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Abstract

Mitochondrial dysfunction has been implicated in pregnancy-induced hypertension (PIH). The role of mitochondrial gene dysre-
gulation in PIH, and consequences for maternal-fetal interactions, remain elusive. Here, we investigated mitochondrial gene
expression and dysregulation in maternal and placental tissues from pregnancies with and without PIH; further, we measured cir-
culating mitochondrial DNA (mtDNA) mutational load, an index of mtDNA integrity. Differential gene expression analysis followed
by Time Course Gene Set Analysis (TcGSA) was conducted on publicly available high throughput sequencing transcriptomic
data sets. Mutational load analysis was carried out on peripheral mononuclear blood cells from healthy pregnant individuals and
individuals with preeclampsia. Thirty mitochondrial differentially expressed genes (mtDEGs) were detected in the maternal cell-
free circulating transcriptome, whereas nine were detected in placental transcriptome from pregnancies with PIH. In PIH preg-
nancies, maternal mitochondrial dysregulation was associated with pathways involved in inflammation, cell death/survival, and
placental development, whereas fetal mitochondrial dysregulation was associated with increased production of extracellular
vesicles (EVs) at term. Mothers with preeclampsia did not exhibit a significantly different degree of mtDNA mutational load. Our
findings support the involvement of maternal mitochondrial dysregulation in the pathophysiology of PIH and suggest that mito-
chondria may mediate maternal-fetal interactions during healthy pregnancy.

NEW & NOTEWORTHY This study identifies aberrant maternal and fetal expression of mitochondrial genes in pregnancies with
gestational hypertension and preeclampsia. Mitochondrial gene dysregulation may be a common etiological factor contributing
to the development of de novo hypertension in pregnancy-associated hypertensive disorders.

hypertension; mitochondrial DNA; placenta; preeclampsia

INTRODUCTION

Hypertensive disorders of pregnancy, including gestational
hypertension and acute hypertensive syndromes such as pree-
clampsia, are one of the leading causes of maternal and fetal
mortality and morbidity worldwide (1, 2). Gestational hyper-
tension is the presence of de novo hypertension in a previously
normotensive woman, whereas preeclampsia is a heteroge-
nous and complex syndrome diagnosed as new-onset hyper-
tension after 20 wk of gestation with proteinuria and/or end-
organ damage (3). The mechanisms underlying the clinical
features of these pregnancy-induced hypertensive disorders
(PIH) remain unclear, despite intensive research efforts.

There is growing evidence that dysregulated or impaired
mitochondrial function may play a role in PIH. The involve-
ment of mitochondrial dysfunction in preeclampsia was first
reported in 1989, when Torbergsen et al. (4) described a family
with mitochondrial dysregulation coinciding with a high inci-
dence of preeclampsia and eclampsia, which is a severe com-
plication of preeclampsia. Since then, various scientific
reports have provided evidence of impaired mitochondrial
fusion/fission dynamics (5, 6), lower activity of complex II of
the electron transport chain, reduced expression of complexes
I and IV, and mitochondrial swelling and broken cristae in
placentas from pregnancies with preeclampsia compared
with placentas from healthy pregnancies (7). Furthermore, we
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have reported that pregnant patients with preeclampsia have
reduced concentrations of circulating cell-free mitochondrial
DNA (mtDNA) compared with healthy normotensive preg-
nant individuals, with more mtDNA transported in vesicular
structures compared with membrane-free form (8). These
findings may be highly relevant to PIH pathophysiology, as
circulating cell-free mtDNA is often used as an accessible
blood-based surrogate of mitochondrial function, cellular
stress, and systemic inflammation (9–12).

Although the number of studies concerning the involve-
ment of mitochondrial dysfunction in PIH is growing, the role
of mitochondrial gene regulation is still incompletely under-
stood. In addition, maternal- versus fetal-mediated mitochon-
drial contributions to PIH pathophysiology have not been
delineated. Thus, the main objective of this study was to deter-
mine the role of mitochondrial gene dysregulation in pregnan-
cies with de novo hypertension, namely preeclampsia and
gestational hypertension. We used publicly available high-
throughput transcriptomic data sets that had been sequenced
from maternal peripheral blood plasma and placentas from
normotensive pregnancies and PIH cases. These data sets were
chosen because the maternal circulating cell-free transcrip-
tome (13) can provide a systemic view of primarily maternal
mitochondrial processes (with modest placental contributions;
14), whereas the placental transcriptome allows examination
of fetal-specificmitochondria-mediated processes.

Transcriptomic data used here focused specifically on
cases of de novo hypertension (gestational hypertension and
preeclampsia) to gain insight into mitochondrial commonal-
ities related to hypertension (vs. disease progression or se-
verity). We hypothesized that 1) evidence of mitochondrial
dysregulation, indicated by aberrant expression of mito-
chondrial genes, would be present in maternal and fetal tis-
sues from patients with PIH; 2) putative consequences of
mitochondrial dysregulation in PIH, indicated by expression
patterns of genes that are co-dysregulated withmitochondrial
genes, would mirror processes known to be involved in PIH
pathology. We also performed mitochondrial DNA (mtDNA)
mutational load analysis in maternal peripheral blood mono-
nuclear cells (PBMCs) from a separate cohort of patients with
preeclampsia and healthy controls. We hypothesized that the
mitochondrial genome mutational load in PBMCs from preg-
nancies with PIH would be higher compared with normoten-
sive pregnancies.

MATERIALS AND METHODS

Data Set and Subject Characteristics

To assess mitochondrial dysregulation in PIH, we reana-
lyzed publicly available data deposited to NCBI’s Gene
Expression Omnibus (15), a database of preprocessed gene
expression data sets. After examination of >200 entries gen-
erated using the search criteria “preeclampsia,” two high-
throughput sequencing transcriptomic data sets were chosen
based on: 1) being a longitudinal, prospectivematernal study
and a placental study sequenced on comparable platforms,
2) being conducted in humans and not using cell culture, 3)
having an accompanying peer-reviewed publication to vali-
datemethods against, 4) being of sufficient sample size.

Our first transcriptomic data set is from maternal periph-
eral venous blood plasma of nine normotensive pregnancies
and eight cases of PIH [preeclampsia (n = 5); gestational
hypertension (n = 3); GEO accession GSE154377 (16)] were
used to investigate maternal mitochondrial gene expression.
We acknowledge that a small portion of this expression may
be placenta-derived but refer to this as a maternal because we
make the assumption that this is the predominant signal.
Patient-specific data can be found in the original publication
(16). These data were sequenced on the Illumina HiSeq 4000
platform. Data were collected at four time points 1) at the end
of the first trimester (1st trimester, 12–17 wk of gestation), 2) at
the end of the 2nd trimester (2nd trimester, 18–22 wk of gesta-
tion), 3) at the end of the 3rd trimester (3rd trimester, 35–37
wk of gestation), and 4) at delivery (time of collection unspeci-
fied in original publication). The second data set included
data from placental samples collected within 30 min of deliv-
ery from 21 normotensive pregnancies and 20 pregnancies
with preeclampsia [GEO accession GSE114691 (17)]. Placenta
samples were collected from two central and two peripheral
locations, pooled, and sequenced on the Illumina HiSeq 2000
platform. The maternal decidua was removed from all sam-
ples before analysis. Therefore, we refer to these data as data
from fetal samples. Patient-specific data can be found in the
original publication (17). For both studies, detailed descrip-
tions of the informed consent process and diagnosis criteria
of preeclampsia and gestational hypertension can be found in
the original papers (16, 17).

For the mtDNA mutational load analysis, deidentified
subject information, and PBMC samples were acquired from
the Maternal Fetal Tissue Bank (MFTB, IRB No. 200910784)
of the Women’s Health Tissue Repository at the University
of Iowa Hospitals and Clinics. Samples of maternal PBMCs
from 10 pregnancies with preeclampsia and 13 normotensive
pregnancies were analyzed. Samples from cases and healthy
pregnant controls were matched for gestational age at sam-
pling. Characteristics of subjects are listed in Supplemental
Table S1; all Supplemental Tables are available at https://doi.
org/10.6084/m9.figshare.21970694, and sample collection
methods are detailed in Ref. 8.

Detection of Differentially Expressed Mitochondrial
Genes and Interaction Genes

To identify differentially expressed mitochondrial genes
(mtDEGs) present in maternal peripheral blood plasma sam-
ples, differential gene expression analysis was conducted
using the DESeq2 package (18) available for R software (19).
Patient outliers were identified and removed using median
absolute distance of whole gene expression profile. Final
data set is composed of eight normotensive and eight PIH
cases. After outlier removal, contrasts were conducted for
each collection timepoint (e.g., one contrast between normo-
tensive and PIH pregnancies for 1st trimester, one contrast
between normotensive and PIH for 2nd trimester, etc.).

To build DESeq2 contrast models for maternal data,
patient covariates were first investigated for autocorrelation,
which found neonatal birth weight to be correlated with pla-
cental weight, neonatal head circumference, and length
(Supplemental Fig. S1; all Supplemental Figures are available
at https://doi.org/10.6084/m9.figshare.21970706). Maternal
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age and body mass index (BMI) were separately correlated
(Supplemental Fig. S1). Correlated fetoplacental biometrics
(placental weight, infant weight, and infant length) were col-
lapsed into a summary statistic (utero summary statistic) by
conducting principal component analysis (PCA) and taking
the eigenvector associated for PC1 (>60% variance explained,
data not shown) for each patient. This process was also carried
out to collapse maternal BMI and maternal age into an addi-
tional summary statistic (Age-BMI summary statistic) for each
patient (>60% variance explained, data not shown). Patient
covariates significantly stratifying gene expression were then
determined by conducting PCA on the raw transcript counts
for each timepoint, followed by general linear model testing
for covariate effects (main effects and interactive effects with
PIH diagnosis) on PC1 loading values. Covariates meeting P
values � 0.1 were included in DESEq2 contrast models to
allow for greater sensitivity in DESeq2 models (Supplemental
Table S2). After conducting each contrast, DEGs were consid-
ered genesmeeting a P-adjusted value� 0.05 and an absolute
log2 fold change � 0.5 (Supplemental File S1; see https://doi.
org/10.6084/m9.figshare.21970595).

An in-house DESeq analysis could not be conducted for
fetal samples as individual patient and neonatal character-
istics did not accompany sequencing data in the original
publication. We, therefore, relied on the DEG list provided
by the authors [Supplemental material of original publica-
tion (17)] to identify fetal DEGs. In fetal data, only adjusted
P values of significance and direction of effect were pro-
vided. Therefore, to understand fetal mtDEG dynamics, the
adjusted P values for DEG list genes identified as mtDEGs
were converted to Z-scores using one-tailed standard P
value distributions. We reported the lower tail (negative val-
ues) for downregulated gene expression and the upper tail
(positive values) for upregulated gene expression. Standard
error was not provided by authors.

To identify mtDEGs, DEGs in both maternal and fetal data
werematched to theMitoCarta 3.0 database (20), a database of
all genes encoded by both the mitochondrial and nuclear ge-
nome whose protein products have verified residence within
the mitochondria organelle (Supplemental Table S3). After
mtDEGs were identified, respective mtDEG interaction genes
expressed in both maternal and fetal data were compiled.
mtDEGs interaction genes were defined as genes meeting an
interaction confidence of “medium” or better (interaction
score � 0.400) using String databases (21). For maternal longi-
tudinal analyses throughout pregnancy (1st trimester, 2nd tri-
mester, and 3rd trimester), all interaction genes expressed were
used to compile relevant files. For both maternal and fetal
functional enrichment analyses at delivery, respective mtDEG
interaction genes were identified in DEGs detected at delivery
(details in Functional Enrichment Analyses). Supplemental Fig.
S2 (available at https://doi.org/10.6084/m9.figshare.21970706)
provides a diagrammatic representation of the analytical pro-
cess just described.

Maternal Longitudinal Analysis of Mitochondrial Gene
Expression and mtDEG Interaction Gene Expression
during Gestation

To determine expression patterns of maternal mtDEGs and
respective interaction genes throughout pregnancy, Time
Course Gene Set Analysis (TcGSA) was conducted using the

TcGSA package (package version 0.12.6) available for R (22).
Default settings for TcGSAmodels were used. Delivery collec-
tion data were excluded from this analysis due to the unique
physiology of labor and delivery.

Raw transcript counts were total count normalized (23) by
counts per million. A custom gene matrix transposed (GMT)
file (Supplemental File S2; see https://doi.org/10.6084/m9.
figshare.21970655) was made using the interaction genes for
each mtDEG identified during gestation, where gene sets
were composed of the interaction genes identified using
String databases for each respective mtDEG (described ear-
lier). A null TcGSA model to test if significant gene sets
detected were artifacts of gene set size was conducted by
running a second TcGSA model with a separate, size-
matched GMT file composed of nonmitochondrial and non-
differentially expressed genes. Significant gene sets were
considered those meeting an adjusted P value � 0.05 after
TcGSA. Significant gene sets were then used in functional
enrichment analyses (details in Functional Enrichment
Analyses). Supplemental Fig. S3 provides a diagrammatic
representation of the maternal longitudinal analysis just
described.

Functional Enrichment Analyses

Functional enrichments for mtDEG interaction genes
present in maternal and fetal tissues were conducted using
Gene Ontology enrichments [GO enrichment analysis (24)]
and/or Ingenuity Pathway Analysis (IPA, QIAGEN Inc.,
https://digitalinsights.qiagen.com/IPA). For maternal longi-
tudinal analysis during pregnancy, GO enrichment analyses
were first conducted on individual significant gene sets
detected by TcGSA using the Fisher’s exact test on the Gene
Ontology web server and false discovery rate correction. This
preliminary probe was done before IPA because 1) mtDEG
interaction genes primarily involve mitochondrial organelle
homeostasis and metabolic homeostasis, which obscured
less prominent signals of biological and pathological impor-
tance; and 2) IPA could only be carried out by combining gene
sets due to small sizes of individual gene sets. Full GO term lists
for each gene set can be found in Supplemental File S2. Two of
the five significant gene sets detected by TcGSA, MRPL38 and
FKBP8 gene sets, included enrichments for terms involved in
immune system processes, developmental processes, and apo-
ptotic processes (among others; Supplemental File S3; see
https://doi.org/10.6084/m9.figshare.21970664) and were there-
fore combined for IPA at each gestational observation (1st tri-
mester, 2nd trimester, and 3rd trimester) to determine
pathway enrichment changes through time. IPA was con-
ducted using the Ingenuity Knowledge Base genes only
reference set and specifying Human as the sample species.
All other parameters followed default settings (refer to
Supplemental Fig. S3).

Due to the limited number of interaction genes present
during delivery for both maternal and fetal tissues, IPA was
not feasible. Therefore, GO enrichments were used to carry
out functional enrichment analyses of mtDEG interaction
genes in maternal and fetal tissues at delivery. GO enrich-
ment analyses for biological processes and cellular compo-
nents were conducted onmtDEG interaction genes (separate
analyses for maternal and fetal data) using default settings
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on the Gene Ontology web server as described earlier. Full
terms lists can be found in Supplemental File S3.

For plotting purposes, GO terms were matched to individ-
ual mtDEG interaction genes, and corresponding P-adjusted
values, which are in reference to the normotensive subjects
per data set at delivery, for GO term enrichments were con-
verted to Z-scores as described earlier for individual mtDEG
interaction genes and using the log-fold change to inform the
direction of the Z-score (Supplemental File S4; see https://doi.
org/10.6084/m9.figshare.21970667). Terms were then con-
densed using the “reduce_overlap” function in the GO Plot
package (25) available for R, specifying a 99% overlap as the
criteria for term collapsing. Supplemental Fig. S4 provides a
diagrammatic representation of maternal and fetal functional
enrichment analyses at delivery as just described.

Mutational Load Analysis

Mutational load analysis was carried out on PBMCs using
whole mitochondrial genome amplification followed by deep
Illumina-based next generation sequencing. Whole mtDNA
was amplified via REPLI-g Human Mitochondrial DNA kit
(Qiagen, Venlo, Netherlands) following the manufacturer pro-
tocol. The method of amplification uses phi29 polymerase-
based rolling circle and multiple displacement amplification.
This method was selected to effectively enrich for the mito-
chondrial genome as opposed to nuclear DNA, as a means for
sufficient coverage for subsequent whole genome sequencing
targeting mtDNA. The sequencing library for each sample was
prepared via the Nextera XT DNA Library Preparation kit
(Illumina, San Diego, CA) following the manufacturer protocol
formultiplexing. The sequencing library was sequenced on the
NextSeq 550 Sequencer (Illumina) platform. Raw sequenced
reads were aligned to the human mitochondrial reference ge-
nome hg38 via BWA-MEM (v0.7.17) using the default parame-
ter for mapping to produce corresponding sequence alignment
and map (SAM) files (26). The generated SAM files were proc-
essed with SAMtools (v.1.9) to produce binary alignment and
map (BAM) files that were sorted, indexed, and statistically
assessed by coordinate (27). Reads within the generated files
were assigned to a single new read-group through Picard via
the AddOrReplaceReadGroups tool (http://broadinstitute.
github.io/picard). The resultant single read-group BAM files
were further processed to remove duplicate reads using the
GATK4 Spark application of the Picard tool MarkDuplicates
(28). SAMtools (v.1.9) was used to index the reads followed by
somatic variant calling via GATK4 Mutect2 utilizing the mito-
chondrial mode and excluding read orientation base qualities
below 30 (28, 29). Variants confirmed in both read directions
were tallied. The data conformed to normality and equal var-
iance (Supplemental Fig. S5), and an unpaired t-test (one-
sided) was used to test the hypothesis that mothers with pree-
clampsia have elevated mtDNA mutational loads. T-test and
graphs were generated using Prism v.9.1.1. Because the
American Statistical Association discourages sole reliance on
“bright line” rules (e.g., P< 0.05) in the interpretation of statis-
tical tests, and instead recommends P-value interpretation in
the context of effect size estimations (30) [defined as the dis-
crepancy between the null hypothesis and the alternate hy-
pothesis being tested (31)], we additionally calculated the
Cohen’s d estimation for effect size (31–33) using the “cohen.d”

function in the EffSize package (34) available for R. A Cohen’s
dof �0.2 is considered a small effect size, whereas medium
effect sizes are�0.5, and large-effect sizes are�0.8 (33, 34).

RESULTS

Mitochondrial Gene Expression through Pregnancy and
at Delivery

Thirty differentially expressed mtDEGs were detected in
the maternal cell-free circulating transcriptome (all gesta-
tional ages combined; Fig. 1A), and nine were detected in
placental transcriptome (Fig. 1B). Only two mtDEGs were
shared between maternal gestational ages: MRPL38 (1st tri-
mester and at delivery) and BCL2L1 (3rd trimester and at
delivery).

Maternal Mitochondrial Interaction Gene Expression
through Pregnancy

Of the 14 maternal mtDEGs specific to gestation, five dis-
played changes in the expression of genes within their interac-
tion networks (hereon referred to as mitochondrial interaction
genes) that were differentially affected by gestational age and
condition (Fig. 2A; Supplemental Table S4). Of these, all but 1
(SLC25A41 interaction genes) displayed decreased expression
through gestation in mothers with PIH. All five significant
gene sets were primarily enriched for mitochondrial and met-
abolic homeostatic processes [Gene Ontology enrichment (24);
Supplemental File S3].

Pathway analysis (35; Ingenuity Pathway Analysis, QIAGEN
Inc., https://digitalinsights.qiagen.com/IPA) ofMRPL38 and
FKBP8 interaction genes in hypertensivemothers found a sig-
nificant portion of pathways previously implicated in PIH
pathophysiology (�69.5% of 59 total pathways, Supplemental
Table S5; Fig. 2B). Pathways hierarchically clustered into two
main branches: a smaller group overrepresented by cell death/
survival pathway (�45% of 11 total pathways; Supplemental
Table S5) displaying downregulation in early pregnancy that
transitioned to upregulation in late pregnancy; and a larger
group overrepresented by immune system pathways (inflam-
mation in particular;�35% of 48 total pathways; Supplemental
Table S5) displaying upregulation in early pregnancy that was
either attenuated or transitioned to downregulation in late
pregnancy. Across both branches, a number of differentially
expressed pathways were previously implicated in placental
angiogenesis and/or vasculogenesis (�25% of 107 total path-
ways, Supplemental Table S5; Fig. 2B), with several others hav-
ing also been implicated in angiogenesis generally (data not
shown).

Mitochondrial Interaction Genes at Delivery

Eighteen maternal mtDEGs were detected at delivery, but
only 37 mitochondrial interaction genes were simultaneously
differentially expressed (Supplemental File S5 available at
https://doi.org/10.6084/m9.figshare.21970670). Likewise, the
9 mtDEGs detected in placentas were associated with only 13
differentially expressed mitochondrial interaction genes
(Supplemental File S5). Maternal mitochondrial interaction
genes were enriched [Gene Ontology enrichment (24)] for �9
main biological processes in hypertensive mothers (Fig. 3A;
Supplemental File S5) but lacked a unifying theme. Fetal
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mitochondrial interaction genes in hypertensive pregnancies
were only enriched for metabolic biological processes (Fig.
3A; Supplemental File S5).

Fetal mitochondrial interaction genes were enriched for 21
cellular components that were almost exclusively indicative
of cellular secretion and extracellular vesicle (EV) release
(Fig. 3B; Supplemental File S5). Conversely, cellular compo-
nents differentially enriched among mitochondrial interac-
tion genes in hypertensive mothers also lacked a unifying
theme and shared only a single term (vesicles) with fetal
enrichments (Fig. 3B; Supplemental File S5).

Maternal Mitochondrial GenomeMutational Load

Maternal mitochondrial genome mutational loads in
mothers with preeclampsia trended toward greater abun-
dance but did not pass statistical significance (P value =
0.08, unpaired t-test; Cohen’s d = 0.06; Fig. 4).

DISCUSSION

Our main findings show 1) differential expression of mito-
chondrial genes (mtDEGs) in maternal and fetal tissues from
PIH compared with normotensive pregnancies; 2) no
detected mtDEGs were shared between maternal data sets
and fetal data sets, and all detected mtDEGs were nuclear
and not mitochondria-encoded; 3) in PIH, maternal mito-
chondrial dysregulation was associated with pathways
involved in inflammation, cell death/survival, and placental
development, whereas fetal mitochondrial dysregulation
was associated with increased EV production at term.

Differential expression of mitochondrial genes (mtDEGs),
which alludes to dysregulation of mitochondria organellar

function (36, 37), was present in PIH maternal (30 mtDEGs)
and fetal (9 mtDEGs) tissues. No detected mtDEGs were
shared betweenmaternal and fetal data sets, and all detected
maternal and fetal mtDEGs were nuclear-encoded. This may
be explained by the semiautonomous nature of the mito-
chondria organelle. The number of mitochondria-encoded
genes are limited [Complex I/III/IV/V subunits and rRNAs/
tRNAs for mitochondrial translation (38–40)] and are less
regulated than nuclear-encoded mitochondrial genes (38,
41, 42). Mitochondrial fidelity is also largely driven by nu-
clear-encoded mitochondrial genes [e.g., master regulators
for mitochondrial biogenesis (39) and dynamics (39, 40)].
Nuclear-encoded mitochondrial genes are implicated in
multiple disease pathologies (43–45). Previous work has also
demonstrated skeletal muscle (46) defects and cardiac mus-
cle (47) defects in mouse knockouts of the nuclear-encoded
mitochondrial gene Tfam. This finding implicates nuclear
processing of mitochondrial components as an important
factor in PIH pathophysiology and may be an additional link
between preeclampsia and cardiovascular disease.

The presence of mtDEGs (30 maternal, 9 fetal) from differ-
ent PIH tissues originating from two independent studies
suggests mitochondrial dysregulation is a widespread phe-
nomenon in pregnancies with new-onset hypertension. In
addition, processes carried out by mtDEG interaction genes
detected in the maternal circulating cell-free transcriptome
through gestation were primarily involved in mitochondrial
function and homeostatic pathways. Because the maternal
circulating cell-free transcriptome describes RNA primarily
bound in EVs (13), and because EV cargo reflect the state of
originating cells (48, 49), the prioritization of mitochondrial
function and homeostasis also suggests systemic maternal

Figure 1. Maternal and fetal mtDEGs
detected. A: maternal mtDEGs in blood
plasma throughout gestation and at
delivery (no mtDEGs were detected in
2nd trimester). B: fetal mtDEGs in pla-
centa at delivery; P-adjusted values of
significance and expression directions pro-
vided in the original publication were con-
verted to z-scores; error bars not present
because standard error was not reported
in original publication (17).
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mitochondrial dysregulation in PIH. Identifying transcript
tissue of origin or specific biological process was beyond
the scope of this study, but prior work shows significant
contributions to the circulating cell-free transcriptome
from leukocytes (48) and the placenta during pregnancy
(50), potentially via activation of apoptosis- or necrosis-
related mechanisms (51).

Processes associated with five mtDEGs (MRPL38, FKBP8,
COX7B2, SLC25A41, and NDUFB1) in the maternal cell-free
circulating transcriptome were differentially affected by ges-
tational age and PIH. Special attention was given to differen-
tially regulated pathways associated withMRPL38 and FKBP8
interaction genes because these had additional functional
enrichments beyond mitochondrial function and homeosta-
sis. Many of these pathways (69.5%) have been implicated in
PIH. The broad pattern of differentially regulated pathways
carried out by MRPL38 and FKBP8 interaction genes showed
cell death/survival pathways as downregulated in early preg-
nancy with a transition to upregulation in late pregnancy,
and immune system/inflammatory pathways as upregu-
lated in early pregnancy with either attenuation in late
pregnancy or a transition to downregulation. This oppos-
ing pattern may be a mitigation response to overactivation
of inflammatory processes in early gestation. Although
very early pregnancy is normally an inflammatory state as the
allogenic placenta becomes established within the uterus (52),
immunologic imbalance favoring excess inflammation during
this time is often associated with pathologic states such as
preeclampsia (53).

Several MRPL38 and FKBP8 interaction gene pathways
participate in vascularization of the placenta and act on the
vascular endothelium independent of pregnancy (e.g., EIF2
signaling, Sirtuin signaling, VEGF signaling, and eNOS sig-
naling). Differential regulation of these pathways respective
to normotensive pregnancies supports the angiogenic imbal-
ance hypothesis (54), where dysregulated angiogenesis plays
a major pathogenic role in PIH. It additionally suggests mito-
chondrial function and/or efficiency is a mediating factor in
angiogenic imbalance. Peroxisome proliferator-activated re-
ceptor (PPAR) signaling was also differentially regulated in
PIH pregnancies compared with normotensive pregnancies.
The PPAR protein family, most notably PPARc, are vital for
placental development in normal pregnancy. In humans,
PPARc is highly expressed in trophoblasts and is crucial for
both trophoblast differentiation and normal development of
the placental vasculature (55). The transition to upregulated
PPAR signaling in later gestation in PIH cases observed here
may reflect pathway cross talk or compensatory processes
that ensure offspring survival, as PPARc is expected to be
consistently lower in serum frommothers with preeclampsia
(56, 57).

Limited mtDEG interaction genes were differentially
expressed at delivery in both the maternal and fetal data
sets. This suggests that mitochondria-mediated biological
processes at delivery are not associated with PIH pathophysi-
ology, or that mitochondria-mediated processes associated
with PIH are alleviated at delivery. Functional enrichment of
mtDEG interaction genes at delivery showed a single biologi-
cal process term (vesicles) was shared between maternal and
fetal data sets. Although this could be an artifact of sample
tissue origin, the preparation for labor and delivery at the

Figure 2. Maternal mitochondrial interaction gene expression through
gestation. A: mitochondrial interaction gene sets significantly affected by
time and gestational age; subscript for COX7B2 indicate two separate but
significant gene expression trends were detected. B: hierarchical cluster-
ing of differentially regulated pathways in MRPL38 and FKBP8 interaction
genes; teal circles represent groupings of cell death/survival pathways
and immune system pathways.
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end of pregnancy may also drive the different processes
observed here.

Fetal mtDEG interaction genes displayed a prominent sig-
nal for release of EVs in PIH. As placenta-derived EVs are
more abundant in pregnancies with preeclampsia (58), this
finding suggests altered placental mitochondrial function
may in turn alter cell-cell communication, possibly via deliv-
ery of placental factors into maternal circulation that can
affect maternal physiology. Our previous work demonstrated
that circulating cell-free mtDNA in late pregnancy primarily
exist in a membrane-bound state (8). Others have further
shown the presence of sFLT1 in placenta-derived EVs (59,
60). Though FLT1 is not an mtDEG interaction gene, it was
upregulated at delivery in the PIH placentas examined here
(17). If this is true throughout pregnancy, it may specifically
implicate fetal inheritance of mitochondrial dynamics as an

important contributor to PIH, particularly as it pertains to
placental function and communication between mother and
fetus in pregnancies with de novo hypertension.

The maternal mitochondrial genome derived from
PBMCs did not display differential mutational loads
between normotensive pregnancies and pregnancies
with preeclampsia. This finding was unexpected given
the abundance of evidence for mitochondrial involve-
ment in preeclampsia pathophysiology (8, 61–64). In
addition, mtDNA harboring oxidative lesions is more im-
munogenic (65–68) and is also directly linked to muta-
genesis/mutational load (68–70). Increased mutations
may further contribute to inflammatory pathway activa-
tion particularly because activated maternal mononu-
clear cells are more abundant during pregnancy due to
roles in placentation (71, 72). It is possible that this is an
artifact of small sample size. The medium effect size in
mutational load, however, indicates biological signifi-
cance that may reach statistical significance if appropri-
ately powered. Alternatively, other mechanisms, such as
epigenetic modification, may instead drive the discon-
nect between the presence of differential mitochondrial
gene expression and lack of changes in the mitochon-
drial genome mutational load between PIH and normo-
tensive subjects.

Study Limitations, Strengths, and Perspectives

In this study, we have made the assumption that the dom-
inant and primary signal in the maternal circulating cell-free
transcriptome is maternally derived. During pregnancy, pla-
cental DNA and RNA are shed and enter the maternal circu-
lation, though the levels of placental RNA are relatively low,
with <1% of the maternal circulating cell-free transcriptome
at the end of the 1st trimester deriving from the placenta,
which increases to <4% in the second trimester, and peaks
at<16% in the 3rd trimester (14). However, we do not distin-
guish the origin of each differentially expressed transcript

Figure 3. Expression patterns and func-
tional enrichment analysis of maternal and
fetal mitochondrial interaction genes at
delivery. A: biological process enrich-
ments for hypertensive maternal and fetal
tissues at delivery. B: cellular component
enrichments for hypertensive maternal
and fetal tissues at delivery. Z-score mag-
nitude and direction are in reference to
the normotensive subjects at delivery.
Terms condensed for plotting purposes if
genes comprising the term shared � 99%
overlap. “Count” represents number of
genes comprising term.

Figure 4. Maternal mitochondrial genome mutational load. “HT”: hy-
pertensive pregnancies (n = 10); “NT”: normotensive pregnancies
(n = 13); “#”: trending on significance (unpaired t-test, P value =
0.08), indicating unlikely adherence to the null model of no differ-
ence; medium effect size observed (Cohen’s d = 0.60), indicating bi-
ological importance.
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and therefore cannot say with certainty that the majority of
significant differentially expressed genes in our maternal
data set are maternally derived.

There are some limitations resulting from the use of data
generated from previous studies. Some important subject
characteristics (e.g., medications administered to mothers,
therapies or treatments mothers underwent) were not dis-
closed in these data, which may have introduced confound-
ing variables that could not be accounted for. In addition,
because our study sample sizes were lower than ideal, the
differences between PIH and normotensive subjects required
larger effect sizes for detection, and other significant trends
with smaller effect sizes may have been missed. Further, the
maternal transcriptomic data that were used pooled together
patients with preeclampsia and gestational hypertension to
define PIH. It should be noted that 1) both gestational hyper-
tension and preeclampsia are considered acute (de novo) hy-
pertensive disorders of pregnancy (as compared with
chronic hypertension); 2) gestational hypertension may be
considered subclinical preeclampsia (73); 3) the American
College of Obstetrics and Gynecology has recommended that
patients with gestational hypertension presenting with
severe-range blood pressures should be managed with the
same approach as those with severe preeclampsia (1).
Nevertheless, we acknowledge that gestational hyperten-
sion, preeclampsia, and its subtypes may differ in etiology.
Though we stress that the objective of this study was to
investigate the presence of a shared mechanism underlying
the pathology of these disorders (rather than causative fac-
tors), pooling hypertensive subjects may have obscured bio-
logically meaningful mitochondrial signals that may have
otherwise been detected. The use of different study popula-
tions between maternal and fetal data sets may have also
hindered our ability to conclude if similar mtDEGs or mito-
chondrial processes are dysregulated in both PIH mothers
and fetuses. This can be driven by factors such as using dif-
ferent Illumina HiSeq platforms or differences in analytical
approaches. Future work would benefit from pairing placen-
tal transcriptomics with prospective longitudinal monitoring
of the cell-free transcriptome within the samemothers.

An additional limitation is that functional assays to con-
firm specific mitochondrial involvement in PIH pathophysi-
ology were not performed, as they were above and beyond
the scope of this study. As a result, we cannot say with cer-
tainty that the implicated genes and pathways are truly

dysregulated. Protein levels often do not correlate well to
transcript levels, and posttranscriptional or posttranslational
mechanisms can further influence protein levels and iso-
forms. However, there is evidence that significantly differen-
tially expressed transcripts do display significantly higher
correlation coefficients with protein levels (74). This work,
therefore, presents a platform to guide future research, as
altered mitochondria-mediated pathways appear to be com-
mon in de novo hypertensive disorders of pregnancy.

In conclusion, our findings expand knowledge about the
role of mitochondria in the pathophysiology of acute hyper-
tensive disorders of pregnancy, namely preeclampsia and
gestational hypertension. Longitudinal analysis of systemic
expression of mtDEG interaction genes via the maternal cir-
culating cell-free transcriptome demonstrated differential
regulation of pathways implicated in PIH as early as the first
trimester. Our data connect pregnancy-specific mitochon-
drial dysregulationwith established preeclampsia-associated
processes and inflammation. Though this may only be spe-
cific to delivery, increased production, and release of placen-
tal EVs during pregnancy may also be mediated by
mitochondria. Figure 5 depicts a proposed theoretical model,
in which maternal mitochondrial dysregulation contributes
to an over-inflammatory state that is further promoted by
placental release of EVs into the maternal circulation.
Converging or common mitochondria-mediated pathways
underlying development of gestational hypertension and
preeclampsia warrant further investigation.
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