unknown we observe a 

common thread of mitochondrial dysregulation and sirtuin signaling leading to neuronal 

dysfunction and cancer expansion. Therefore, this site necessitates functional studies using whole-
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genome and RNA sequencing to evaluate allele-specific expression of the reported SNP-miRNA-

target site. 

In conclusion, the induction of SNPs within and around these UTR sequences can have multiple 

functional consequences by altering miRNA binding sites, generating multiple transcripts which 

may be differentially targeted by miRNA regulators [90].  Variants in mRNA binding sites are 

relatively more common than variants in genes encoding miRNAs [91]. Our analysis identified 

SNPs that are indicative of causing possible perturbations in miRNA binding sites. MiRNAs, either 

acting individually or in combination, can thus result in differential transcriptional regulation of 

multiple genes (Supplementary file3 Figure S5).  While we don’t know the exact mechanisms that 

lead to perturbations in gene expression from intergenic SNPs, studies have shown that SNPs in 

non-coding regions such as introns, lncRNAs, intragenic regions can affect miRNA expression 

levels [92]. Recent studies have identified the importance of these reported miRNAs either via 

literature-driven or meta-analysis studies [93, 94]. However, by studying individual SNP effects 

between AD and cancer, we identified targets of the mentioned miRNAs. Changes in miRNA 

binding site due to SNPs can be compensated by redundancy in miRNA targeting (i.e. another 

miRNA can target site as a result of base change), which depends on codon degeneracy [95]. For 

instance, some members of miR-17 and miR-515 family have similar seed sequences – 

“AAGUGC” [96]. 

SNPs and miRNAs have immense potential in serving as genetic and blood-based biomarkers for 

diagnostic purposes, and further understanding the role of genetic predisposition will require 

studies of both cis and trans SNP effects. The genetic risk factors and associated miRNAs 

identified here would ideally be validated in a cross-conditional cohort of AD and cancer using 

microarray/RNA-seq to identify functional consequences of the SNPs implicated here which exert 
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cross-phenotypic effects between AD and cancer. Overall, these miRNAs play contrary roles in 

both diseases, making it imperative to investigate the strength of these miRNAs and identified 

targets to observe the extent of their influence in rescuing cognitive dysfunction in Alzheimer’s 

disease. Our future work will investigate directionality of gene expression in AD & cancer under 

the influence of aggregated SNPs. 

4.4.5 Limitations and considerations 

We attempted to restrict phenotypic and technical bias for the investigation of this complex 

relationship between AD and cancer, however, the following considerations are important when 

interpreting these results. First, due to age and sex-stratification, our study is underpowered to 

detect all SNPs which may be exhibiting cross-effects between the two phenotypes. Second, since 

the odds ratios reported by epidemiological findings varies substantially (even for the same cancer 

types), we chose to remain conservative in our selection of priors for the Bayesian approach. Third, 

we were not able to use APOE as a covariate in the discovery phase. The genotyping of APOE is 

typically conducted independent of genome-wide SNP typing for AD studies, however genotyping 

of APOE is not typical of cancer genetic studies. To attempt to obtain APOE genotypes for the 

cancer cohorts, we relied on imputation, which wasn’t successful for all individuals. As an 

alternative, we adjusted for APOE SNP (rs429358) as conditional test on merged populations for 

females and males in each TOMM40 haploblock to test for independent effects between TOMM40 

and APOE. Additionally, conditioning enabled detection of secondary associations (if any) in a 

local region which may have been otherwise obscured by the APOE effect. Fourth, factors such 

depression, education level and medical history are important consideration towards both AD and 

cancer. These variables were absent from the ADGC and BPC3 datasets obtained from dbGaP, 

therefore, such variables remained unaccounted. Since cancer history was available for ADNI 
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cohort, these individuals were removed from analysis; however, this information was not available 

for ADGC cohort. In order to adjust for any variable, it needs to be present for all the individuals, 

otherwise the individual is treated as missing. Finally, when we carried out analysis by employing 

a relaxed threshold on age (50-90) and higher priors, we get more hits including the ones being 

reported here, which we presume to be false positives or age-associated and not phenotype specific. 

This indicates that the analysis is sensitive to cohort selection procedures and we chose a more 

conservative approach to mitigate these confounding factors by employing a two-stage design with 

careful inclusion/exclusion criteria.  
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Table 1: miRNAs expression in Alzheimer's disease and cancer. (References in supplementary file3 Table 

S1) 

 

miRNA Cancer Tissue [Ref] Alzheimer’s disease Tissue [Ref] 

hsa-miR-335 Downregulated 
Serum [1] 
Plasma [2] 
Tumor [3] 

Upregulated 
Serum [4] 

Aged astrocytes & hippocampal 
brain [5] 

hsa-miR-197 Upregulated Tumor [6] Downregulated Serum [7] 

 Downregulated Tumor [8, 9] Upregulated Cortex, CSF [10] 

hsa-miR-125b 
Upregulated 

Tumor [11, 12] , Serum [13], 
plasma [14] 

Downregulated Serum [15, 16] 

Downregulated Tumor [17, 18] Upregulated CSF [19], frontal cortex [20] 

hsa-miR-26b Downregulated 
Tumor [21, 22] 

Serum [23] 
Upregulated Serum [24] 

hsa-miR-17 Upregulated Serum [25] Downregulated Blood [26] 

hsa-miR-20a Upregulated Tumor [27] Downregulated Brain [28] 

hsa-miR-20b Downregulated Tumor [29, 30] Upregulated Serum [31] 

hsa-miR-106b 
Upregulated Tumor [32] Downregulated Cortex [33]  

Downregulated Serum [34] Upregulated Serum [35] 

hsa-miR-93 Upregulated Tumor [32, 36], Serum [36] Downregulated Serum [37] 

hsa-miR-515 Upregulated Tumor cell line[38] Downregulated Brain [39] 

hsa-miR-34a Downregulated Tumor [40] Upregulated Brain [41] 

hsa-miR-143 Downregulated Tumor, cell line [42]  Upregulated Brain [43] 
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Figure 1. Discorvery phase B-GWAS results.  Top panel: Bokeh Plot of multinomial GWAS comparing Alzheimer's disease and 

prostate cancer in the discovery stage. The purple Manhattan plot shows the results from Alzheimer’s disease vs control, and the 

blue Manhattan plot shows the results of prostate cancer vs controls. The y axis is the logBF (log Bayes factor) for the respective 

disease, the significant SNPs are highlighted in yellow and their size is relative to the odds ratio as seen in the legend.  

Bottom panel: Bokeh Plot of multinomial GWAS comparing Alzheimer's disease and breast cancer in the discovery stage. The 

purple Manhattan plot shows the results from Alzheimer’s disease vs control, and the pink Manhattan plot shows the results of 
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breast cancer vs controls. The y axis is the logBF (log Bayes factor) for the respective disease, the significant SNPs are highlighted 

in yellow and their size is relative to the odds ratio as seen in the legend.  

[Note: Bokeh plots are an intersection between Manhattan and bubble plots] 

 

Figure 2. Replication stage B-GWAS results.  Top panel: Bokeh Plot of replication stage - multinomial GWAS comparing 

Alzheimer's disease and prostate cancer. Out of the 422 SNPs identified in the Discovery stage based on the criteria for inverse 

and significant (i.e., as odds ratio < 1 for Alzheimer’s and odds ratio > 1 for cancer, or vice versa and an overall log Bayes factor 

of ≥ 3), 411 were typed in the Replication dataset. Organized by chromosome, the log Bayes factor for the analysis comparing AD 

to the common controls are shown in the upward facing Manhattan plot (shaded in light purple), and the log Bayes factor for the 

analysis comparing prostate cancer to the common controls are shown in the downward facing Manhattan plot (shaded in light 
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blue). One SNP from the Discovery set were replicated based on inverse risk and strength of association, each indicated by the 

labeled data points: rs4298154. 

Bottom panel: Bokeh Plot of replication stage - multinomial GWAS comparing Alzheimer's disease and breast cancer. Out of the 

324 SNPs identified in the Discovery stage based on the criteria for inverse and significant (i.e., as odds ratio < 1 for Alzheimer’s 

and odds ratio > 1 for cancer, or vice versa and an overall log Bayes factor of ≥ 3), 309 were typed in the Replication dataset. 

Organized by chromosome, the log Bayes factor for the analysis comparing AD to the common controls are shown in the upward 

facing Manhattan plot (shaded in light purple), and the log Bayes factor for the analysis comparing breast cancer to the common 

controls are shown in the downward facing Manhattan plot (shaded in light pink). Two SNPs from the Discovery set were replicated 

based on inverse risk and strength of association, each indicated by the labeled data points: rs17700949 and rs2075650.  

Figure 3: Regional Manhattan Plot of Chromosome 4 risk region for association between males of Alzheimer’s disease and 

prostate cancer. Left panel – In the Manhattan plot, the purple background shows the logBF (log Bayes factor) for Alzheimer’s 
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disease, and the blue background for prostate cancer. 23 SNPs were found to be significant in the 1Mbp - Chr4 risk region; the 

plot highlights most significant hits within the region.  The genomic coordinates are shown using GrCh37 from Ensembl, followed 

my LD heat map of the corresponding region in the bottom panel. A zoomed-in LD map around the significant variants is shown 

at the bottom. Right panel – After conditioning on two SNPs with highest logBF, none of the variants were significant for both AD 

and cancer with opposite odds ratios. 
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Figure 4: Regional Manhattan Plot. Left panel. Chromosome 19 risk region for association between females of Alzheimer’s and breast cancer. Left panel – In the Manhattan plot, the purple 

background shows the logBF (log Bayes factor) for Alzheimer’s disease, and the pink background for breast cancer. 113 SNPs were found to be significant in the 1Mbp - Chr19 risk region; the 
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plot highlights most significant hits within the region. The genomic coordinates are shown using GrCh37 from Ensembl, followed my LD heat map of the corresponding region in the bottom 

panel. A zoomed-in LD map around the significant variants is shown at the bottom.  

Right panel Regional Manhattan Plot of Chromosome 5 risk region for association between females of Alzheimer’s and breast cancer. In the Manhattan plot, the purple background shows the 

logBF (log Bayes factor) for Alzheimer’s, and the pink background for breast cancer. 3 SNPs were found to be significant in the 1Mbp – Chr5 risk region and highlighted in the plot.  The 

genomic coordinates are shown using GrCh37 from Ensembl, followed my LD heat map of the corresponding region in the bottom panel. A zoomed-in LD map around the significant variants 

is shown at the bottom. 
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Figure 5: IPA network based on genes identified by B-GWAS. Network created from query genes (highlighted in purple) using 

IPA’s biobase knowledge.  
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Figure 6: miRNA Network based on genes identified by B-GWAS. The miRNA network was generated from a list of all implicated 

genes/loci identified in the B-GWAS; orange nodes are genes which are targeted by common miRNAs. Statistical enrichment of 

multiple family miRNAs was observed (dark blue squares), and several miRNAs exhibit high connectivity. Two miRNA families – 

miR-515 (dark pink squares) and miR-17 (magenta squares) show statistical enrichment. 
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CAPTIONS OF SUPPLEMENTARY FILES 

 Supplementary file1 

 Table S1. Discovery stage - Bayesian multinomial regression comparing AD 

males (Disease1) and prostate cancer males (Disease3) against control males. 

The results shown here are significant SNPs defined as OR<1 for Disease1 and 

OR>1 for Disease3, or vice versa and overall logBF of 3+, and individual logBF 

(M_Disease1/M_Disease3) of 1.5+. 

 Table S2. Replication stage - Bayesian multinomial regression comparing AD 

males (Disease1) and prostate cancer males (Disease3) against control males. 

The results shown here are SNPs which were found significant in the discovery 

stage, the SNPs that were significant are highlighted in blue, hereafter referred to 

as replicated hits/SNPs. 

 Table S3. Discovery stage - Bayesian multinomial regression comparing AD 

females (Disease1) and breast cancer females (Disease2) against control females. 

The results shown here are significant SNPs defined as OR<1 for Disease1 and 

OR>1 for Disease2, or vice versa and overall logBF of 3+, and individual logBF 

(M_Disease1/M_Disease2) of 1.5+. 

 Table S4. Replication stage - Bayesian multinomial regression comparing AD 

females (Disease1) and breast cancer males (Disease2) against control females. 

The results shown here are SNPs which were found significant in the discovery 

stage, the SNPs that were significant are highlighted in pink, hereafter referred to 

as replicated hits/SNPs. 
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 Table S5. Regional GWAS - Bayesian multinomial regression comparing AD 

males (Disease1) and prostate cancer males (Disease3) against control males in 

chromosome 4. The results shown here are significant SNPs defined as OR<1 for 

Disease1 and OR>1 for Disease3, or vice versa and overall logBF of 3+, and 

individual logBF (M_Disease1/M_Disease3) of 1.5+. 

 Table S6. Regional GWAS- Bayesian multinomial regression comparing AD 

females (Disease1) and breast cancer females (Disease2) against control females 

in chromosome 19. The results shown here are significant SNPs defined as OR<1 

for Disease1 and OR>1 for Disease2, or vice versa and overall logBF of 3+, and 

individual logBF (M_Disease1/M_Disease2) of 1.5+. 

 Table S7. Regional GWAS- Bayesian multinomial regression comparing AD 

females (Disease1) and breast cancer females (Disease2) against control females 

in chromosome 5. The results shown here are significant SNPs defined as OR<1 

for Disease1 and OR>1 for Disease2, or vice versa and overall logBF of 3+, and 

individual logBF (M_Disease1/M_Disease2) of 1.5+. 

 Table S8. Results in same direction identified in Discovery stage. The results 

shown here are significant SNPs defined as OR<1 for Disease1 and OR<1 for 

Disease2/3, or vice versa and overall logBF of 3+, and individual logBF 

(M_Disease1/M_Disease2/3) of 1.5+. 

Link - Supplementaryfile1-AdvsCa 

 Supplementary file2  

 Functional annotation of significant SNPs, each tab denotes the name of the 

functional scoring method. 

Link- Suplementaryfile2-ADvsCa 

 Supplementary file3  

 Text S1. Methods and Material 

 Figure S1. Visual summary of methodology 

 Figure S2: Details of merging & QC of datasets 

 Table S1: MiRNAs expression in Alzheimer's disease and cancer 

 Table S2. Enrichment results of the miRNA family in the network using miRNet 

 Table S3. Details of the miRNA network visualized in Figure6 

 Table S4. miRNA target sites associated with query SNP- rs6859 

 Table S5. miR target site associated with query SNP- rs11556505 

 Figure S3. Enriched processes in reported genes 

 Figure S4.  Network analysis of reported genes 

 Figure S5. Potential mechanism of SNPs-miRNA binding sites 
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 SUPPLEMENTARY FILE3 

 

4.6.1 Text S1. Methods and Material 

Datasets 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The 

ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator 

Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), other biological markers, and 

clinical and neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, 

see www.adni-info.org. The Breast and Prostate Cancer Cohort Consortium (BPC3) was 

established in 2003 to pool data and biospecimens from nine large prospective cohorts to conduct 

research on gene-environment interactions in cancer etiology. The BPC3 GWAS includes the 

following cohorts: the American Cancer Society Cancer Prevention Study-II (CPS-II); the 

European Prospective Investigation of Cancer (EPIC); the Physician's Health Study (PHS); the 

Nurses' Health Studies I and II (NHS and NHSII); the Health Professionals Follow-up Study 

(HPFS); the Multiethnic Cohort (MEC); the Prostate, Lung, Colorectal, and Ovarian (PLCO) 

Cancer Screening Trial; and the Alpha-Tocopherol, Beta-Carotene (ATBC) Study 

(https://epi.grants.cancer.gov/BPC3/). The Alzheimer's Disease Genetics Consortium is an $18.3 

million five-year research grant to conduct genome-wide association studies (GWAS) to identify 

genes associated with an increased risk of developing late-onset Alzheimer’s disease (LOAD) 

(http://www.adgenetics.org/). 
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4.6.2 Figure S1. Visual summary of methodology 

An abridged visualization of the overall methods involved in the study, and the name of each supplementary file which contains the 

corresponding results is shown under each section. 
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Figure S2: Details of merging & QC of datasets 
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4.6.3 Table S1: MiRNAs expression in Alzheimer's disease and cancer. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

miRNA Cancer Tissue [Ref] 
Alzheimer’s 

disease 
Tissue [Ref] 

hsa-miR-335 Downregulated 

Serum [1] 

Plasma [2] 

Tumor [3] 

Upregulated 

Serum [4] 

Aged astrocytes 

& hippocampal 

brain [5] 

hsa-miR-197 Upregulated Tumor [6] Downregulated Serum [7] 

 Downregulated Tumor [8, 9] Upregulated 
Cortex, CSF 

[10] 

hsa-miR-125b 

Upregulated 

Tumor [11, 

12] , Serum 

[13], plasma 

[14] 

Downregulated Serum [15, 16] 

Downregulated 
Tumor [17, 

18] 
Upregulated 

CSF [19], 

frontal cortex 

[20] 

hsa-miR-26b Downregulated 

Tumor [21, 

22] 

Serum [23] 

Upregulated Serum [24] 

hsa-miR-17 Upregulated Serum [25] Downregulated Blood [26] 

hsa-miR-20a Upregulated Tumor [27] Downregulated Brain [28] 

hsa-miR-20b Downregulated 
Tumor [29, 

30] 
Upregulated Serum [31] 

hsa-miR-106b 
Upregulated Tumor [32] Downregulated Cortex [33]  

Downregulated Serum [34] Upregulated Serum [35] 

hsa-miR-93 Upregulated 

Tumor [32, 

36], Serum 

[36] 

Downregulated Serum [37] 

hsa-miR-515 Upregulated 
Tumor cell 

line[38] 
Downregulated Brain [39] 

hsa-miR-34a Downregulated Tumor [40] Upregulated Brain [41] 

hsa-miR-143 Downregulated 
Tumor, cell 

line [42] 
Upregulated Brain [43] 
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4.6.4 Table S2. Enrichment results of the miRNA family in the network using miRNet 

 

Name Hits Pval 

mir-515 15 2E-05 

mir-17 6 0.0049 

mir-6089 1 1 

mir-4703 1 1 

mir-4446 1 1 

mir-3926 1 1 

mir-3202 1 1 

mir-3190 1 1 

mir-1193 1 1 

mir-3149 1 1 

mir-1908 1 1 

mir-670 1 1 

mir-766 1 1 

mir-1301 1 1 

mir-629 1 1 

mir-627 1 1 

mir-623 1 1 

mir-615 1 1 

mir-548 3 1 

mir-335 1 1 

mir-124 1 1 

mir-214 1 1 

mir-204 2 1 

mir-183 1 1 

mir-181 1 1 

mir-34 1 1 

mir-7 1 1 

mir-197 1 1 

mir-103 2 1 

mir-101 1 1 

mir-10 1 1 

mir-26 1 1 

mir-24 1 1 

mir-19 2 1 

let-7 1 1 
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4.6.5 Table S3. Details of the miRNA network visualized in Figure6 

The table shows the degree and betweenness value of the miRNA-gene network constructed using the query 

genes. The network was filtered on degree filter of 1 for miRNA nodes to reduce orphan branches of the miRNAs. 

This filtering limits to miRNAs connected with at least two nodes in the network. 

 

Node Degree Betweeness 

ZNF107 31 1883.72 

NRAS 23 1365.81 

ARAP2 20 969.054 

PPP2CA 19 567.834 

ZNF138 16 403.616 

TOMM40 15 951.855 

VDAC1 12 394.269 

FSTL4 12 333.513 

UBE2B 11 432.891 

SKP1 7 135.951 

hsa-mir-17-5p 4 161.301 

hsa-mir-20a-5p 4 321.588 

hsa-mir-335-5p 4 146.401 

hsa-mir-19a-3p 3 64.9854 

hsa-mir-19b-3p 3 64.9854 

hsa-mir-93-5p 3 61.3012 

hsa-mir-197-3p 3 60.1961 

hsa-mir-34a-5p 3 221.191 

hsa-mir-106b-5p 3 61.3012 

hsa-mir-20b-5p 3 61.3012 

hsa-mir-515-5p 3 119.672 

hsa-mir-519e-5p 3 119.672 

hsa-mir-519d-3p 3 61.3012 

hsa-mir-183-3p 3 94.5203 

hsa-mir-24-3p 2 69.4484 

hsa-mir-26b-5p 2 100 

hsa-mir-101-3p 2 45.092 

hsa-mir-103a-3p 2 66.8742 

hsa-mir-106a-5p 2 17.5695 

hsa-mir-107 2 66.8742 

hsa-mir-7-5p 2 32.0249 
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hsa-mir-181a-5p 2 133.059 

hsa-mir-204-5p 2 13.69 

hsa-mir-211-5p 2 13.69 

hsa-mir-214-3p 2 41.4522 

hsa-mir-124-3p 2 157.193 

hsa-mir-125b-5p 2 29.3292 

hsa-mir-519c-5p 2 9.93981 

hsa-mir-518f-5p 2 9.93981 

hsa-mir- 526a 2 9.93981 

hsa-mir-524-5p 2 53.314 

hsa-mir-520d-5p 2 53.314 

hsa-mir-615-3p 2 78.7784 

hsa-mir-548c-3p 2 17.2102 

hsa-mir-623 2 13.69 

hsa-mir-629-3p 2 6.63913 

hsa-mir-766-3p 2 6.63913 

hsa-mir-523-5p 2 9.93981 

hsa-mir-518e-5p 2 9.93981 

hsa-mir-522-5p 2 9.93981 

hsa-mir-519a-5p 2 9.93981 

hsa-mir-519b-5p 2 9.93981 

hsa-mir-520c-5p 2 9.93981 

hsa-mir-518d-5p 2 9.93981 

hsa-mir-1301-3p 2 13.6568 

hsa-mir-1908-5p 2 100 

hsa-mir-2054 2 6.63913 

hsa-mir-2681-5p 2 25.3689 

hsa-mir-3123 2 25.3689 

hsa-mir-548s 2 35.2714 

hsa-mir-548u 2 9.93981 

hsa-mir-3149 2 65.0465 

hsa-mir-1193 2 103.964 

hsa-mir-3202 2 24.9888 

hsa-mir-3674 2 6.63913 

hsa-mir-3685 2 186.615 

hsa-mir-3692-3p 2 6.63913 

hsa-mir-3926 2 35.2714 

hsa-mir-4459 2 69.4484 

hsa-mir-4468 2 133.059 

hsa-mir-4533 2 24.9888 

hsa-mir-3925-3p 2 6.63913 

hsa-mir-4446-5p 2 13.69 

hsa-mir-4640-5p 2 24.9888 

hsa-mir-4703-5p 2 45.092 
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hsa-mir-4715-3p 2 28.9808 

hsa-mir-4726-5p 2 24.9888 

hsa-mir-4755-5p 2 13.69 

hsa-mir-5006-3p 2 13.69 

hsa-mir-5186 2 92.2074 

hsa-mir-3190-3p 2 213.744 

hsa-mir-98-3p 2 95.2022 

hsa-mir-6087 2 68.9903 

hsa-mir-6089 2 35.2714 

hsa-mir-627-3p 2 29.9518 

hsa-mir-670-3p 2 6.63913 

hsa-mir-6832-5p 2 33.3635 

hsa-mir-6845-3p 2 6.63913 

hsa-mir-7106-5p 2 25.4254 

hsa-mir-7111-3p 2 84.5759 

hsa-mir-7161-5p 2 9.93981 

hsa-mir-8087 2 89.387 

MARK4 2 104.617 

AREG 2 53.2203 

BCAM 2 12.4426 

HTRA3 2 81.2138 

DTHD1 2 12.0013 

CLPTM1 1 0 

TCF7 1 0 

RELB 1 0 

APOE 1 0 

APOC1 1 0 
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4.6.6 Table S4. miRNA target sites associated with query SNP- rs6859 

Source: http://bioinfo.bjmu.edu.cn/mirsnp/search/ 

PVRL2 hsa-miR-143-5p 6859 None A==>

T 

create A None None None T 167 -

21.6

2 

0.40

2 

PVRL2 hsa-miR-143-5p 6859 None C==>

T 

create C None None None T 167 -

21.6

2 

0.40

2 

PVRL2 hsa-miR-143-5p 6859 None G==>

T 

create G None None None T 167 -

21.6

2 

0.40

2 

PVRL2 hsa-miR-147b 6859 None A==>

C 

create A None None None C 150 -

23.3

4 

0.54

5 

PVRL2 hsa-miR-147b 6859 None C==>

G 

break C 150 -

23.3

4 

0.54

5 

G None None None 

PVRL2 hsa-miR-147b 6859 None C==>

T 

break C 150 -

23.3

4 

0.54

5 

T None None None 

PVRL2 hsa-miR-199a-5p 6859 -0.321 A==>

T 

enhance A 158 -

20.1

8 

0.99

3 

T 166 -

25.6

1 

0.99

3 

PVRL2 hsa-miR-199a-5p 6859 -0.321 C==>

T 

enhance C 158 -

20.2

3 

0.99

3 

T 166 -

25.6

1 

0.99

3 

PVRL2 hsa-miR-199a-5p 6859 -0.321 G==>

T 

enhance G 158 -21.3 0.99

3 

T 166 -

25.6

1 

0.99

3 

PVRL2 hsa-miR-199b-5p 6859 -0.323 A==>

T 

enhance A 150 -

17.7

7 

0.99

3 

T 158 -

21.8

3 

0.99

3 

PVRL2 hsa-miR-199b-5p 6859 -0.323 C==>

T 

enhance C 150 -

17.7

7 

0.99

3 

T 158 -

21.8

3 

0.99

3 

PVRL2 hsa-miR-199b-5p 6859 -0.323 G==>

T 

enhance G 150 -

17.9

3 

0.99

3 

T 158 -

21.8

3 

0.99

3 

PVRL2 hsa-miR-584-3p 6859 None A==>

T 

create A None None None T 155 -

25.8

3 

0.00

8 

PVRL2 hsa-miR-584-3p 6859 None C==>

T 

create C None None None T 155 -

25.8

3 

0.00

8 

PVRL2 hsa-miR-584-3p 6859 None G==>

T 

create G None None None T 155 -

25.8

3 

0.00

8 

PVRL2 hsa-miR-648 6859 -0.271 A==>

T 

enhance A 143 -

14.1

4 

0.83

1 

T 151 -

19.9

4 

0.83

1 

PVRL2 hsa-miR-648 6859 -0.271 C==>

T 

enhance C 143 -

17.9

9 

0.83

1 

T 151 -

19.9

4 

0.83

1 

PVRL2 hsa-miR-648 6859 -0.271 G==>

T 

enhance G 143 -

14.5

3 

0.83

1 

T 151 -

19.9

4 

0.83

1 

 

4.6.7 Table S5. miR target site associated with query SNP- rs11556505 

Source: http://compbio.uthsc.edu/miRSNP/ 

 

RefSeq ID: NM_001128916  

Gene Symbol: TOMM40 

Description: Homo sapiens translocase of outer mitochondrial membrane 40 homolog (yeast) 

(TOMM40), nuclear gene encoding mitochondrial protein, transcript variant 2, mRNA. 

http://bioinfo.bjmu.edu.cn/mirsnp/search/
http://compbio.uthsc.edu/miRSNP/
http://www.ncbi.nlm.nih.gov/nuccore/NM_001128916
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Gene Location: chr19(+):45394476-45406946 

 

SNPs and INDELs in miRNA target sites from CLASH data 

CLASHSequenceID miRNA dbSNP ID miRSite Strand 

L2HS-340749_4 hsa-miR-

484 

rs11556505 actTCGGGGtcacatatgtGGGGACaaAGCagCTGAgtcccacagaggcgttccc + 

 

 

 

 

 

 

http://www.mirbase.org/cgi-bin/query.pl?terms=hsa-miR-484&submit=Search
http://www.mirbase.org/cgi-bin/query.pl?terms=hsa-miR-484&submit=Search
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=rs11556505


Chapter 4 | Bayesian GWAS of inverse comorbidity between Alzheimer’s and cancer 

 

 151 

4.6.8 Figure S3. Enriched processes in reported genes
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4.6.9 Figure S4.  Network analysis of reported genes 

 

 

 

  

Network 1 

Lipid Metabolism Network 2 

Cell Death and Survival 

Merged Network 

Network analysis in IPA software using the classified 

significant genes in two networks. We merged these 

two networks to analyze chief processes involved. For 

each network, few of the top canonical pathways are 

displayed under the network. 
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4.6.10 Figure S5. Potential mechanism of SNPs-miRNA binding sites 

Simplified schematic of the plausible relation between SNPs with cross-phenotypic effects and 

miRNAs exerting inverse alterations in the two phenotypes. The panel on the left represents the 

variability of odds ratio of SNPs within multiple genes. The panel on the right represents the 

different combinations of varying effect sizes and overlapping genes within two individuals thus 

altering their miRNA expression levels resulting in inverse phenotypes.  

The relationship between miRNAs and gene expression is complex. Changes in nucleotide 

variation lead to untargeted binding and miRNAs with similar sequences compensate for 

misguided binding by relying on codon degeneracy. The variation of different gene expression 

possibly affects the same miRNA in a cyclical mode. The reported miRNAs require functional 

studies characterizing their expression, targets and phenotypic consequences.  

 

 



 

Page | 154  

 

 

Chapter 5 

5. SNP-DERIVED TRANSCRIPTOMICS OF MULTIPLE 

TISSUES BETWEEN ALZHEIMER’S AND CANCER 

IMPLICATES MIR-17 FAMILY AND SIRTUIN 

SIGNALING 
 

  

ABSTRACT. Alzheimer’s disease (AD) and cancer are two aging‐associated diseases, and 

several epidemiological findings have reported an inverse correlation between the two diseases. 

Even though aging is a risk factor for Alzheimer’s and cancer, the two diseases have been known 

to have discrete molecular mechanisms. The goal of this study is to identify genetic variants that 

may be influencing functional changes on Alzheimer’s disease and cancer biology. We used 

individual-level genotype data to predict transcriptome of five brain tissues for AD-specific genes 

and breast/prostate tissue for respective cancers using PrediXcan. A total of 6279 males were 

used by comparing common control males between AD and prostate cancer and 3359 females 

between AD and breast cancer against common control females. All the subjects were limited 

within 60-80 years of age to remove heterogeneity from age. Several of the genes associated with 

both AD and cancer are inversely expressed based on the z-scores of the association.  
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Short Title: SNP-derived transcriptomics between Alzheimer’s & cancer

These overlapping genes were enriched for sirtuin signaling and miRNA-17 and miRNA-15 

family. These findings were also reported in our previous study involving variants with inverse 

odds ratios. Based on our results, we hypothesize that p53, mitochondrial dysregulation and 

miRNAs contribute to differences in type-2 and type 3 EMT in AD and cancer. 
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 INTRODUCTION 

With the rise in the aging population, prevalence of two diseases – Alzheimer’s and cancer 

continue to increase mortality and morbidity rates in the US1.  Alzheimer's disease is a 

neurodegenerative disorder which affects 50 million people worldwide the number is expected to 

increase up to 130 Million by 2030 due to increase in life expectancy in the aging population (65 

years or older)2. The AD symptomology includes behavioral difficulties, progressive cognitive and 

memory decline and speech impediments2. AD pathology includes neuronal loss, dysfunction of 

the synapse and plaque formation composed of a beta amyloid and/or neurofibrillary tangles. In 

the aging population sporadic AD is more common with multifactorial etiology which has been 

difficult to ascertain so far2. On the other hand, two most prevalent cancers in the aging population 

are breast and prostate cancer. It is estimated that approximately 6 million individuals will have a 

history or breast or prostate cancer, due to the increase in survival rates from better treatment3. 

Cancer refers to a group of diseases wherein a body cell loses apoptotic regulation leading to 

malignant traits and spreading into or invading nearby tissues4. The cellular deterioration from 

aging is known to cross paths with both cancer and Alzheimer's disease causing a time-dependent 

accumulation of cellular damage5. In the last decade, epidemiological findings have shown that 

Alzheimer's and cancer share a negative correlation or inverse comorbidity defined as lower than 

expected likelihood of developing a secondary disease after being diagnosed with the primary 

condition6. Longitudinal studies involving elderly people ages 65 and above have reported that 

cancer was less prevalent in individuals with AD (5.8%) compared to those who did not have any 

form of dementia (26.5%)7. These findings were later supported by a retrospective study of more 

than three and a half million US veterans age 65 and above which confirmed a lower risk of 

Alzheimer's disease in cancer survivors8. 
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These epidemiological observations have fueled numerous systematic reviews and hypothesis-

driven investigations to understand the common and different characteristics of both diseases. 

Transcriptomic meta-analysis studies have shown the inverse regulation of Pin1, p53 and Wnt 

signaling, dysregulation in mitochondrial metabolism and oxidative phosphorylation in AD and 

cancer 9. Additionally, factors such as APOE4 which are high risk factors for late-onset AD have 

been shown to be protective in cancer in the Framingham Heart Study. The role of microRNA’s is 

crucial for the regulation of gene expression, and miRNAs such as miR-34, miR-9 and miR-17 

have been found to be inversely expressed in AD and cancer10.  Our previous study involving 

individual level SNP effect between AD and cancer confirmed several of the hypothesized and 

reported findings from other studies.  In this study we want to understand the relationship of 

transcriptomics between AD and cancer using SNP derived gene expression. SNPs in regulatory 

or coding region are highly correlated with tissue – specific alterations in gene expression11. These 

correlation weights have been estimated in the PrediXcan11 model using reference datasets such 

as the GTEx project which contains RNA-seq and genotype information of 53 tissues from 620 

donors (v7)12. Approximately, 80% of the individuals in the GTEx dataset are of European 

ethnicity and more than 65% of the individuals are over the age of 50 years12. There is limited 

overlap in genetic factors that contribute to early and late-onset forms of AD and cancer13. To 

reduce genetic variance from age, we compared individuals between 60-80 years of age with late 

– onset AD or cancer. The use of SNP-derived transcriptomics offers the advantage of comparing 

multiple brain tissues in the same set of control population, as opposed to meta-analysis of gene 

expression repositories, which may induce study-dependent bias, and limit harmonization of same 

tissue type. In this study, we compared tissue-specific gene expression profile of five brain tissues 

– cerebellum, cerebellar hemisphere, cortex, hypothalamus and hippocampus in controls vs AD, 
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against cancer tissues – breast or prostate tissue in controls vs cancer. To study the relationship of 

genes expression between AD and cancer, we compared genes that overlap between genes that 

were associated with AD - control vs AD (brain tissues) and prostate cancer - control vs cancer 

(prostate tissue). We then, compared the z-scores to identify which genes were upregulated or 

downregulated in each disease. 

 METHODS & MATERIALS 

5.2.1 Data description – ADGC, ADNI, BPC3 

The individual-level genotype and clinical information was obtained from ADGC 

(phs000372.v1.p1), and Breast Prostate Cancer Care Consortium (BPC3) (phs000812.v1.p1) and 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) (www.adni-info.org). These datasets were 

chosen because they all were genotyped on Illumina Human660W-Quad, to minimize any 

technical bias and harmonization issues while merging the datasets. The research protocol for this 

project was reviewed by University of North Texas Health Science Center Institutional Review 

Board on June 24, 2016 and determined to be exempt human subject research under IRB–2016-

090. 

5.2.2 Quality Control 

We merged individuals from all datasets and performed two-level quality control procedure using 

plink v1.914 as per the guidelines by Anderson et al15.  Individuals were removed based on failing 

heterozygosity or missing markers, IBD, and outliers on principal components PC1 and PC2. The 

individuals were of self-described European ethnicity, which was confirmed by comparing with 

the 1000 genome dataset.  Controls who had family history of cancer, and all individuals with 

medical history of cancer in AD population were also removed. Followed by including individuals 

http://www.adni-info.org/
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within 60-80 years of age. SNP markers were removed based on missingness, differential call rate 

between cases and controls (1-e8), MAF (0.01) and HWE (1e-5). The final QC’d dataset was then 

stratified by sex (6279 males and 3359 females). This allows to compare same control population 

obtained from combining both AD and cancer cohorts against each phenotype.  

5.2.3 Gene Expression Association 

 We used PrediXcan11 to impute gene expression using individual level SNP profiles for males and 

females. Tissue specific SNP-gene expression weights trained using lasso regression from GTEx 

dataset (v7)12, available at http://predictdb.org/.  We downloaded model files for brain tissues - 

cerebellum, cerebellar hemisphere, cortex, hypothalamus and hippocampus, for identifying AD 

related changes and tissues – breast and prostate for studying cancer specific changes.  We choose 

the following brain tissues because have been implicated in the etiology of AD and each tissue has 

more than 100 donors with genotype and RNA-seq data in the GTEx dataset (Tissue - No. of 

individuals; cerebellum – 154, cerebral hemisphere - 125, cortex-136, hippocampus -111 and 

hypothalamus 108). The breast tissue has 251 donors and the prostate tissue has 132 donors when 

genotype data. We predicted 4330 genes for cortex, 4758 genes for cerebral hemisphere, 6094 

genes for cerebellum, 2817 genes for hippocampus and 2836 genes for hypothalamus, the 

association tests were performed for comparison of control vs AD (separately for males and 

females) in all brain tissues to identify AD-specific pathology. In females, we predicted 5308 genes 

for breast tissue and 3263 genes for prostate tissue in males. The z-scores identify the direction of 

up or down regulation the significant genes (p- value < 0.05). For the next analysis, we performed 

a cross tissue comparison to understand how genes present in both tissues – brain and cancer-

related, may be playing different roles in pathology (AD/cancer) specific tissue-based expression. 

We identified overlapping significant genes between each brain tissue (control vs AD) and 

http://predictdb.org/
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breast/prostate tissue (control vs cancer).  To remove any tissue-based bias we added a threshold 

that control vs cancer population should not be significant for brain tissues and control vs AD 

population should not be significant for cancer tissue (breast /prostate).  

5.2.4 Enriched processes and pathways  

To identify processes that maybe in opposite directions in AD and cancer, significant genes that 

were overlapping in the cross-tissue comparison between AD and cancer were analyzed in 

Ingenuity Pathway Analysis® (IPA) (QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis) for canonical 

pathways and GeneMania16. 

5.2.5 miRNA family enrichment 

The overlapping genes between AD and cancer were investigated further to identify associated 

miRNAs using miRNet17. The network was filtered on betweenness centrality of 1.0 for miRNA 

nodes, to prioritize miRNAs that have at least two or more gene targets in the network. All the 

miRNAs in the network were tested for enrichment of miRNA family using hypergeometric test 

(FDR; p-value <0.05). 

 RESULTS 

5.3.1 AD & prostate cancer in males 

To understand which genes are associated with both AD and prostate cancer in males, we 

compared genes that were overlapping in each of the five brain tissues (control vs AD) with 

prostate tissue (control vs cancer). Comparison between cerebellar hemisphere and prostate tissue, 

identified 15 genes. Most of these genes are inversely regulated (as per the z-score direction) 

between the two the diseases, except DPYSL4, KRT18P34, PNRC2, RP11-314C16.1, SPEG and 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
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WTAP. We found 16 genes intersecting cerebellum and prostate tissue, out of which only four 

genes – DPYSL4, MLLT10P1, NTPCR and VSIG8 were found to be in the same direction. 

Comparing genes between AD and cancer in cortex and prostate tissue resulted in 16 genes 

coinciding between the two states. Here, we see similar pattern, of less than 25% genes in the same 

direction in both AD and cancer – HLA-DQA2, LRPAP1, PIGN and RP11-757G1.6 (lnc-RNA). 

Comparison between hippocampus and hypothalamus with prostate tissue, identified 15 and 7 

genes respectively (Figure 1 and 2).  

These genes were further investigated for co-expression, pathway and genetic interactions. Several 

of the genes were found to be co-expressed, and genes such as the TUBA1C, LRPAP1 were found 

to share pathways with lipid metabolism genes and inflammatory domains of HLA-gene family 

(Figure 3). All the genes were also tested for enriched pathways and signaling networks. The most 

representative pathway was found to be sirtuin signaling and comparing the gene expression 

direction for both AD and prostate cancer, we observe that most of the genes in the network are 

inversely expressed (Figure 4). 

We also tested genes for overrepresented miRNAs, by constructing network that prioritized 

miRNAs that mapped to two or more genes. The network was enriched for miR-17 family (6 

members). We also miRNAs such as miR-26b, miR-335, and 3 miRNAs from let-7 family (Figure 

5). We found the enrichment of same miRNA family in our previous study involving identification 

of cross-phenotypic SNPs between AD and cancer targeting different set of genes than identified 

here. 

5.3.2 AD & breast cancer in females 

Upon comparing genes between brain and breast tissues for AD and breast cancer in females, we 

found four significant hits for each pairwise tissue comparison. We found four hits in cerebellar 
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hemisphere vs breast tissue – CEP63, DTD1, ENTPD7 and NPIPL1. Three genes and one lncRNA 

was found to intersect cortex and breast tissue – C6orf201, CTC-523E23.11, HNF1A and RP11-

757G1.6. Comparing hippocampus and breast tissue identified CERS5, EPCAM, PFKL and 

ZNF147. None of the genes for cerebellum and hypothalamus were found to be significant in the 

tissue-based comparisons (Figure 6).  

Due to the limited number of genes between AD and breast cancer, we couldn’t identify enriched 

processes. The genes were further as targets for miRNAs, the network was enriched for miRNA-

17 (5 members) and miR-15 family (3 members). The members of miR-17 family target two genes 

– ENTPD7 and ZNF417, both of which are inversely regulated in AD and cancer. The members 

of miR-15 family target CEP63, DTD1, HNF1A and ENTPD7 (Figure 7).  

 

 DISCUSSION 

AD and cancer have different etiologies. The “hallmarks of cancer” are highly dependent on 

metabolic alterations resulting in type 3 epithelial-to-mesenchymal transition (EMT)18, in contrast, 

the AD pathology is a consequence of type-2 EMT caused due to inflammation from metabolic 

dysregulation in the brain 19. The sirtuin homologues are members of the histone deacetylase 

family, affecting chromatin regulation and transcription factors20. Upon comparing brain 

transcriptomic profile of AD individuals and prostate transcriptome of cancer individuals with the 

same set of controls, we observe that most overlapping genes between the two diseases are 

inversely expressed. These genes are involved in sirtuin signaling, which is known to play role in 

both AD2 and cancer21. 
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Sirtuins group of proteins (SIRT1-7) are histone and chromatin transformers involved in regulation 

of oxidative stress, cellular metabolism and differentiation. SIRT-1,2, 6 and 7 are localized in 

nucleus and the nucleolus, and SIRT-3-5 are present in the mitochondria20. While not all sirtuins 

have been investigated in AD pathology, SIRT-1-3 and 6 have been associated with AD. SIRT-1 

is under expressed in AD brains and increasing the SIRT-1’s levels is reported to be 

neuroprotective, as it is inversely correlated with Aβ and tau accumulation22. The overexpression 

of SIRT-1 is associated with downregulation of p53, increased AKT and CREB deactivation 

alleviating cognitive response in animal models23. Forkhead transcription factor regulates brain 

metabolism via interaction of Wnt-signaling and mitochondrial biogenesis by interacting with 

SIRT-120. In cancer, SIRT-1 is found to be both under and overexpressed. The overexpression of 

SIRT-1 is found to deacetylate both of its tumor suppressing targets – p53 and E2F1 thus 

contributing to oncogenesis. The overexpression has also been known to regulate β-catenin 

signaling which induces DNA repair and protects from age-associated cancer development. The 

over expression of SIRT-1 has been reported in prostate cancer and associated with cancer 

progression21 . SIRT2 is increased in patients with AD brains and known to cause tau aggregation 

by regulating mitochondrial and redox homeostasis 24. 

One of the SNPs in SIRT-2 (rs10410544_C) has been documented to increase predisposition to 

AD in APOE4 negative, and the T allele is more prevalent in APOE4 positive individuals with 

AD. SIRT-2 interacts with both APOE and CYPD26 resulting in pathogenic and therapeutic 

implications. Individuals with rs10410544-C/T and extensive metabolizers based on CYPD26 

have been identified to respond better to AD therapeutics over other carriers20.  

SIRT-2 is downregulated in multiple cancer types, including breast and prostate cancer. This under 

expression leads to prevention of mitotic cell cycle and reduced activity of anaphase-promoting 
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complex resulting in uncontrolled cellular proliferation. SIRT-2 is elevated under oxidative stress 

which rescues mitotic dysregulation by inducing cell cycle checkpoint 21. 

Mitochondrial sirtuins - SIRT-3-5 regulate metabolic and mitochondrial energy based on 

availability of ATP. SIRT-3 is reported to be either deleted or under expressed in cancer, however 

in hereditary ovarian cancer, SIRT-3 is duplicated and suspected to play tumorigenic role. SIRT-3 

dysregulation has been reported in cerebral cortex of AD brains in humans leading to neuronal and 

mitochondrial decline mediated by p53. SIRT-4 is also reduced in multiple cancer, unlike SIRT-5 

which is overexpressed in lung cancer21.  

The under expression of SIRT-6 in AD patients is negatively correlated with DNA damage induced 

by accumulation of Aβ20. In cancer, SIRT-6 is found to be deficient in 20% of cancers and 

upregulated in breast cancer acting intervening stronger DNA damage response causing resistance 

to cancer treatment21.  

The micro-RNAs are related molecules consisting of 22nt of non-coding RNA sequence that bind 

to 3’UTR of the gene, controlling the transcriptional regulation of the gene25. We found 

overrepresentation of miR-17 family in both cancer to AD comparison, and representation of miR-

15 family for genes overlapping between AD and breast cancer. The miR-17 family consists of 

miR-20a/b, 106a/b and 9325, and the miR-15 family consists of miR-15a/b and miR-1626. Although 

the seed sequences of miR-16-1 and 16-2 are identical, miR-15a and 15b have different seed 

sequences and may contribute towards different functions26. The miR-15a/16-1 are tumor-

suppressors and are deficient in multiple cancers27. This deficiency in their expression upregulates 

anti-apoptotic proteins such as Mcl-1 and promote tumorigenic potential by inducing EMT. The 

miR-15b/16-2 interacts with cyclin proteins, insulin growth like receptors and is also known to 

play anti-oncogenic role26. The miR-15b is over expressed in AD pathology, and lowering its 
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expression alleviates Aβ accumulation and reduces apoptotic activity28. In contrast, the miRNA-

17 is found to be downregulated in AD and is inversely correlated with APP and Aβ expression29. 

The miRNA-17 is over expressed in cancers and is accompanied by surge in cellular proliferation 

of cancer tissues30. 

In our previous study, we reported the involvement of TOMM40 and VDAC1 in the inverse 

relationship of AD and cancer. These mitochondrial proteins are known to interact with sirtuin 

proteins, primarily the SIRT-131. We also found the enrichment of miRNA-17 family and reported 

its opposite biological roles AD and cancer. In this study, we extended the previous investigation 

to confirm role of mitochondrial and metabolic dysfunction along with role of miRNAs in the 

transcriptomic profiles of AD and cancer. This study helped identify sirtuins as potential regulatory 

networks which play in dual roles in AD and cancer. Furthermore, we found statistical enrichment 

of miRNA-17 family in both cancers against AD. It is interesting to note that members of sirtuin 

homologue play dual roles, similar to members of miRNA-17. These findings highlight the role of 

biological degeneracy built into our aging biology. Investigation using animal models are 

warranted to tease apart the functional consequences of each homologue and evaluate the role of 

compensation provided by structurally similar molecules. 
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Figure 1: Transcriptomic profile of AD and prostate cancer. The genes that were associated with AD in brain tissues and with prostate cancer in prostate tissue are listed here, derived from each 

pairwise comparison of brain and cancer tissue. The z-score identify if the gene is up/downregulated. Blue bars show significant association for ctrl vs cancer in males and purple bars show 

significant association for ctrl vs AD males. Grey bars represent that these genes were not significant between ctrl vs cancers in brain tissue and ctrl vs AD were not significant in prostate tissue. 

Ctrl – control; AD – Alzheimer’s Disease; Ca - cancer 



Chapter 5 | SNP-derived transcriptomics between Alzheimer’s and cancer 

 

Page | 167  

 

  

Figure 2: Transcriptomic profile of AD and prostate cancer. The genes that were associated with AD in brain tissues and with prostate cancer in prostate tissue are listed here, 

derived from each pairwise comparison of brain and cancer tissue. The z-score identify if the gene is up/downregulated. Blue bars show significant association for ctrl vs cancer in 

males and purple bars show significant association for ctrl vs AD males. Grey bars represent that these genes were not significant between ctrl vs cancers in brain tissue and ctrl 

vs AD were not significant in prostate tissue. Ctrl – control; AD – Alzheimer’s Disease; Ca - cancer 
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Figure 3: Genes identified in the comparison between AD and prostate cancer. The network identifies different relationships shared between the genes in terms of co-expression 

(purple lines), pathway (blue lines) and genetic interactions (green lines). 
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Figure 4: Enriched pathways using IPA’s biobase. The network connecting the genes associated between AD and prostate cancer indicates involvement of sirtuin signaling. Both panel represent the 

same pathway; left panel shows the gene expression of control vs AD association in brain tissues, and the right panel shows the gene expression of control vs cancer in prostate tissue. 
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Figure 5: miRNA network for genes identified between AD and prostate cancer. The miRNAs (blue squares) are mapped to genes (red circles), followed by testing of miRNA family 

enrichment (top panel). The members of the significant miRNA family – miR-17 is highlighted in yellow. The miRNAs highlighted in green are miRNAs along with miRNA-17 that we found 

consistent with our previous finding as well. 
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Figure 6: Transcriptomic profile of AD and breast cancer. The genes that were associated with AD in brain tissues and with breast cancer in breast tissue are listed here, derived from 

each pairwise comparison of brain and cancer tissue. The z-score identify if the gene is up/downregulated. Blue bars show significant association for ctrl vs cancer in females and purple 

bars show significant association for ctrl vs AD females. Grey bars represent that these genes were not significant between ctrl vs cancers in brain tissue and ctrl vs AD were not 

significant in breast tissue. 
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Figure 7: miRNA network for genes identified between AD and breast cancer. The miRNAs (blue squares) are mapped to genes (red circles), followed by testing of miRNA family 

enrichment (top panel). The members of the significant miRNA family – miR-17 is highlighted in yellow and pink rectangles highlight miRNA-15 family members.  
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 SUPPLEMENTARY FILES 

Link to AD vs prostate cancer -  Males-ADvsCancer 

Link to AD vs breast cancer - Females- ADvsCancer 
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Chapter 6 

6. DISCUSSION & FUTURE DIRECTIONS 
 

 DISCUSSION 

Aging is a gradual decline of physiological process in the organism. Unfortunately, this gradual 

decline can manifest in different pathologies based on genetic and lifestyle factors. 

Epidemiological observations have reported parallel correlation of two or more disease pathologies 

with increase in ages of 65 years and older. 

In this study, we investigated comorbidity patterns present within four aging associated diseases – 

radiotherapy side-effects, cancer, Alzheimer’s disease and hypertension. To understand 

comorbidity patterns we employed integration of multidimensional genetic data for each disease 

comorbidity under investigation.  

With the improvement of cancer therapies, survival rates of most prevalent cancers such as prostate 

cancer has increased to 90% for a period of 5-years. However, even the most precise dose and 

cancer-site radiation therapy can result in long-term adverse effects. We investigated radiation-

induced proctitis which is a inflammation of the rectum and prevalent in 5-20% of cancer 

survivors. We integrated transcriptomics derived from genotype data, and copy number association 

to find possible genetic links with proctitis in prostate cancer survivors. The SNP-derived 

transcriptomic profiles identified novel genes that are co-expressed with known DNA-damage 
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response genes in prostate and whole-blood tissue. We integrated tissue specific protein-protein 

interaction information to identify genes that possibly play role in radiotherapy adversity. The goal 

of the study is to pave the way for translational application of genetic variants to identify 

individuals who may be at higher susceptibility of developing proctitis from radiation therapy, thus 

improving quality of life for cancer survivors. The role of genetics in radiotherapy is fairly new, 

and will benefit from recruitment of larger cohorts in multiple cancer types. This study provided 

insight into prostate cancer radiation therapy side effects, which may be different from other cancer 

types.  

Next, we compared the direct comorbidity pattern of Alzheimer’s disease and hypertension. 

Although the role of hypertension as metabolic risk factor to AD has been investigated by several 

studies, genetic differences between AD individuals with and without hypertension remains 

understudied. Due to hypertension’s role in causing vascular dementia, we investigated several 

known clinical traits of vascular dementia in individuals with AD-hypertension comorbidity. It 

was interesting to note that hypertension was not correlated with white matter hyperintensity, 

indicating that the differences in genome-wide profile we reported in the study are likely due to 

presence of hypertension. We identified genes that play roles in cognitive impairement and 

hypertension seprately but have not been associated with AD-hypertension pathology. However, 

it is certainly possible that other metabolic factors might be associated with the differences we 

observed. For example, we observed that metabolic traits – cholestrol and triglycerides were 

correlated and triglyceride was correlated with systolic pressure, MMSE and age. Therefore, future 

studies are required to understand the role of these metabolic profiles and their effect on causation 

and progression of cognitive decline in AD patients. Furthermore, our study identified sex-specific 

differences in gene expression of candidate hits. The prevalence of AD-hypertension comorbidity 
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in males and females along with deep phenotyping will provide much needed resolution in the 

associated risk factors.  

We also investigated indirect comorbidity shared between AD and cancer. This relationship of 

inverse correlation between two pathogenically different diseases faces continued skepticism in 

the scientific community. However, as reported earlier, we chose a conservative approach under 

the Bayesian umbrella to investigate this ‘suspicious’ relationship between AD, and breast and 

prostate cancer. Several literature and meta-analysis studies have hypothesized pathways that may 

be inverse between AD and cancer. By evaluating the role of each variant towards either disease, 

allowed to identify targets that have opposite proportions in AD and cancer. Even though we found 

few targets, the literature supported our reported findings. As we continued to remain cautious of 

our findings, we explored other avenues of mechanism that could be driving the effect we reported 

between AD and cancer. We conducted a comprehensive literature search on the mapped miRNAs 

to investigate their role with our targeted regions and their association with AD and cancer. We 

believe that the SNPs reported here have understudied allies that alter gene expression via miRNA 

regulatory mechanism. This study has major potential for translational impact, as the targets we 

reported here are protective in one disease and risky in another. These findings encourage 

investigating mutiallelic SNPs in the context of variants which play dual role in therapeutically-

challenging diseases.  

It is often expected that transcriptomic and gene variant profiles rarely overlap for multifactorial 

diseases. In our extended study of SNP-derived tissue-specific gene expression profile, we 

observed a similar trend. Even though we predicted gene expression from the same genotype 

profile, we identified different set of associated genes in AD and cancer. Here, we observed another 

interesting possibility of sirtuin signaling playing a role between AD and cancer. Combining the 
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findings from both studies, we believe that mitochondrial dysfunction due to alterations in sirtuin 

protein with TOMM40 and VDAC1 may be responsible for contrasting pathologies in the two 

diseases. Another role of these genes is the difference in contributing type-2 and type-3 epithelial-

mesenchymal-transition in AD and cancer, which has not been investigated thoroughly.  

Upon stratification by severity of disease or multiple conditions, the studies conducted here lose 

power to detect all possible genes that play role in comorbidity being investigated. All our studies 

were conducted in individuals of European ethnicity, due to availability of cohorts with required 

genetic and clinical information. It is imperative that these methods of investigation be applied in 

other ethnicities to identify underlying genetic associations of comorbidity patterns. In addition to 

the proposed studies, mild cognitive impairement which is a AD precursor was investigated in 

Mexican Americans by analysing differences in their epigenomic profiles (Appendix). 

 LIMITATIONS 

The designated integrative genomics approach using prior biological knowledge to reconstruct 

networks is one of the most intuitive methods, giving appropriate context for data interpretation. 

This approach does have its limitations, however; because it is based upon existing network 

knowledge, it does not identify de-novo relationships. This study endeavors to investigate multiple 

facets of contributing factors to complex disease, however, other factors beyond the scope of the 

study may be affecting the disease as well. Rare variant effects may be missed as the study 

population is smaller than 10,000.  

 FUTURE STUDIES 

This research study could further benefit from integration of methylation data. The current study 

primarily investigates age-associated disease and their comorbidity patterns in Caucasian ethnicity 
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and has the potential to be extended to other ethnicities to develop strategies for better tailored 

clinical decisions and treatments.  Future work may include evaluating the impact of hypertension 

in chemotherapy treated cancer survivors, to determine genetic factors that may contribute to the 

development of the hypertension due to cancer treatment. Furthermore, integrative genomics 

approach with deep phenotyping to would be valuable to comprehend multimorbidity - presence 

of more than two chronic conditions. Studying the influence of SNPs on network of biology of 

complex disease will shorten the translational window to achieve personalized treatments. 

Finally, this study underscores genetic heterogeneity that exists in comorbid condition, which are 

highly prevalent in the aging population. In order to provide precision diagnosis and treatment to 

the growing elderly population, it is imperative that more studies are conducted within the scope 

of multiple diseases.  
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7. APPENDIX 

Genome-wide methylation of mild cognitive impairment in Mexican 

Americans highlights genes involved in synaptic transport, AD-precursor 

phenotypes, and metabolic morbidities 

Gita A Pathak1, Talisa K Silzer1, Jie Sun1, Zhengyang Zhou2, Ann A Daniel1, Leigh Johnson3,4, 

Sid O'Bryant3,4, Nicole R Phillips1, Robert C Barber4 * 

ABSTRACT 

The Mexican American population is among the fastest growing aging population and has a 

younger onset of cognitive decline. This group is also heavily burdened with metabolic conditions 

such as hypertension, diabetes and obesity. Unfortunately, limited research has been conducted in 

this group. Understanding methylation alterations, which are influenced by both genetic and 

lifestyle factors, is key to identifying and addressing the root cause for mild cognitive impairment, 

a clinical precursor for dementia. We conducted an epigenome-wide association study on a 

community-based Mexican American population using the Illumina EPIC array. Following 

rigorous quality control measures, we identified 10 CpG sites to be differentially methylated 

between normal controls and individuals with mild cognitive impairment annotated to PKIB, 

KLHL29, SEPT9, OR2C3, CPLX3, BCL2L2-PABPN1 and CCNY. We found four regions to be 

differentially methylated in TMEM232, SLC17A8, ALOX12 and SEPT8. Functional gene-set 

analysis identified four gene-sets - RIN3, SPEG, CTSG and UBE2L3 as significant. The gene 

ontology and pathway analyses point to neuronal cell death, metabolic dysfunction and 

inflammatory processes. We found 1450 processes to be enriched using empirical Bayes gene-set 

enrichment. In conclusion, the functional overlap of differentially methylated genes associated 

with cognitive impairment in Mexican Americans implies cross-talk between metabolically-

instigated systemic inflammation and disruption of synaptic vesicular transport. 
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Introduction 

Alzheimer’s disease (AD) affects 5.8 million Americans and is currently the 6th most common 

cause of death (1). AD is a neurodegenerative disease that manifests as a result of intracellular tau 

tangles and extracellular amyloid beta plaques within the brain, causing cellular inflammation and 

neuronal loss, which lead to changes in memory and personality (1). Mild cognitive impairment 

(MCI), a common precursor to AD, affects over a quarter of individuals over the age of 65, with a 

third of these individuals developing AD later in life (2).  

Within the United States, the Mexican American elderly population is experiencing rapid growth 

and is predicted to increase 6-fold by 2050 (3). This population has an earlier age of AD onset (4) 

and are typically diagnosed at more advanced stages of disease relative to non-Hispanic whites (3, 

4). Further, Mexican Americans are disproportionately burdened with comorbid conditions such 

as depression (5, 6), cardiovascular disease (7) and metabolic conditions (e.g. metabolic syndrome, 

type 2 diabetes, obesity) (4, 7). Other factors such as education and socio-economic status have 

also been suggested to play a role, where fewer years of education and lower economic status are 

known to increase one’s risk for AD (8).  

There are several critical differences in the etiology of AD when comparing Mexican Americans 

and non-Hispanic whites, and these distinctions may be key to understanding the observed 

disparities in the population. Mexican Americans are less likely to carry the APOE e4 allele which 

is the one of the highest predisposing genetic factors for AD among non-Hispanic whites (4, 8). 

Additionally, while a vascular/inflammatory phenotype predominates risk for cognitive decline 
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among non-Hispanic whites, risk among Mexican Americans is due primarily to metabolic factors 

(9). In a study of serum biomarkers from 363 Mexican Americans (AD=49, NC=314), the 

biomarker profile of AD among Mexican Americans was weighted heavily for metabolic markers 

as opposed to the inflammatory-laden profile that has previously been observed among non-

Hispanic whites (10). 

Cognitive impairment is highly heterogeneous, with both environmental/lifestyle and genetic 

factors playing a role. Since AD pathology can initiate up to 20 years before the first visible 

symptoms (1), changes in methylation patterns may signify relevant early molecular responses to 

the disease. Methylation at CpG (cytosine-phosphate-guanine) sites throughout the genome is 

known to affect downstream expression of various genes and has been implicated in normal aging 

and disease processes (11, 12). Differential methylation relating to AD and MCI has already been 

reported in several populations (11-14).  While metabolic stress detected in the peripheral blood is 

associated with cognitive impairment, the exact mechanisms are unknown (15). Wang et al. have 

identified epigenetic changes in the brain of AD patients that exacerbate synaptic plasticity within 

functional networks overlapping multiple brain regions (16). Moreover, changes in DNA 

methylation patterns have been shown to be highly correlated between peripheral blood and brain 

(17). Since metabolic burden affects both the peripheral and central-nervous system (18), detecting 

epigenetic signatures may help identify risk regions that overlap metabolic burden and cognitive 

dysfunction. 

Here we sought to investigate genome-wide differential methylation at site- and region-specific 

levels to identify epigenetic factors that may confer risk for cognitive impairment in Mexican 

Americans.  

Results 
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Genome-wide methylated sites and regions 

In the genome-wide probe analysis, 10 CpG probes were found to be significantly (FDR p-value 

< 0.05) differentially methylated probes (DMPs) between normal controls (NC) and individuals 

with mild cognitive impairment (MCI) (Supplementary file 1). These CpG sites were located 

within PKIB, KLHL29, SEPT9, OR2C3, CPLX3, PABPN1-BCL2L and CCNY (Figure 1).  

The genome-wide region analysis yielded 4 differentially methylated regions (DMRs): two on 

chromosome 5 located within TMEM232 and SEPT8, one on chromosome 12 within SLC17A8, 

and one on chromosome 17 within ALOX12 (Supplementary file 2). These 4 regions comprised 41 

significant sites that were located primarily within CpG islands, with some being in open sea and 

shore regions (Figure 2). 

Differentially methylated modules  

The functional methylation analysis identified four gene-sets (modules) to be significantly 

hypomethylated in MCI compared to NC – RIN3 (also known as SLC24A4), SPEG, CTSG and 

UBE2L3 (Supplementary file 3). The RIN3 and SPEG cluster identified overlapping significant 

genes - RIN3, SPEG, XDH and KNDC1. While in the CTSG cluster we found CTSG, F2RL1 and 

MMRN1 to be significant. Lastly, in the UBE2L3 gene-set, we found RNF144A, UBE2L3, and 

NEDD4L to be significant (Figure 3).  

Gene Ontology and pathway enrichment test 

Differentially methylated genes identified through DMPs, DMRs, and functional network analysis 

were screened for enrichment based on gene ontology (Supplementary file 4). Several biological 

processes were found to be significantly enriched, which clustered primarily on immunological 

processes, and systemic arterial blood pressure (Figure 4). Four KEGG pathways – synaptic vesicle 



 

Page | 185  

 

cycle, bacterial invasion of epithelial cells, inflammatory mediator regulation of TRP, and 

ubiquitin mediated proteolysis were found to be enriched. Using IPA (Ingenuity Pathway 

Analysis®) to assess enriched disease pathways, we found neuronal cell death and metabolic 

disease (insulin-resistance) among the most significant pathways (Figure 5). 

Bayes Gene-Set Enrichment Analysis 

We also conducted another gene-set enrichment analysis using the empirical Bayes method (19), 

which ranks genes into gene-sets using beta-values for each of the CpG sites. We found a total of 

1450 gene-sets to be significantly enriched (adjusted P-value < 0.05). With respect to the most 

significantly-enriched, many of the gene-sets have been associated with H3K27 methylation in 

various experimental models (Table 1 in Supplementary file 5), while those with the highest 

classification accuracy (~72%-78% of the area under the curve (AUC)) were attributed to the 

following gene-sets (among others, Table 2 in Supplementary file 5): Regulation of protein, Rho 

GTPase activity, and Aging.   

Discussion 

The etiology of MCI/AD in Mexicans- Americans is distinctive from non-Hispanic whites. Much 

of this disparity has been attributed to the elevated prevalence of metabolic dysfunction within this 

population, with 43% of individuals with dementia also suffering from diabetes, stroke or both (8). 

While several studies have reported an association between metabolic burden and cognitive 

impairment, the exact mechanisms linking the two are poorly understood (20). In the last 20 years, 

based on pubmed query, we found only 71 articles that were published in the genetics of 

Alzheimer’s in Mexican-American population. There are no publications listed when we replace 

the term genomics and its associated terms with ‘methylation’ or ‘epigenetics’ (Supplementary 
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figure 2). Studying alterations in genome-wide methylation profiles associated with cognitive 

decline in a metabolically burdened admixed population, may help identify changes that occur as 

a result of both genetic and lifestyle factors. Understanding these factors will be vital for 

development of effective diagnostic and therapeutic strategies.  

Genes implicated in differentially methylated sites and regions 

Here we found 10 differentially methylated CpG sites significantly associated with MCI in our 

Mexican American cohort. Four of these sites were hypomethylated among participants with mild 

cognitive impairment than normal controls; cg25016219 (KLHL29), cg26479998 (SEPT9), 

cg02586267 (not mapped to a gene), cg18978297 (CPLX3). KLHL29 has been reported to be 

associated with diabetes (21), while other members of the Kelch-like gene family have been 

implicated in hypertension (22). Septin 9 (SEPT9), known to be involved in cell cycle regulation, 

has primarily been associated with neuralgic amyotrophy, a peripheral nervous system disorder 

characterized by weakness and atrophy of the upper extremities (23). SEPT9 variants have also 

been associated with systolic blood pressure (24). The hypomethylation of SEPT9 observed in our 

analysis was also reported by Dayeh and colleagues, who found hypomethylation of SEPT9 on 

multiple CpG sites and an upregulation of SEPT9 in human pancreatic islets from type 2 diabetes 

donors (25). Complexin 3 (CPLX3) is involved in regulation of SNARE-associated synaptic 

vesicle fusion, thereby impacting neurotransmitter transporter activity and localization (26). The 

CpG site within CPLX3 was found to be hypomethylated in our study based on peripheral blood, 

and Annese et. al have reported CPLX3 to be upregulated in the hippocampal region of individuals 

with late-onset Alzheimer’s disease (27).  

Six CpG sites – cg22360048 (PKIB), cg20904111 (intergenic), cg05917713 (BCL2L2-PABPN1), 

cg20201669 (OR2C3), cg14179796 (CCNY) and cg22327037 (intergenic) were found to be 
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hypermethylated in individuals with MCI. PKIB is a kinase inhibitor in PKA signaling known to 

suppress insulin secretion under chronic hyperglycemia (28). Interestingly, PKA signaling also 

regulates mitochondrial function/morphology as well as neuronal survival, and has been suggested 

as a therapeutic target for treatment of neurodegenerative diseases (29). BCL2L2 (BCL-w or BCL2-

w), encoding an anti-apoptotic protein, was hypermethylated in our study, and has been reported 

to be downregulated in AD brains afflicted with increased phosphorylation of tau proteins (30). 

Furthermore, variants in BCL2L2-PABPN1 have been reported to be associated with basal 

metabolic rate and body mass index in obese Korean women (31). Mutations in PABPN1 encoding 

a poly A binding protein, have been associated with increased protein aggregation, a pathological 

hallmark of many neurodegenerative diseases (32). Olfactory deficits have been reported to 

precede clinical symptoms of AD and MCI (33), and our study identified hypermethylation of 

OR2C3, encoding a GPCR that binds to the extracellular domain that generates signal to the 

olfactory sensory neurons in the brain (34). OR2C3 binding results in additional activation of Akt, 

MAPK and Rho-signaling pathways (34). Therefore, it is plausible that hypermethylation of sites 

within OR2C3 may cause downregulation of its expression resulting in olfactory deficits and 

neuronal dysregulation (35). The CpG site within Cyclin Y (CCNY) was observed to be 

hypermethylated in our study; downregulation of CCNY has been reported to inhibit the formation 

of new synapses during synaptic remodeling (36). CCNY also regulates Wnt-signaling pathways, 

which have been found to be altered in the prefrontal cortex of individuals with Alzheimer’s 

disease (37)  

We also identified four regions within TMEM232, SEPT8, SLC17A8, and ALOX12 that were 

significantly differentially methylated. ALOX12 - arachidonate 12-oxidoreductase, is an enzyme 

involved in the generation of lipid metabolites and loss of function mutants of ALOX12 (mouse 
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model) have demonstrated sensitization of pancreatic beta cells to oxidative stress (38) leading to 

declines in insulin secretion, an event that precedes onset of type 2 diabetes (39). Interestingly, 

ALOX12 has also been reported to modulate glutamate-induced degeneration of neurons (40), and 

SNPs within this gene have been implicated in loss of prefrontal cortical thickness in PTSD 

individuals (41). Vesicular glutamate transporter 3 (otherwise known as VGLUT3 or SLC17A8) 

has been shown to be co-expressed with glutamate receptor GABRG3 in peripheral glutamatergic 

neurons; together they are suspected to play a compensatory role in response to loss of glycinergic 

activity which occurs during hearing loss (42), a precursor symptom to MCI and AD (43). Another 

member of the Septin gene family, SEPT8, was found here to be associated with MCI. SEPT8 is 

believed to regulate the transportation of synaptic vesicles through interaction with different 

SNARE- complex components (44). Dysfunction of synaptic vesicle transmission in hippocampal 

and cortical regions has been associated with cognitive decline (45). Additionally, multiple 

variants in TMEM232, encoding a transmembrane protein, have been implicated in various 

neuropathies (46). SNPs in this gene have also been associated with schizophrenia, depression and 

bipolar disorder in a Chinese population(47). 

Genes implicated in differential methylated modules  

We found four gene-sets in our study – (a) RIN3, (b) SPEG, (c) CTSG and (d) UBE2L3, to be 

significantly hypomethylated in individuals with MCI. Four genes- RIN3, SPEG, XDH and 

KNDC1 were hypomethylated in both RIN3 and SPEG gene-sets. Hypomethylation of CpG sites 

in the 3’UTR of RIN3 has also been observed in peripheral blood of individuals with sporadic early 

onset AD (48) . Interestingly, in our study, the functional module analysis which weights location 

of CpG sites from TSS sites in an overall gene-based analysis, also identified hypomethylation of 

RIN3 derived from peripheral blood of individuals with MCI, suggesting that hypomethylation at 
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this site may serve as an early indicator of cognitive decline. Due to its involvement in regulation 

of endocytic trafficking and processing of APP (49), hypomethylation of RIN3 may also serve as 

a compensatory response to amyloid toxicity. This postulation is supported by Boden et al. who 

observed increased hypomethylation of RIN3 in AD brains in comparison to blood, which they 

suggest to be due to prolonged exposure of the brain to an amyloid-rich environment (48). In a 

study by Stage et al. a single SNP within RIN3 (rs10498633) was found to be associated with gray 

matter density within the medial temporal lobe, a phenotypic change detectable even in early stages 

of cognitive impairment (50). Other variants within RIN3 have also been associated with metabolic 

syndrome in Japanese individuals (51). KNDC1, encodes a Ras-guanine nucleotide exchange 

factor, and Ji et al. have shown KNDC1 upregulation to stimulate p53-oxidative stress responses 

(52). Other studies focusing on 5-hydroxymethylation in AD have found KNDC1 to be enriched 

in GO terms related to neurogenesis and signal transduction (53). Remarkably, a GWAS of 1 

million individuals, implicated variants in KNDC1 to be associated with ‘self-reported educational 

attainment’, a highly correlated risk factor for cognitive impairment (54).   Xanthine 

dehydrogenase (XDH), a hydroxylase involved in oxidative purine metabolism, is capable of 

converting to xanthine oxidase, a major producer of ROS (55). Elevated ROS is a hallmark of both 

AD and Type 2 diabetes (56). Upregulation of XDH activity has also been demonstrated in the 

brain of rats with late-stage diabetes (57). Hypomethylation of CpG sites within XDH may allow 

for increased expression permitting potential downstream elevation in ROS.  

Cathepsin G (CTSG) is an anti-inflammatory protease found in azurophil granules of blood 

neutrophils that functions to breakdown pathogens and inflammatory tissues. Specifically, CTSG 

has been shown to play a role in abating neuroinflammation in AD through cleavage of amyloid 

beta (58). The hypomethylation of CTSG observed  in our study, was reported to be upregulated 



 

Page | 190  

 

in the hippocampus of hypertensive aged rats suggesting perhaps that neuroinflammation may 

bridge hypertension and cognitive dysfunction (59). The G-protein coupled receptor F2RL1 

(otherwise known as PAR2), also accelerates neurodegeneration via inflammatory mediators (60). 

Interestingly, upregulation of PAR2 has been reported to be induced by alpha-synuclein (61). PAR2 

has also been shown to be upregulated in adipose tissues and is a contributor to insulin resistance 

and metabolic dysfunction (62). While, the upregulation of MMRN1 has been associated with 

cognitive deficits in Parkinson’s disease(63). 

The UBE2L3 gene-set revealed several ubiquitin-related proteins to be hypomethylated. UBE2L3 

(E2F1) encodes a ubiquitin-conjugating enzyme, while NEDD4L and RNF144A encode E3 

ubiquitin ligases. The expression of UBE2L3 is upregulated in neurons of AD brains (64) and is 

also increased in obesity for maintenance of metabolic homeostasis (65). SNPs within NEDD4L 

have been associated with essential hypertension, a known comorbidity for AD (66). 

Hypomethylation and upregulation of mRNA expression of RNF144 was reported in liver samples 

of individuals with type-2 diabetes  (67). Further, the interactions between these enzymes are 

important for maintaining synaptic plasticity via selective degradation of abnormal or misfolded 

proteins (68).  

Shared processes & pathways of differentially methylated genes based on gene-set 

enrichment 

Three genes – F2RL1, ALOX12 and UBE2L3 were identified in both KEGG and IPA’s knowledge 

base highlighting their role in inflammation, neuronal cell death and metabolic processes. We also 

conducted GSEA analysis using empirical Bayes approach which clusters differentially 

methylated probes into genes followed by overall ranking of genes based on differential 

methylation and testing for enrichment of gene-sets. Several experimentally-derived gene-sets 
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stored in MSigDB were found to be enriched in our genome-wide methylation analysis, with some 

of the top most gene-sets being: ‘BENPORATH_ES_WITH_H3K27ME3’ (AUC – 60%; P-value : 

5.1e-27), ‘MEISSNER_BRAIN_HCP_WITH_H3K4ME3_AND_H3K27ME3’ (AUC – 59.3%; P-

value: 7.5e-21), and ‘BENPORATH_PRC2_TARGETS’ (AUC – 61%; P-value : 2.76e-19) . In 

order to understand their relevance to biological pathways, we tested gene members of these gene-

sets for enriched pathways from the Panther database (www.pantherdb.org) (Supplementary file 

5). We found four pathways to be common in all three gene-sets – (a) Alzheimer disease-presenilin 

pathway, (b) Ionotropic glutamate receptor pathway, (c) Heterotrimeric G-protein signaling 

pathway, and (d) Cadherin signaling pathway. (Figure 6) 

Conclusion: Reported genes & pathways converge between cognitive dysfunction, metabolic 

burden and inflammation 

Our results point to modification of genes involved in metabolic, neuroinflammatory and AD-

precursor phenotypes (Figure 6).  The data presented here links peripheral metabolic dysregulation 

with cognitive decline. Metabolic syndrome which includes obesity, diabetes and hypertension has 

been known to provoke poor cerebral blood flow, resulting in vasoconstriction and endothelial 

dysregulation; this leads to  production of reactive oxygen species and inflammation (69). Insulin 

receptors are expressed in multiple brain regions, including the olfactory bulb, hypothalamus and 

hippocampus, and are sensitive to changes in the peripheral system due to metabolic conditions 

(70). Insulin resistance alters cAMP/PKA signaling pathways which not only induces 

inflammation from oxidative stress, but also affects synaptic plasticity of hippocampal neurons 

(71).  In the presence of hypertension, homeostatic dysfunction results in microglia - induced 

inflammation in the brain (72). Metabolic syndrome – obesity, induces low-grade systemic 

inflammation which is detected by brain (73) causing disruption of the synaptic transporter activity 

http://www.pantherdb.org/
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(74, 75). While our findings do not incriminate any single pathway for pathogenicity of cognitive 

dysfunction, they highlight genes and pathways involved in cross-talk between peripheral 

metabolic burden and neuroinflammation. We postulate that insults sustained from metabolic 

dysregulation results in low grade inflammation [reported earlier by our group] (10) affecting 

synaptic vesicle activity which ensues cognitive deficits in Mexican Americans. Therefore, it is 

possible that cognitive decline in Mexican-Americans is a manifestation of genetic/lifestyle factors 

of metabolic stress as seen here in their epigenetic profile. 

There are several limitations to our study. First, our study is limited in sample size; therefore, the 

genes reported here should be considered as preliminary findings and should be replicated in larger 

cohorts. We have also tested cognitive-associated methylation changes in peripheral blood, which 

may not be parallel to brain-specific methylation alterations. Epigenetic variations in conjunction 

with RNA expression in larger cohorts of Hispanic individuals will provide much needed 

characterization of the pathogenesis of cognitive impairment.  

Despite the limitations, we have strengthened our study design by implementing a very rigorous 

and conservative QC approach, correcting for multi-level batch effects, adjusting for cell 

composition and incorporating balanced demographic characteristics, representative of the 

Mexican American population. Our study has found several novel epigenetic markers associated 

with metabolic burden and cognitive dysfunction which contribute towards addressing the critical 

health disparity faced by Mexican Americans.  

Methods & Materials 

Samples and cohort design 
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This study was approved under the North Texas Regional IRB #2012–083. All participants provide 

written consent. Peripheral blood buffy coat of fasted-state Mexican American participants (n=90) 

enrolled in the Health & Aging Brains of Latino Elders (HABLE) study was obtained.  

Each participant underwent an interview (i.e. medical history, medications, health behaviors), 

neuropsychological testing, blood draw, and medical examination. Global cognition was assessed 

via the Mini Mental State Examination (MMSE) (76) and disease severity rated according to the 

Clinical Dementia Rating scale (77) sum of boxes scores (CDR SB) (78, 79). An informant 

interview was conducted for each research participant to obtain information regarding his/her 

activities of daily living (basic and instrumental). All information was presented at a weekly 

consensus review conference with diagnoses of Alzheimer’s disease (80) and MCI (81) assigned 

according to published criteria. Cognitively normal control (NC) participants performed within 

normal limits on psychometric assessment (82).  

Phenotypic differences between the two groups (Normal Controls & Mild Cognitive Impairment) 

were tested for two-tailed significance using independent t-test for continuous variables, and chi-

square test for categorical variables (Table 1). Participants were matched on sex and age. 

Peripheral blood samples were handled in accordance to the UNTHSC Institutional Biosafety 

Committee approved protocol IBC-2018-0078. Forty-five individuals (both male and female) 

diagnosed with mild cognitive impairment (based on a battery of neuropsychological tests) were 

selected. Forty-five age and sex-matched individuals were then chosen to complete the study 

population. Metabolic risk score (0-5) was calculated for each individual following adapted IDF 

guidelines based on obesity, elevated triglycerides, reduced HDL cholesterol, hypertension 

diagnosis and high fasting glucose (83). Waist circumference was used to diagnose obesity, with 
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35.4 inches being the cut-off value for Mexican American adults (84). Missing data was handled 

according to Masconi et al., 2015 (85). 

Our study cohort is representative of the Mexican American population, which often a) is 

metabolically burdened (as reflected by high metabolic risk scores), b) has fewer years of 

education (on average) and, c) has low frequency of the APOE e4 allele. The most prevalent APOE 

status within our cohort was 3/3, with a single individual being 4/4; this was optimal for our study 

as the frequency and risk effect of the APOE e4 allele is often less in Hispanic populations (8).  

 

Table 1. Demographic characteristics for the sample cohort. 

 
Normal 

Controls (NC) 

N= 45 

Mild Cognitive 

Impairment 

(MCI) 

N=45 

P-value 

Mean  SD    

Age  63.49  7.20 63.53  7.16 0.9790 

MMSE 26.16  2.94 23.87  3.16 0.0006 

Education 8.60  4.35 6.11  3.79 0.0048 

Metabolic 

Score (IDF) 
2.87  1.41 3.36  1.13 0.0723 

N (%) 
   

Sex 

Female 32 (71%) 31(69%) 

1.00 Male 13 (29%) 14 (31%) 

APOE Status 

 3/3 30 (67%) 29 (64%) 

0.488 

3/4 12 (27%) 9 (20%) 

2/3 3 (7%) 6 (13%) 

4/4 0 (0%) 1 (2%)  
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DNA extraction and quantification 

DNA was extracted from peripheral blood buffy coat using the MagBind® Blood and Tissue DNA 

HDQ Kit (Omega Bio-tek, Norcross, GA) on a Microlab STAR liquid handling system. DNA 

concentrations were quantified using Qubit® dsDNA BR Assay Kits with the Qubit® Fluorometer 

(Thermo Fisher Scientific Inc.) and the NanoDrop® spectrophotometer (Thermo Fisher Scientific 

Inc., Waltham, MA). For downstream applications, DNA extracts with concentrations 10 ng/L 

were considered sufficient due to the manufacturer’s requirement of 200 ng of input DNA for both 

methylation and genotyping arrays. Low yield DNA extracts were concentrated using Microcon® 

DNA Fast Flow Filters (Sigma Aldrich, St. Louis, MO). Any extracts that remained <10 ng/mL 

following concentration, were excluded from downstream processing. 

 SNP genotyping 

All 90 subjects were genotyped on the Infinium HTS Global Screening Array v.2 (Illumina, San 

Diego, CA) following manufacturer’s instructions. Intensity data files were imported into Genome 

Studio®. All SNPs with call rates <0.99 were excluded from analysis. Remaining SNPs were QC’d 

in PLINK; SNPs with >5% missingness were removed (--geno) (86). The QC’d SNP dataset was 

used to identify presence of population substructure using ADMIXTURE (87). The cross-

validation error rate was lowest for k of 1, concluding that the population did not have any sub-

clusters (Supplementary Figure 1). 

DNA methylation array assay 

DNA methylation levels were analyzed for all 90 participants. DNA was bisulfite converted using 

the EZ DNA MethylationTM kit (Zymo Research, Irvine, CA). Bisulfite converted DNA was then 

processed on the Infinium HD MethylationEPIC Array (Illumina) following manufacturer’s 
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guidelines. Intensity data (IDAT) files were imported into Genome Studio® and technical 

replicates were compared to determine consistency in array processing. Technical replicates all 

displayed R2 values greater than the 0.98 suggested threshold (Illumina).  

Data analysis and visualization 

Raw IDAT files were processed using the ‘ChAMP’ Bioconductor package (88) in R, which 

converts fluorescent intensities into beta values (ratio of methylated:unmethylated) ranging from 

0 to 1 for each individual probe. Data was normalized using the BMIQ method, followed by 

inspection for batch effects using Singular Value Decomposition (SVD). Both the lowest (i.e. 

sample plate) and highest (i.e. array) stages in the experimental workflow were corrected for using 

ComBat. Due to the consistent placement of technical replicates on the beadchips, one of each 

replicate pair was removed from analysis allowing for further correction of variance at the array 

level. The dataset for analysis included 738,919 CpG sites from 90 individuals. An association test 

to identify significantly differentially methylated probes was performed using M-values 

(transformed beta-values) and adjusted for variation in proportions of the following cell types – 

lymphocytes, monocytes and neutrophils, using limma (89). Differentially methylated probes were 

considered significant based on multiple testing corrected p-value < 0.05. Differentially 

methylated regions were analyzed using DMRcate(90). Functionally differentially methylated 

modules were also analyzed using normalized, batch-corrected beta-values (91) in ChAMP.  

The significant genes identified were analyzed for gene ontology enrichment using empirical bayes 

GSEA (19) and the ShinyGO (92) tool set for biological processes, cellular components and 

molecular functions at an FDR < 0.05. Visualizations were created using Gviz (93) and 

ggplot2(94) in R. Candidate genes were analyzed for pathway enrichment, and subsequent figure 
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was generated through the use of IPA (QIAGEN Inc., https://www.qiagenbio-

informatics.com/products/ingenuity-pathway-analysis software). 
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Figure1. (A) Manhattan plot highlighting differentially methylated probes. The annotated genes using UCSC RefSeq are shown above the CpG ids. 

(B) Scatter plots. The distribution of beta intensity for each of the FDR significant cpg sites is shown between the NC (normal control) and MCI (mild 

cognitive impairment).  
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Figure 2. (A) Differentially Methylated Regions. An ideogram representation of the location of differentially methylated regions 

and corresponding genes, number of CpGs in the regions and FDR p-value of the region. (B) Classification of CpGs features. An 

overview of all the CpGs sites in the identified regions based on their feature type. (C) Dendrogram Plot. Beta values for the probes 

within the differentially methylated regions for all samples 
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Figure 324. Differential Methylated Gene Modules. The differentially methylated genes within the set are shown in yellow/blue on the legend; yellow 

signifies hypomethylated and blue signifies hypermethylated. Each of the module was found to be significant based on its overall p<0.05. Individual 

significance of each gene (p<0.05) in the module is highlighted with blue asterisk.  
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Figure 4.  GO Enrichment results for Biological Processes. The top panel shows the dendrogram of functionally similar GO processes clustered together with 

their corresponding p-values. Bottom panel groups all identified genes in order of their highest level of process. The y-axis shows names of the processes, and 

x-axis shows number of genes, and each observation is labelled with the number of genes present in the respective gene category. 
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Figure 5. Pathway Enrichment. Genes that were identified for neuronal cell death pathway are highlighted in pink and genes identified for metabolic 

dysfunction/insulin resistance are highlighted in blue. 
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Figure 6. Visual Summary of identified genes and pathways. Visual representation of methodology and an overview of findings converging on 

phenotypes and pathways. 
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genes, and each observation is labelled with the number of genes present in the respective 

gene category. 

 Figure 5. Pathway Enrichment. Genes that were identified for neuronal cell death 

pathway are highlighted in pink and genes identified for metabolic dysfunction/insulin 

resistance are highlighted in blue. 

 Figure 6. Visual Summary of identified genes and pathways. Visual representation of 

methodology and an overview of findings converging on phenotypes, and pathways. 

 

Supplementary Files 

 Supplementary Figure 1 

o K (x-axis) is the standard error of the cross-validation error (y-axis) estimate. The 

lowest error is for K=1, indicating there is 1 population in the study. The values 

were calculated using SNPs in ADMIXTURE software (see methods for details) 
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 Supplementary Figure 2 

o The figure shows the number of publications from 1999-2019 for the PubMed 

query (last searched on June 18, 2019) mentioned in the subtitle. The y-axis 

shows shortened journal name and x-axis shows the year, the histogram overlaid 

on the axis shows the frequency of publications for that corresponding year.  

 

 Supplementary file 1 

o Table 1. Differentially Methylated Probes between normal controls and mild 

cognitive impairment. 

 Supplementary file 2 

o Table 1. Differentially Methylated Regions. The table shows the genomic 

coordinates of the region, CpG sites within the region and FDR p-value for the 

region. 

o Table 2. Details of individual probes reported within the differentially methylated 

regions as reported by DMRcate package. 

o Table 3. Annotation of the probes identified within differentially methylated 

regions. 

 Supplementary file 3 

o Table 1. Differentially methylated modules/gene-sets and their corresponding p-

values (P), number of genes (Size), and name of the genes in the respective sets 

(Genes). 

o Table 2. Differentially methylated genes in RIN3 module/gene-set.  List of all 

genes in the gene-set with their methylation values (stat(DNAm)) and 

corresponding p-values (P(DNAm)). Highlighted observations are significant 

genes based on p<0.05. 

o Table 3. Differentially methylated genes in SPEG module/gene-set.  List of all 

genes in the gene-set with their methylation values (stat(DNAm)) and 

corresponding p-values (P(DNAm)). Highlighted observations are significant 

genes based on p<0.05. 

o Table 4. Differentially methylated genes in CTSG module/gene-set.  List of all 

genes in the gene-set with their methylation values (stat(DNAm)) and 

corresponding p-values (P(DNAm)). Highlighted observations are significant 

genes based on p<0.05. 

o Table 5. Differentially methylated genes in UBE2L3 module/gene-set.  List of all 

genes in the gene-set with their methylation values (stat(DNAm)) and 

corresponding p-values (P(DNAm)). Highlighted observations are significant 

genes based on p<0.05. 

 Supplementary file 4 

o Table1. Gene list used as input for gene set enrichment for gene ontology in 

ShinyGO tool. 

o Table 2. Result of enriched gene ontology biological processes. 

o Table 3. Result of input genes grouped by highest level of GO categories. Name 

of the process (High level GO category); number of genes in the category (N) and 

names of the gene members in the category (Genes). 

o Table 4. Details of enriched KEGG pathways. 
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o Table 5. Details of enriched pathways identified using IPA's (Ingenuity Pathway 

Analysis) knowledge base 

 Supplementary file 5 

o Table 1. GSEA using empirical bayes. The table is ranked by P-value. 

Highlighted gene set names were explored for enriched pathways to identify 

biological meaning of identified gene sets. (see text for details; Figure 6) 

o Table 2. GSEA using empirical bayes. The table is ranked by AUC. Highlighted 

gene set names were explored for gene members from the MSigDB database and 

reported in Figure 6. 

o Table 3. The table shows the gene members of 

'BENPORATH_ES_WITH_H3K27ME3', and enriched pathways from Panther's 

database (www.pantherdb.org) based on the genes in the set. 

o Table 4. The table shows the gene members of 

'MEISSNER_BRAIN_HCP_WITH_H3K4ME3', and enriched pathways from 

Panther's database (www.pantherdb.org) based on the genes in the set. 

o Table 5. The table shows the gene members of 

'BENPORATH_PRC2_TARGETS', and enriched pathways from Panther's 

database (www.pantherdb.org) based on the genes in the set. 

o Table 6. The table shows the gene members of 

'REGULATION_OF_PROTEIN_POLYMERIZATION' from MSigDb. 

o Table 7. The table shows the gene members of 

'REGULATION_OF_RHO_GTPASE_ACTIVITY' from MSigDb. 

o Table 8. The table shows the gene members of 

'SHARMA_PILOCYTIC_ASTROCYTOMA_LOCATION_DN' from MSigDb. 

 

 

ABBREVIATIONS 

AD

 

ALZHEIMER’S DISEASE 

MCI

 

MILD COGNITIVE IMPAIRMENT 
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NC

 

NORMAL CONTROLS 

DMP

 

DIFFERENTIALLY METHYLATED PROBES 

DMR

 

DIFFERENTIALLY METHYLATED REGIONS 

IPA

 

INGENUITY PATHWAY ANALYSIS® 

AUC

 

AREA UNDER THE CURVE 

SNP

 

SINGLE NUCLEOTIDE POLYMORPHISMS 

GSEA

 

GENE SET ENRICHMENT ANALYSIS 
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HABLE Health & Aging Brains of Latino Elders 

MMSE

 

Mini Mental State Examination 

IDF International Diabetes Federation 
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