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Abstract 
 
 
Imputation of unknown genotypes is becoming a standard procedure in exploratory genetic 

association studies. Imputation is accomplished by comparing observed data from the study 

population to reference panels of individuals who are from a genetically similar population and 

genotyped at a dense set of polymorphic sites. Linkage disequilibrium within the reference 

panels is used to construct haplotypes and extrapolate allelic correlations in the test sample. 

Imputation has been shown to be accurate for the inference of genotypes at unobserved SNPs, as 

well as for quality control measures at genotyped locations. Imputing genotypes also allows 

cohorts that were genotyped on different platforms to be combined in a joint or meta-analysis. 

One of the most widely used imputation software packages is MaCH 

(http://csg.sph.umich.edu//abecasis/mach/). MaCH uses a powerful and accurate Markov chain-

based algorithm, however its usability is lacking. MaCHTools allows the user to streamline their 

workflow with MaCH through input file specification, error checking, and QC measures.  

MaCHTools began as a series of Java scripts used to check input files and QC raw data as an 

initial step before imputing additional genotypes in MaCH. This set of scripts became invaluable 

to the GWAS workflow, but they were unpolished and ill-suited for public release to benefit the 

scientific community. This project aimed to bundle the scripts into a single executable program 

that provides a graphical user interface (GUI) to facilitate use by students and researchers to aid 

in streamlining the GWAS workflow. Additional functionalities include more efficient launching 

of jobs to compute clusters and compatibility with different Linux job handlers, the ability to 

easily switch between different GWAS projects including switching between different genotype 

data and reference datasets, more simplistic specification of parameters and thresholds, and 

several other usability improvements. 
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The GWAS workflow that includes dataset preparation with MaCHTools coupled with haplotype 

estimation and imputation with MaCH was validated by replicating results from a published 

study of the genetic basis of Alzheimer’s endophenotypes in the Texas Alzheimer’s Research 

and Care Consortium. A similar analysis was then performed to determine the genetic basis of D, 

a latent variable that represents the dementing process.
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Chapter I 
 
 

INTRODUCTION AND LITERATURE REVIEW 
 

Alzheimer’s disease (AD) is the most common form of age-related 

neurodegenerative dementia and one of the most serious public health issues in the 

United States. Among individuals 65 years and older, there is an estimated prevalence of 

AD ranging between 6-12%. According to the Alzheimer’s Association, over 5 million 

Americans were living with a diagnosis of late onset AD in 2012, and this figure is 

expected to double to 10 million over the next 25 years. AD is the 6th leading cause of 

death in America, and the 5th leading cause of death among those over 65. AD is a large 

financial burden in the US, with costs exceeding $183 billion annually, and an additional 

$210 billion in unpaid care provided by the friends and family of patients. There is no 

cure or care that can be given to patients to remedy or slow the progress of the disease. 

All therapies provide only symptomatic relief. 

AD is a progressive, and eventually fatal, neurodegenerative disease. Its diagnosis 

is speculative based on symptoms, and only confirmed post-mortem by the presence of 

extracellular plaques formed from cleaved amyloid precursor protein and intracellular 

neurofibrillary tangles caused by hyperphosphorylated microtubule associated protein 

tau1. However, it has been shown that levels of amyloid beta peptide and phosphorylated 

tau in the cerebrospinal fluid have been consistent with autopsy findings2. These plaques 

and tangles are thought to be neurotoxic, and result in the progressive loss of neurons and 

synapses. After the disease has run its course, the brain is an atrophic version of its 

former, healthy state. AD initially presents as benign short term and spatial memory loss, 

often termed mild cognitive impairment (MCI)3. MCI can only be detected by careful 
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examination and testing, and does not interfere with daily activities4. As the disease 

progresses, additional symptoms may include irritability, aggression, confusion, loss of 

long term memory, and language problems5. Eventually, the patients will be completely 

unable to care for themselves. The neuropathologies associated with AD begin in the 

hippocampus and spread to the cerebral cortex and subcortical regions6. 

Neurodegeneration can be seen in the parietal lobes, frontal cortex, and cingulate gyrus7. 

AD progression can be visualized by MRI and PET analyses to document the atrophy of 

these brain regions8.  

Broadly, there are two forms of AD: familial, or early onset; and sporadic, or late 

onset. The familial form of AD is a rare form, only representing 5% of the disease 

burden. This form of the disease is inherited in a Mendelian dominant manner9. In 

contrast, while genetic variation plays a significant role in the development in late-onset 

AD, non-genetic, environmental factors are also important. This review will focus on late 

onset AD (LOAD). 

LOAD Genetics 

As described earlier, LOAD is etiologically heterogeneous, increases in 

prevalence with age with a lifetime risk of 1 in 10, and results from many genetic and 

environmental factors4. A great number of these genetic variants have been studied, 

however over 50% of the genetic variation remains unidentified10. The estimated 

heritability for AD is between 50-75%11. Until recently, a single gene had been 

associated with an increased risk of AD. The epsilon 4 allele of apolipoprotein E 

(APOE4) has been indicated as a reliable risk factor for AD with an odds ratio ranging 

from 10-20 in homozygotes when compared to APOE4 negative individuals12.  
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The APOE protein is a 299 amino acid protein that is synthesized in the liver, but 

it is also synthesized in the nervous system by astroglia and microglia. It is involved in 

the transport of lipids, lipoproteins, fat-soluble vitamins, and cholesterol into the blood. 

APOE is a ligand for several receptors involved in lipid metabolism, including the low-

density lipoprotein (LDL), LDL-related protein (LRP), and very-low-density lipoprotein 

(VLDL)13. These receptors are preferentially expressed in neurons14. The nature of the 

APOE variation exists at two loci in the 3,597 nucleotide gene. At residue 112 and 158, 

the E4 isoform contains an arginine/arginine residue, respectively. In contrast, the E2 

allele exists as a cysteine/cysteine residue at these loci, and exhibits protective effects 

against AD. The E3 alleles consists of an arginine residue at the 112 position and a 

cysteine residue at position 15815. 

In the human population, the E4 allele frequency varies widely by population, 

with the highest frequencies found in higher and lower latitudes. The E4 allele has a 

lower frequency near the Latin and African equators16. The effect size for APOE4 is one 

of the largest among all multifactorial, complex diseases. As stated earlier, homozygotes 

are 10-20 times more likely to develop AD when compared to APOE4 negative 

individuals12. This risk varies with sex, with women being more susceptible17. However, 

the APOE4 allele exhibits incomplete penetrance, as APOE4 positive individuals often to 

not develop AD18. 

The clusterin (CLU) gene has also been associated with AD risk, with variant 

rs11136000 showing protective effects (OR = 0.92)19. Clusterin is a widely expressed 

apolipoprotein that is thought to have heat shock protein-like chaperone properties. The 

CLU gene is located on chromosome 8, and is evolutionarily conserved across 
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mammalian taxa. The gene is 16Kb of DNA, and contains 9 exons. It is very similar to 

APOE, and is often referred to as APOJ20. Clusterin is similar to APOE in that they are 

abundant in the brain, particularly areas associated with AD and the cerebrospinal fluid.  

Both proteins also are involved in the clearance of beta-amyloid plaques. Clusterin’s 

association with AD risk has been pinpointed to a T/C SNP, rs11136000. Population 

substructure for the rs11136000 single nucleotide polymorphism, or SNP, varies by 

ethnicity, with higher frequencies of the C allele in American (63%), Asian (80%), and 

European (61%) populations, and low frequencies in African populations (41%)21. 

Phosphatidylinositol binding clathrin assembly protein (PICALM) is a widely 

expressed protein that is involved in retrieval of membranes in the synaptic vesicle. This 

protein functions via clathrin-mediated endocytosis, which is a critical step in the 

movement of many proteins and lipids, namely the internalization of uncleaved amyloid 

precursor protein. This protein was first studied in association with several forms of 

leukemia resulting from a chromosomal translocation22. PICALM’s association with AD 

is protective and results from a T/C SNP, rs3851179 (OR = 0.8)19. The frequency of the 

minor allele (T) in the population is 0.33. The T allele is most common in individuals of 

Asian descent (42%) and least common in those of African descent (11%)21. 

In contrast with the previously outlined AD genes that lie within lipid metabolism 

network, complement receptor 1 (CR1) is a gene within the inflammation network that 

has been associated with AD risk. CR1, also known as CD35, is a member of the 

complement activation family, and is expressed on erythrocytes, leukocytes, and splenic 

follicular dendritic cells23. CR1 is the receptor for C3b and C4b in humans, and therefore 

is the principle component in the clearance of opsonized immune complexes24. CR1 is 
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often implicated as a negative regulator of the complement cascade. CR1’s association 

with AD risk is two-fold. Firstly, there is a significant A/G SNP, rs6656401, with a minor 

allele frequency of 0.09 (A)21. This allele is over represented in those of European 

descent (19%), and particularly rare in those of African descent (1%). This allele 

increases risk of AD with an odds ratio of 1.225. Secondly, as individuals age, levels of 

CR1 decrease. This may cause a detriment to the clearance of beta-amyloid plaques via 

the complement cascade.  

GALP, which encodes galanin-like protein, was associated with AD in a 2007 

genome-wide association study (GWAS, further discussed in the next section). The 

associated variant, rs3745833, creates a non-synonymous amino acid substitution at the 

72nd residue (Ile72Met) in exon 4. The common minor allele C, which has a minor allele 

frequency of 48% in Caucasians increases AD risk by 10%. Galanin-like protein is a 

neurotransmitter than binds to galanin receptors 1, 2, and 3, prevent long-term 

potentiation in the hippocampus. Therefore, overexpression of GALP and similar peptides 

could exacerbate AD symptoms26. 

PGBD1 was also associated with AD in the same 2007 GWAS via a significant 

coding SNP, rs3800324. This SNP codes for a non-synonymous mutation in exon 5 and 

is relatively rare with a MAF of 6%.  Rs3800324, which increases AD risk by 20%, is 

expressed in the brain, however its function is not fully understood. It is believed that 

PGBD1 interacts with a nearby gene that encodes a zinc-finger protein, which plays a 

role in transcriptional regulation26. 

TKN1, or tyrosine-kinase, non-receptor 1, was previously known as thirty-eight 

negative kinase 1’. SNP rs1554948 was found to be associated with AD risk in a 
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protective manner, reducing risk by 15%. The minor allele is present at a frequency of 

~48% in the population. Functionally, this gene is involved in activating tumor necrosis 

factor alpha, or TNFα, which is involved in programmed cell death. TKN1 and rs1554948 

were one of the strongest hits in the 2007 study by Grupe et al (p-value = 2x10-4)26. 

GAB2, which encodes GRB2-associated binding protein 2, was found to be 

associated with AD in a later study in 2007. SNP rs10793294 confers a reduced risk of 

~50%. GAB2 is a highly conserved protein scaffolding gene that affects kinases that may 

be responsible for phosphorylating tau, and therefore the generation the neurofibrillary 

tangles27,28. 

 A set (rs10868366, rs7019241) of intronic SNPs near GOLM1 was associated 

with AD risk in a 2008 GWAS. GOLM1 encodes golgi membrane protein 1, however the 

functional effects of these SNPs has not yet been postulated29. 

FAM113B encodes family with sequence similarity 113, member B. Not much is 

known about this protein, however rs11610206 was associated with AD risk in a 2009 

study. The authors theorized that a proximal gene encoding a vitamin D receptor may 

underlie the association, however that gene is 600kb from the signal and not in linkage 

disequilibrium with it30. 

PCDH11X encodes protocadherin 11 X-linked. While this gene is highly 

conserved, there are no proven functional consequences of the AD-associated SNP, 

rs2573905. It has been postulated that protocadherins are substrates for gamma secretase, 

and may compete with amyloid-precursor protein for gamma secretase31. 

Additional AD-associated genes with smaller effect sizes and more rare minor 

alleles discovered by GWAS include ACAN, BCR, CTSS, EBF3, FAM63A26, 
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GWA_14q32.13, GWA_15q21.2, GWA_7p15.2, GWA_9p24.326,29, LMNA, LOC651924, 

MYH13, PCK, TRAK2, and UBD26.  

Genome-Wide Association Studies 

 Over the past two decades, the multitude of AD etiologies has been associated 

with over 2000 genes. However, it wasn’t until recently that two large-scale genome-

wide association studies (GWAS) were utilized to replicate associations between LOAD 

and genes other than APOE. These studies found associations in the aforementioned 

genes, CLU, PICALM, CR1, and others25,32. The development of large-scale genotyping 

platforms, along with the availability of large SNP databases has enabled researchers to 

conduct massive studies that test between hundreds of thousands and millions of SNPs, 

while calculating their statistical significance and predictive power for the trait of 

interest. 

 



	 8	

Figure 1. GWAS diagram. Genotype data for patients, or cases are compared with that 

of non-patients, or controls to ascertain SNPs associated with disease 

 

 The first GWAS was completed in 2005, and aimed to associate SNPs with age-

related macular degeneration. This study consisted of 96 cases and 50 controls, and 

despite a very small sample size, the authors were able to detect two significant SNPs 

with altered allele frequencies between the two study groups. 

 Typically, GWA studies consist of cases, participants that do not exhibit the trait 

of interest, and controls, or participants that have the trait of interest. These two groups 

are ideally as similar as possible, only differing in disease status. The process of selecting 

cases revolves around enrichment for disease-associated alleles. Including extreme or 

familial cases as well as attempting to reduce heterogeneity of the phenotype within the 

cohort often accomplishes this33. These practices will, in theory, increase power in the 

cohort, however poorly understood genetic architectures of complex diseases can make 

implementing these practices difficult34. The most common problem when assembling a 

control group is misclassification of the individuals, or latent diagnoses in the control 

individuals later in the study. Control participants require intensive screening to be sure 

that they do not exhibit the trait of interest. Another pitfall is selecting ‘hypernormal’ 

participants that are not representative of the population. For example, selecting 

extremely underweight individuals for a control group in an obesity study may cause 

false positives associated with medical conditions related to being underweight. 

Depending on the disease of interests, covariates to control will differ, but some common 

examples include age, sex, and education. One covariate of importance is population 
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substructure. If a disease that is more prevalent in one population, the case group will be 

enriched for that population, while the control group will be lacking. Because of this 

discrepancy in population substructure of the case-control groups, SNPs that are of higher 

frequency in in the case population may be falsely associated with the disease, when in 

reality they are only associated with the susceptible lineage. The most common way to 

accomplish this is by utilizing principle component analysis, which combines the 

dimensions of a multidimensional data set into principle components. In this case, 

population substructure is combined into a single principle component, and this 

component is controlled for in the analysis35. 

GWA studies that are not studying disease status may not employ a case-control 

design. Some diseases or traits are continuous variables, and association statistics can be 

calculated using regression analyses instead of Chi-squared tests used in case-control 

studies. Examples of these phenotypes include age-of-onset for an age-related disease, or 

conditions with a broad range of severity, given that there is an accurate and consistent 

method of categorizing these heterogeneous phenotypes.   

Once the cohort is assembled and the type of study is determined, the participants 

are genotyped on a commercially available array. The two main providers of such arrays 

are Illumina and Affymetrix, however there are other smaller manufacturers. These 

assays genotype patients at a set number of loci that can range from 500,000 to 5,000,000 

or more SNPs36. There are different types of assays that focus on loci known to be related 

to a particular phenotype, while other assays aim for genome-wide coverage.  

Each step in the GWAS workflow carries an emphasis on reducing error and bias. 

The introduction of error or bias at any step can cause extreme values of the association 
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statistics, which will create false positives or globally inflated p-values. After careful 

assembly of the cohort, the next scrupulous step is genotyping and the subsequent quality 

control measures implemented to ensure the genotype data are clean and accurate. Raw 

data from a genotyping assay is typically converted or ‘called’ using an automated 

algorithm for computing posterior probabilities for each possible genotype given the data 

from the assay37. An important quality control step is to exclude loci with low genotyping 

success or call rates 38. Once all well-called genotypes are collected, further quality 

control measures can be performed on the data. SNPs that deviate from Hardy-Weinberg 

equilibrium (HWE) are excluded, however there is some debate as to the efficacy or 

necessity of this practice. Some groups argue that typical GWAS cohorts are 

underpowered for detecting poor genotype qualities using HWE, while others suggest 

only excluding SNPs that show extreme departures from equilibrium39,40. Further quality 

control measures include detecting ancestry that deviates from that reported by the 

participants, duplicate or inverted/swapped samples, cross contamination, or data that 

suggests patterns of relatedness among the participants38.  

Following thorough quality control measures, association statistics can be 

generated for each SNP based on the phenotype data observed for each participant. An 

invaluable tool for this process is PLINK, which, among many other things, generates the 

association statistics for binary and continuous traits. Data can be visualized using QQ 

plots, which plot each p-value against the p-value expected by random chance. The 

observed p-values should approximately match the expected p-values, except the select 

few extremely low p-values that represent the significant SNPs resolved in the analysis. 

QQ plots can help detect inflated p-vales and false positives that would indicate error and 
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bias somewhere in the pipeline. The Manhattan plot, named for its resemblance of a 

cityscape, is a dot plot that is useful for visualizing GWAS results along the axis of the 

genome, from chromosome 1 to 22. P-values are –log transformed so that dots that lie 

toward the top of the plot represent the most significant hits. 

 Further investigation of the significant hits seen in the Manhattan plots can be 

visualized in a more local context with LocusZoom, which is a Manhattan plot that is 

localized to a user-defined window on either side of the signal, allowing the visualization 

of nearby genes. 

 As mentioned, there are a number of pitfalls that can impart bias and error along 

the GWAS workflow, and another pitfall of GWAS is the limited coverage of the 

genome. While a large genotyping array can interrogate 5 million SNPs, there are tens of 

millions of SNPs in the human genome. This creates a problem of limited coverage of the 

possible variability that could contribute to disease risk. While sequencing may capture 

this additional variability, it is expensive and time consuming. Another way to capture 

this additional variability is through genetic imputation, discussed in the next section.  

Genetic Imputation 

 Imputation is the practice of estimating missing or additional data using observed 

data. It is a practice common to all disciplines that utilize large datasets, and a common 

application in statistics would be to impute a missing data point by simply taking the 

mean of the two adjacent data points. A simplified example is the popular game show 

Wheel of Fortune, where contestants use given letters in the puzzle to impute the missing 

letters in order to solve the puzzle. A key part of this practice is the context given with 

which the additional data are estimated. In the Wheel of Fortune example, this context is 
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the letters that are initially given to start the puzzle. Without context, a much larger 

proportion of the alphabet could theoretically fit in the puzzle, however the context 

allows for a narrowing of possibilities to increase the likelihood of an accurate 

estimation. In genetics, this context is a combination of the observed genotypes from an 

array and a reference sequence typed at a dense set of markers. 

Imputation of unknown genotypes is becoming a standard procedure in 

exploratory genetic association studies. Genetic imputation is accomplished by 

comparing observed data from the study population to reference panels of individuals 

who are from a genetically similar population and genotyped at a dense set of 

polymorphic sites. Linkage disequilibrium within the reference panels is used to construct 

haplotypes and extrapolate allelic correlations in the test sample41. Imputation has been 

shown to be accurate for the inference of genotypes at unobserved SNPs, as well as for 

quality control measures to validate and correct data at genotyped locations42. Imputing 

genotypes also allows cohorts that were genotyped on different platforms to be combined 

in a joint or meta-analysis42,43.  

Genetic imputation takes advantage of the fact that humans share long stretches of 

DNA from distant ancestors44,45. While there are over 7.5 billion people on the planet, the 

effective population size in regard to genetic variation is roughly 5,000, due to the genetic 

similarity among the human population45. These long stretches of DNA that are passed 

from mother and father to offspring are called haplotypes, and genetic imputation begins 

with estimation of these haplotypes. Mapping the location of haplotypes in a cohort is 

important to determine which SNPs are commonly inherited together. Two SNPs that are 

inherited together are said to be in linkage disequilibrium, or linked. 
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The process of haplotype estimation is the most computationally intense step of 

the process. It begins by creating a random set of haplotypes that are a mosaic of the 

reference haplotypes. The haplotypes are then refined in a stepwise hidden Markov 

process and updated in relation to current state of the haplotypes of the samples around 

it46. Because of the nature of this iterative updating process that relies on the current state 

of the other haplotypes, this process must be single threaded, as a multithreaded process 

would create naivety of the state of the adjacent haplotypes if they happen to be updated 

by a different processing thread. This is one reason that the process is such a long running 

step.  

Once the haplotypes are mapped, the inference of genotypes can begin. This 

process proceeds base-by-base down the genome. If the base exists in the reference data, 

but not in the sample, it will be imputed. If it exists in the sample, but not in the 

reference, it will be skipped. Individual allelic tests are performed to provide an r2 value 

that represents imputation accuracy. This calculation encompasses allele frequency, 

which is an important consideration when determining imputation accuracy. For example, 

a very rare allele can be ‘called’ as the major allele every time, and be accurate to a high 

percentage due solely to the fact that the major allele is present in over 99% of the 

population. This makes r2 a much more accurate metric of imputation accuracy than a 

measure of true positives46,47. 

Imputation outputs include posterior probabilities for the possible alleles. Alleles 

are ‘called’ by taking the highest probability allele. Assuming Hardy-Weinberg 

equilibrium, one can multiply the probabilities of the alleles on each haplotype pair to 

estimate genotypes. For example, if haplotype 1 consisted of P(A) = 0.98 and P(B) = 
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(0.02), and haplotype 2 consisted of P(A) = 0.14 and P(B) = (0.86), the called alleles 

would be AB. The probability of an AA genotype can be calculated as P(AA) = 0.98 x 

0.14 = 0.1372. Allele dosage, which is the number of a certain allele in a genotype, is 

usually represented as 0, 1 for a heterozygote, and 2 for a homozygote. Imputed allele 

dosage is calculated by summing the posterior probabilities. For the B allele, allele 

dosage would be calculated as 0.02 + 0.86 = 0.88.  

There are a number of reference samples available for use in imputation analyses, 

however the current reference set most commonly in use is the 1000 Genomes Project. 

This project used 2500 samples to assembly 1000 genomes worth of human genetic 

variation with the aim to represent a master record of the genetic variation with at least 

1% minor allele frequency in the human population. There are currently 26 sites across 

the globe collecting samples that represent a large variety of populations. Because of the 

limitation on minor allele frequency in reference data, imputation is not accurate for 

extremely rare alleles in the population48. 
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Figure 2. Diagram of the goal of genetic imputation. Imputation aims to estimate the 

alleles at the missing loci represented by periods by using context provided by the 

reference sample (1000 Genomes). 

 

 After haplotype estimation and imputation, associated statistics are generated for 

between the trait in question and both observed and imputed SNPs. The MaCH package 

comes with two executables that perform these calculations for both case-control studies 

and continuous variables. 

There are a number of software packages available for genotype imputation. 

BEAGLE is a Java program, which is platform independent. It uses a haplotype cluster 

model in which reference haplotypes are grouped into clusters at each SNP, outputting 

posterior probabilities of allelic R2 for the imputed genotypes49. IMPUTE is a second 

package that is available for all major operating systems, and uses a variant of the 

‘product of approximate conditionals’ (PAC) model. MACH, which also uses a variant of 

the PAC model, is only available on Linux and Mac OSX. Both MACH and IMPUTE 

output an average maximum of the posterior probabilities42. Another program, 

BIMBAM, is similar to the previously mentioned software in that it imputes unobserved 

genotypes with a quantitative assessment of uncertainty, however BIMBAM uses a 

Bayesian regression, as opposed to the common Frequentist p-value, to determine 

association of these genetic variants to the phenotype of interest50.      

Of the available imputation platforms, MaCH was chosen for its compatibility 

with our operating systems (Linux and OS X), free licensing, its ability to accept linkage 

input files and HapMap/1000 Genomes references, chromosome-specific processing, 
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strand orientation functionality, and outputs that include posterior probability and allele 

dosage. MaCH is computationally intensive with large memory requirements, and it also 

is poorly documented and command line-only. MACH has been shown to be equally as 

accurate as IMPUTE and more accurate than BEAGLE, however it runs more slowly 

because it estimates recombination rates from the dataset itself. It also cannot handle 

multi-allelic markers42. 

MaCHTools Summary 

MaCHTools is a front-end/companion for the imputation software MaCH51. 

While robust and powerful for inferring missing genotypes, MaCH would benefit from 

the addition of functionality, QC, and data-handling capabilities. MaCHTools was 

created to addresses these needs by directly coupling MaCH with a customizable battery 

of QC, and data-handling procedures. The resulting toolset enables a high throughput 

computational pipeline for imputing data across a large number of studies. MaCHTools is 

an extensible (Java) data management software that facilitates a lengthy imputation 

procedure and assists users with data segmentation and reassembly that is executed from 

either command-line or a graphical interface. MaCHTools accepts PLINK52 formatted 

inputs and launches and manages parallel computations to several standard cluster job 

managers such as Slurm. A typical implementation of MaCHTools would proceed first 

with confirming correct formatting of all inputs files and the existence of one or more 

reference sets. Then chromosome-specific data are created, filtered, checked for strand 

ordering, and split into small segments for phasing by MaCH against reference genomes. 

MaCHTools ligates the resulting haplotype files and prepares them for imputation. 

MaCH then imputes genotypes and performs an association analysis between the imputed 
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SNPs and quantitative traits and/or affection status. Finally, MaCHTools concatenates the 

resulting files and processes them for SQL database importing. MaCHTools also has 

procedures for subsequent analyses. For example, MaCHTools can facilitate association 

checks by preparing the necessary files for visually checking genotype call qualities and 

by identifying the typed SNPs that drive genotype imputation of imputed SNPs that are 

strongly associated with the dependent variable.  

Endophenotypes and Factor VII 

 Endophenotypes are intermediate traits that are closer to the underlying molecular 

mechanism than the complex phenotype, and are in principle more likely to be affected 

by the genetic variation. John Bernard and Kenneth Lewis coined the term in a study that 

aimed to describe the geographic distribution of grasshoppers. They found that they were 

unable to explain their geographic distribution based on external “exophenotypes” and 

posited that it was the grasshoppers’ internal “endophenotypes” that determined their 

distribution. The paper was published in 1966	53. The next use of the concept was in 

psychiatric genetics in a study that aimed to explain the gap between low level genetic 

variation, such as SNPs, and high-level symptom presentation of complex diseases, such 

as schizophrenia and bipolar disorder54. Discovering genetic and environmental factors 

contributing to complex human diseases, as well as the development of effective 

therapies often requires understanding endophenotypes of the disease. For example, 

discovery of genetic factors contributing to coronary artery disease and the eventual 

development of effective therapies based on HMG-CoA reductase inhibition was made 

possible by understanding the endophenotype of hypercholesterolemia55. Potential 

endophenotypes of Alzheimer’s disease include quantitative neuroimaging, such as 
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measures of hippocampal atrophy56-58, or levels of amyloid or tau proteins in the brain or 

cerebrospinal fluid (CSF)59-62. An additional and still evolving source of AD biomarkers 

is the pool of circulating proteins in the blood63-66. 

 Factor VII is a serine protease that is a key member of the coagulation cascade67. 

Along with tissue factor, F7 is responsible for initiating the coagulation cascade. The 

process begins with release of tissue factor from the external wall of blood vessels 

following vascular injury. Once inside the circulation, tissue factor binds to F7, which is 

converted to F7a, leading to conversion of factors IX and X into active proteases; factors 

IXa and Xa67. Factor VII is a vitamin K dependent enzyme and the target of warfarin and 

other anticoagulants that are used to prevent thrombosis and thromboembolism68.  

 Polymorphisms within the F7 gene have not been suggested previously as 

contributing to AD risk, despite multiple large-scale studies. Nevertheless, a SNP within 

this region (rs6046) has been associated with variation in risk for cardiovascular disease, 

venous thrombosis and stroke69-73; conditions that are associated with risk for AD and 

other forms of dementia. The rs6046 polymorphism, which is located in exon 9 and is 

predicted to cause the substitution of glutamine in place of arginine at amino acid 

position 353 (R353Q), has been shown to result in reduced levels of F7 activity. The 

haplotype containing this SNP has been reported as both protective and a risk factor for 

coagulation related disease phenotypes71-73.  



	 19	

 

Figure 3. Signal in Factor VII gene in the TARCC cohort. LocusZoom plot of the 

local signal in the Factor VII gene in association with serum levels of Factor VII. This 

signal reached genome-wide significance in meta analysis, however the TARCC data to 

be replicated is presented here. 
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Royall’s δ 

 A latent variable is a variable that is constructed, or calculated from observed 

measures. This is in contrast to a variable that is measured. A latent variable is often used 

because the complexity of the problem demands it. A particularly astute analogy exists in 

the “Myth of the Cave” from Plato’s The Republic. The myth tells of a group of people 

that are forced to face a wall in a cave. The only things they see are the shadows 

projected on this wall by things that pass in front of a fire behind them. In science, we try 

to measure the variables we study as best we can, but we often are only able to measure 

the ‘shadows’ and construct a latent variable that represents the otherwise immeasurable 

variable of interest. We infer these constructs, which are hidden, or latent, from the data 

we collect74,75. 

δ, or D, is a latent variable that represents cognitive decline based on the 

condition that a patient must exhibit acquired cognitive impairment, functional disability, 

and that the disability is related to the cognitive impairment. D is then calculated using 

cognitive correlates of functional status. D seeks to concentrate Spearman’s “g”, or G, 

which is a score for general intelligence, into a score that explains the variance in 

cognition that related solely to the dementing process76. Interestingly, G is highly 

heritable and therefore may have a genetic component77. 

D has been validated in the Texas Alzheimer’s Research and Care Consortium 

(TARCC), a well-defined AD cohort. In this validation, D is strongly and uniquely 

associated with dementia severity measured by CDR sum of boxes, and is highly 

predictive of diagnoses by clinicians76. Royall’s group then sought to test whether D was 

associated with cognitive decline in the Freedom House Study (FHS), a longitudinal 
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study of successful aging. The FHS cohort was non-demented at its inception, however it 

subsequently experienced significant cognitive decline over the course of the study. 

Royall’s group found that D is uniquely associated not only with baseline cognition, but 

also with longitudinal cognitive change78. 
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Project Overview 
 

Genotyping arrays used for genome-wide association studies (GWAS) interrogate 

only a limited portion of the genome, and therefore do not capture all of the variation that 

is present. One way to increase the number of variants assayed is to estimate unobserved 

genotypes. A more in-depth GWAS can then be performed, with a greater chance of 

detecting novel loci associated with a trait. 

Late onset Alzheimer’s disease is etiologically heterogeneous, increases in 

prevalence with age with a lifetime risk of 1 in 10, and results from many genetic and 

environmental factors4. The estimated heritability for AD is between 50-75%11. However, 

despite multiple large independent studies and subsequent meta analyses, over 50% of the 

genetic variation remains unidentified10.  

According to Don Royall’s group at UTSA Health Science center, a latent proxy 

for dementia severity can be calculated for a patient using cognitive test scores in a 

structural equation model. The group has named this model ‘D’, or D. This model 

distinguishes dementia-relevant variance in cognitive task performance from variance 

unrelated to general intelligence or the dementing process76. Dr. Royall’s group has 

validated this phenotype in multiple cohorts, including TARCC, for which we have (an 

increasing number of) genotype data. 

Another novel approach to studying the genetics of AD is to ascertain quantitative 

endophenotypes that are associated with AD risk and then look for genetic variants that 

are associated with those endophenotypes. Endophenotypes are intermediate traits that 

are closer to the underlying molecular mechanism than the complex phenotype, and are in 

principle more likely to be affected by the genetic variation. Discovering genetic and 
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environmental factors contributing to complex human diseases, as well as the 

development of effective therapies often requires understanding endophenotypes of the 

disease.  

 
 
 
Hypothesis 

 
A GWAS analysis pipeline that includes MaCHTools to prepare the data 
set for imputation provides accurate, repeatable association results while 
increasing coverage of the genome through imputation with MaCH. 
Further, there are genetic loci that are significantly associated with ‘D’, a 
latent variable for the dementing process. 

 
 
 
 

This hypothesis is tested in collaboration with the Texas Alzheimer’s Research 

and Care Consortium (TARCC), a state-funded collaborative effort between 

investigators at Baylor College of Medicine, Texas Tech University Health Science 

Center, University of Texas Southwestern Medical Center, and North Texas Health 

Science Center. Since 2001, TARCC has enrolled aged subjects classified as NC, MCI 

and AD. Criteria for categorizing subjects are based upon neurocognitive evaluations, 

family and/or caregiver interviews and medical history. NC must have normal 

psychometric test scores and a clinical dementia rating (CDR) score of 0. MCI subjects 

are classified based upon the Mayo Clinic Alzheimer's Disease Research Criteria. 

Patients are deemed probable AD according to the NINCDS-ADDA criteria. 

Current data analysis methods are becoming the bottleneck in the analysis of 

large genetic data sets. New software tools for analyzing the data and streamlining these 

workflows will allow for more effective utilization of the massive data sets that 

researchers are now generating. Validating MaCHTools on published data and testing a 
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novel phenotype are the first steps in releasing the tool to the public to help ameliorate 

the analysis bottleneck.  
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Chapter II 

 
 

MaCHTools OVERVIEW 
 

MaCHTools began as a series of Java classes designed to be executed individually 

in a step-wise manner to prepare genotype datasets for imputation with MaCH. MaCH 

performs only rudimentary error checking based on allele frequencies in the reference 

haplotypes compared to the allele frequencies in the sample population. The resulting 

outputs are error prone. Additionally, MaCH jobs are by default launched as one large 

job, and may require weeks of compute time without parallelization. MaCHTools 

ameliorates these problems by performing a series of checking steps on the input files, 

QC measures for the genotypes, splitting haplotype estimation and imputation into 

smaller, parallel jobs, and resolving ambiguous strand orientation. 

Materials and Methods 

 MaCHTools was written in the Java using JDK 8.0_25 in Eclipse Java EE IDE 

4.5.0 Mars. Dependencies include junit 3.8.1, commons-math 1.2, spring-beans 4.2.4, 

sprint-context 4.2.4, velocity 1.5, derby 10.4.2.0, commons-lang 2.4, commons-logging 

1.1.1, commons-io 1.3.2, spring-core 4.2.4. All dependencies were managed early in the 

project using Apache Maven 2.2.1, and then using Eclipse’s dependency management 

features in the Mars version. MaCHTools, its dependencies, and its resource files are 

packaged into a runnable .jar file and executed in a CentOS Linux environment. Jobs for 

this project were launched to a compute cluster at Renaissance Computing Institute in 

Chapel Hill, North Carolina. Briefly, the cluster consists of 224 nodes, 3,863 cores, and 

27.63 terabytes of RAM. Resource allocation for MaCHTools is 1 node and 1 core per 

node for all jobs. Pre-haplotype estimation jobs, including haplotype estimation jobs, run 
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well with 32GB RAM per job, and post-haplotype estimation jobs can require up to 

96GB per job. This cluster manages user jobs using the Simple Linux Utility for 

Resource Management, or SLURM. 

Results and Discussion 

The MaCHTools workflow begins with a project database that stores all saved 

projects in a given directory. A project-specific database houses the properties, which 

have defaults but are also editable by the user. These properties include paths to input 

files and directories, thresholds, and variables. MaCHTools writes a properties file using 

the key-value pairs in this database for each step for ease of troubleshooting specific 

steps, in contrast to a master properties file used in previous versions.  

 MaCHTools utilizes object instances that are managed by the Spring container. 

These object instances are called ‘beans’, and are essentially recipes for creating 

instances of Java classes defined by a configuration metadata, in this case an XML file. 

The first beans that are launched are for checking the completeness and fidelity of the 

input files. Input files include a long genotype file, family file, phenotype file, covariate 

file, and map file. This step checks each file for concordance with each other, for 

example, ensuring that all patients in the family file are present in the long genotype file 

and that there are genotypes for every patient in the family file. 
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Figure 4. MaCHTools GUI Project Selection Tab. Here the user creates and select 
projects, specifies input files and reference directories, and runs the file checking 
procedures 
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 Following successful completion of the file checking steps, the next bean creates 

chromosome-specific data files by reading the long genotype file line-by-line and writing 

the genotypes to a new file for each chromosome. This allows the longer running steps to 

be run in parallel by submitting jobs that run on individual chromosomes instead of the 

entire data set at once. 
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Figure 5. MaCHTools GUI Main tab. Here the user launches the individual 
MaCHTools beans, haplotype estimation, imputation, and association jobs.  
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Once the chromosome-specific data files have been written, the next set of beans filter on 

specified thresholds such as missingness and tests Hardy-Weinberg equilibrium. At this 

point, the references are read to ensure that each marker is at a unique place on one 

chromosome before comparing the sample alleles with reference alleles to check for 

compatibility. If there are any SNPs that have alleles that are incompatible with the 

reference alleles, they are deleted before haplotypes are estimated.  
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 MaCHTools then reorders sample SNPs based on the order of the SNPs in the 

reference and splits each chromosome-specific data file into smaller, more manageable 

files in preparation for haplotype estimation. This results in approximately 1000 files, 

Figure 6. MaCHTools GUI Bean Settings tab. This tab includes user-defined 
settings, thresholds, priorities, and file name conventions 
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which are submitted in parallel for haplotype estimation by MaCH. MaCH generates a 

random set of haplotypes for the study population as a mosaic of the reference haplotypes 

and iteratively refines them over a set number of cycles in a hidden Markov chain	46. 

 

 
Figure 7. MaCHTools GUI Job submission options.  This tab is used to 
specify job submission parameters, specifically in regard to resource 
allocation and run time limits. 
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After the completion of haplotype estimation, MaCHTools ligates the haplotypes 

back together into individual chromosome-specific data files46. The final bean before 

imputation launches jobs in parallel for each chromosome to resolve any strand 

orientation issues where sample SNPs are coded ambiguously in relation to their 

reference haplotype. This step is useful for sample SNPs that are not on the reference 

strand and need to be flipped. 
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Figure 8. MaCHTools GUI Advanced settings tab. These settings are related to 
how missing values are coded. They are editable by the user but will most often 
remain unchanged. 
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This concludes the pre-imputation steps with MaCHTools and at this point, the 

data are ready for imputation and quantitative or binary trait associations using mach2qtl 

and/or mach2dat. These jobs can be launched in parallel from the MaCHTools GUI, and 

their results will be stored in the project directory. A job will be launched for each 

chromosome, and once complete, MaCHTools’ final bean combines the output for each 

chromosome into one large file and compresses it in gzip format.  

 

Figure 9. Summary of MaCHTools workflow. Steps in red are performed by 

MaCHTools. Steps in blue are performed by MaCH. Steps requiring the user are 

performed in green. Red outlined steps are more computationally demanding and may 

require additional resources depending on cohort size. 

 

Chapter II- Noteworthy Results 
 

(1) MaCHTools checks input files, filters, reorders, and compares 
alleles for more accurate haplotype estimation and imputation 

 
(2) While MaCHTools necessitates several additional steps in the GWAS 

workflow, the workflow is streamlined, more accurate, and parallelized 
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Chapter III 
 
 

VALIDATION OF PUBLISHED ENDOPHENOTYPE GWAS DATA 
 
 After a large overhaul of the MaCHTools software, which included changing how 

properties are handled, implementation of two databases, added compatibility with new 

job managers, launching jobs from a GUI, among other large changes, it was necessary to 

validate previously published findings from a prior MaCHTools workflow. MaCHTools 

was a critical tool in a GWAS of endophenotypes in which a panel of serum proteins was 

measured in TARCC participants, and the levels of these proteins were used to create a 

highly accurate predictive model for diagnosing Alzheimer’s disease	65	64. This study 

aimed to resolve genetic loci that are significantly associated with the altered levels of 

these serum proteins, with the ultimate of aim of finding susceptibility loci for 

Alzheimer’s disease	79. A portion of the results of the analysis from this study is 

replicated here to validate MaCHTools’ accuracy. 

Materials and Methods 

 The data files used for this validation were copied to a new project directory and 

used as inputs for the MaCHTools workflow. These files were dated from April 16, 2013. 

The methodologies for generating this data are described elsewhere	80, but briefly, 

participants were categorized as probable AD, mild cognitive impairment (MCI), or 

normal control (NC) based on neurocognitive evaluations, family/caregiver interviews, 

and medical history. NC participants were required to have a clinical dementia rating 

(CDR) of 0. Patients were classified as either MCI based on the Mayo Clinic Alzheimer’s 

Disease Research Criteria	81, or probable AD according to the National Institute of 

Neurological and Communicative Disorders and Stroke (NINCDS) and the Alzheimer’s 
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Disease and Related Disorders Association (ADRDA)	82. Protein concentrations were 

measured from serum either from baseline or from a year-one follow-up exam. After 

excluding proteins that did not contribute to the O’Bryant et al. screening algorithm in the 

same direction in two different cohorts (Alzheimers Disease Neuroimaging Initiative), a 

list of seven proteins included Adiponectin, Beta 2 Microglobulin, Factor VII, Monocyte 

Chemotactic Protein 1, Pancreatic Polypeptide, Tenascin C, and Vascular Cell Adhesion 

Molecule 1. 

 The TARCC cohort was genotyped using the Genome-Wide Human SNP Array 

6.0 (Affymetrix, Santa Clara, CA) which includes 906,600 SNP markers. This panel 

obtain genome-wide coverage. The BirdSeed v2 algorithm was used to call genotypes83. 

Results and Discussion 

The current version of MaCHTools was used to process, QC, and prepare these files 

for imputation with MaCH. Along the way, the outputs for each step were compared to 

outputs generated in 2013 for the published endophenotype study. All outputs were 

identical. After imputation, the raw outputs were imported to SQL, and a similar 

comparison was done to compare the Manhattan tables for the Factor VII phenotype 

between the 2013 analysis and the analyses performed by the current version of 

MaCHTools. The most significant p-values were identical. Any discrepancy between p-

values for the analyses were seen in very large p-values or far outside the number of 

significant figures commonly reported in manuscripts, and may be due to the hidden 

Markov chains involved in imputation. Random haplotype generation followed by 

iterative refinement is a reliable and accurate process, however exact repeatability may 
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not be possible. Regardless, the final conclusions drawn from each analysis relating to 

significant loci would be identical. 

 
Chapter III- Noteworthy Results 

 
(1) The current version of MaCHTools replicated published data 

generated in 2013 using the exact same input files and genotypes 
 

(2) Despite large changes in code, MaCHTools is still able to 
perform reliable and accurate analyses 

 
 
 
  



	 39	

Chapter IV 
 
 

GWAS OF ‘D’, A LATENT VARIABLE REPRESENTING THE DEMENTING 
PROCESS 

 
 

 In statistics, variables can be both observed and measured, or calculated. The 

latter is termed a ‘latent variable’. These inferred variables are derived from 

mathematical equations and are used in many disciplines including psychology, machine 

learning, and economics. One advantage to a latent variable is that it reduces 

dimensionality. Variance in an outcome may be described by a multitude of other 

measured variables in a highly dimensional data set. By inferring a latent variable via a 

mathematical model that encompasses these measured variables, the variance in an 

outcome can largely be explained by a single latent variable. 

D is a promising latent variable that distinguishes dementia-relevant variance in 

cognitive task performance from variance unrelated to the dementing process (G’). 

Effectively, D and G’ comprise Spearman’s G, or “general intelligence”	78. G has been 

shown to be highly heritable77. This, coupled with the observations that AD has an 

estimated heritability between 50-75%11 leads to the hypothesis that there is a genetic 

basis for D. D has been validated in the TARCC cohort76, which has been genotyped and 

well characterized in regards to AD. TARCC systematically excludes participants that 

show evidence of non-AD and/or mixed dementias, therefore D scores in this cohort are 

likely to reflect AD-specific dementia.  

 D was calculated in TARCC and associated with cytokines and serum biomarkers. 

Initially, this D homolog did not exhibit consistent factor loadings across ethnicity. A 

follow-up study calculated a homolog of D that exhibited consistent mean and factor 
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loadings across ethnicities, but associations with biomarkers were strongest in non-

Hispanic white participants. The authors concluded that the dementing process is distinct 

in these two groups, which is been evidenced in other published studies84-86. 

 Further, D was calculated in a separate cohort, the University of Kansas Brain 

Aging Project. In this cohort, D was able to classify patients as either mild cognitive 

impaired (MCI) or Alzheimer’s disease (AD) and rank order their dementia severity. 

Additionally, the study utilized magnetic resonance imaging (MRI) to associate D score 

with brain matter loss and found that higher D score, i.e. more advanced dementia, was 

localized to the default mode network. The default mode network is a network of brain 

regions that are most active when the brain is at a wakeful rest, such as daydreaming or 

mind wandering and without focus87,88.  

 Lastly, Royall’s group investigated the association between D score and Vitamin 

D binding protein, VDBP. VDBP has been found to be elevated in the cerebrospinal fluid 

of patients with neurodegenerative disorders89. Royall’s group found that D is 

significantly positively associated with levels of VDBP, and they conclude that D 

mediates the adverse effects of VDBP on cognition. Drawing on the previous study that 

D is related to the default mode network, they postulate that VDBP effects on AD are 

mediated through the default mode network, as VDBP is an amyloid-beta scavenger90,91. 

Amyloid-beta deposition can be seen in the default mode network through 

neuroimaging92. 

Materials and Methods 

 TARCC participants have been genotyped using the Genome-Wide Human SNP 

Array 6.0 (Affymetrix, Santa Clara, CA). This analysis includes 690 of these participants. 
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D scores are calculated for each participant in waves, each wave being approximately one 

year apart for a total of five waves. Not every participant has a score for each wave due to 

the variability of when the participant joined or left the cohort. For each participant, Dr. 

Don Royall’s group using structural equation modeling to derive D. The model includes 

several parameters including Instrumental Activities of Daily Living 1-5 (IADL), Basic 

Activities of Daily Living 1-5 (BADL, Boston Naming Test, Controlled Oral Word 

Association Test, Digit Span Test, Weschler Memory Scale, among others. 

 

Figure 10. Structural equation model for calculating D. Measured variables are in 

boxes with small ovals indicated the error in their measurement. G’ and D factor loadings 

represent the correlation between the observed score and the latent variable. 

 A GWAS pipeline that includes MaCHTools for input file processing and QC and 

MaCH for haplotype estimation, imputation, and generation of association statistics was 

performed. A new project was created in the MaCHTools GUI, and the phenotype file 

one-factor model represented in Figure 1 (!2: F!32.5;
df: 17; p!0.01; RMSEA!0.040; BCC!155.08). " is sig-
nificantly related to “Functional Status” (r!0.35) and
negatively related to cognitive performance. All load-

ings on " are significant. In contrast to g and g', " is most
strongly loaded by DSS (r ! –0.67). WAIS–R BLOCK’s
association with g' was attenuated, and the loadings of
the CVLT and WAIS–R DSS on g' are no longer significant
after the creation of “"” (Figure 2).

Next, we examined the clinical significance of " ver-
sus g' in multivariate-regression models of a variety of
clinical outcomes. After adjusting for age, education,
and gender, g' and " were independently, significantly,
and moderately associated with DRS:MEM, MMSE, and
EXIT25 scores; " alone was moderately associated with
baseline Trails B scores, and strongly associated with
Trails A (Table 3). Neither construct was significantly
associated with baseline level of care (restricted vari-
ability), nor with 5-year, prospective all-cause
mortality.

Finally, we examined g' and " as independent pre-
dictors of 3-year prospective change in cognitive per-
formance, in multivariate-regression models of linear
longitudinal change derived from LGC models, ad-

FIGURE 2. Shared Variance Between the Functional Status Index and Cognitive Performance

Scales: WAIS–R Vocabulary; WAIS–R Similarities; Block Design; Digit Symbol; Controlled Oral Word-Association; Boston Naming Test;
California Verbal Learning Task.

FIGURE 3. Explained Variance in Cognitive Performance

ROYALL AND PALMER

J Neuropsychiatry Clin Neurosci 24:1, Winter 2012 http://neuro.psychiatryonline.org 41
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was edited to reflect patient D scores provided by Royall’s group. The rest of the input 

files remained unchanged from the 2013 analysis of endophenotypes, which included 

covariates and adjustments for age, sex, and education, along with principle components 

to control for population substructure. The genotype missingness threshold was set to 

exclude any genotypes that were not called in greater than 95% of participants. The test 

for Hardy-Weinberg equilibrium was set at 0.000001. Monomorphic SNPs were excluded 

at a 1% threshold. Generation of input files and initial associations of typed SNPs were 

done with PLINK and Windows SQL Server 2012. 

All files were checked, filtered, reordered, and split for haplotype estimation by 

MaCHTools. After haplotype estimation by MaCH, MaCHTools was used to ligate the 

haplotypes back together for imputation. MaCHTools then corrected ambiguous SNPs 

that needed to be flipped to the reference strand, followed by imputation with MaCH. 

Association statistics were performed by mach2dat and mach2qt. 

Results and Discussion 

 One of the first steps in generating GWAS results is to generate a quantile-

quantile, or QQ plot. This plot maps each data point, in this case SNPs on an axis 

representing the observed p-values vs. the expected p-values due to random chance. The 

expectation, if the assumptions that the phenotype is normally distributed and the SNPs 

are in Hardy-Weinberg equilibrium, is that the data points should fall on a somewhat 

straight line, or X=Y. Any deviation from X=Y would suggest that confounders are at 

work or the assumptions are not met. 

 Despite several individual SNPs in each wave reaching genome-wide 

significance, a full association signal could not be resolved. There are weakly associated 
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SNPs in linkage disequilibrium with the most significant SNPs, and these may be better 

resolved in subsequent studies with larger sample sizes. The results are promising but not 

definitive. The most promising signal was at rs12056944 on chromosome 8. This 

particular SNP is mapped in genetic wasteland and is not in or near any genes. 

Rs12056944 does however map to an eQTL, or expression quantitative trait locus, that 

influences expression of the RP11-62H7.2 gene in thyroid tissue, which encodes 

ribosomal protein L1021. If this signal were validated in a larger cohort, this would be an 

interesting finding due to the comparison between Alzheimer’s disease and metabolic 

syndromes such as diabetes, with AD often being referred to as type 3 diabetes.93-95 This 

signal is weak in wave one, stronger in wave two, and reaches genome-wide significance 

with a strong shoulder of SNPs in linkage disequilibrium in wave 3. However, this signal 

drops out in waves four and five.  

The likely explanation for this is that waves 4 and 5 have a much lower sample 

size than waves 1-3, with wave 5 dropping as low as 50 individuals. Another  possible 

reason for the weak associations is that D is a latent variable derived from cognitive 

measures. While the literature describes D as an endophenotype, endophenotypes can be 

exhibited at any point along the path from genotype to phenotype. Those closer and 

endophenotype is to a phenotype, the greater the power required to associate with 

genotypes. The TARCC cohort provided sufficient sample size to generate strong 

association signals in the GWAS of serum protein endophenotypes possibly because 

serum protein levels are endophenotypes that are much closer to genotypes and gene 

expression than the behavioral and cognitive phenotypes used to derive a D score.  
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 Chapter IV – Noteworthy Results 

(1) Using the MaCHTools/MaCH workflow a GWAS was performed on 
5 waves of D scores simultaneously 

 
(2) Due to sample size constraints, a significant signal could not be 

resolved in this analysis. However, there are promising signals 
that may rise to genome-wide significance in future analyses 
with larger samples 
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Chapter V 

DISCUSSION 

Utility of MaCHTools in complex disease genetics 

 The current bottleneck in genetics studies has moved from the generation of data 

to the analysis of data. Data sets are tens to hundreds of gigabytes in size and require 

entire compute clusters to store and process. This creates a need for new analysis 

methods and streamlining of our current methods. The ability to process data sets, raw 

input files, and correct errors and ambiguities in strand orientation in a point-and-click 

manner allows for parallelization of not only job submissions, but of the users research 

methods as well. Reducing hands-on time in the GWAS workflow allows the user to 

focus efforts between steps on other projects, and to quickly back up and re-run analysis 

that failed or were run incorrectly. Waiting on a large imputation job to run for weeks 

only to find out the analyses were set up erroneously is a large time sink. Being able to 

check the status of the smaller chromosomes as they finish in a matter of hours allows the 

user to cancel the larger chromosome jobs, fix the error and re-launch the jobs with 

minimal time lost. MaCHTools is presented here in an AD context, but imputation is a 

common technique used broadly in the field of genetics. Any group that studies complex 

disease genetics can benefit from utilizing MaCHTools in their GWAS pipelines. 

Interrogating the genetics of D using MaCHTools 

 Despite low sample sizes, particularly in the later waves, there are some 

promising signals that may be better resolved in future studies that include more 

participants. The most promising signal was on chromosome 8 with a terminal SNP 

rs12056944 that was replicated in the first three waves. It’s interesting that despite a 
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decrease in sample size with each passing wave, this signal grew stronger. The average 

lifespan for Alzheimer’s disease is five years96. At wave three, dementia will have 

progressed markedly, and therefore may explain the increase in this signal between 

waves 1 and 3. An interesting follow-up study would be to use change in D over time, or 

ΔD as the phenotype for a GWAS to understand the genetics of how a patient progresses 

through the dementing process. 

 While the terminal SNP in the signal on chromosome 8 does not land in or near 

any genes, one approach for ascertaining the biological significance of variants is to look 

at eQTLs, or expression quantitative trait loci. These loci effect how genes are expressed, 

and they may or may not be in genes themselves. An effective tool is the GTEx project, 

which aims to provide information about the relationship between tissue-specific gene 

expression and genetic variants97. This tool is invaluable in GWAS because many of the 

loci that are found to be significant lie outside of protein coding regions, which makes it 

difficult to ascertain the biological mechanisms of disease relating to the significant 

variants in the analyses. 

 The GTEx tool located rs12056944 to an eQTL that effects expression of the 

RP11-62H7.2 gene. This gene expresses a ribosomal protein, L10 in thyroid tissue. There 

is a non-zero chance that this signal may be spurious, however a signal with a biological 

context in thyroid tissue would not be surprising, as Alzheimer’s disease has been shown 

to present through, among others, a metabolic process98. 
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Future directions:  

 TARCC researchers have recently completed an additional round of genotyping 

on an Illumina MEGA chip for ~2800 participants. Royall’s group is continuously 

curating D scores in the growing TARCC cohort. The analysis of the genetics of D will 

be repeated using this larger data set in hopes of resolving the weak associations seen in 

the previous analysis. 

 Additionally, work is underway on MaCHTools to incorporate the merging of 

data sets. The ability to merge data sets has eluded researchers due to the difficulty in 

harmonizing phenotypes, thresholds, and genotype calls. This is particularly difficult 

when genotype data sets are generated on different platforms, e.g. Illumuna vs. 

Affymetrix. One of the final steps in the MaCHTools workflow is to flip SNPs that are 

ambiguous as to which strand they reside on. The code for this step has been revised in a 

testing version of MaCHTools to include entropy minimization features to harmonize 

SNP definitions between two data sets. Data set merging will provide large, 

homogeneous data sets for which to associate novel loci with disease phenotypes and to 

generate accurate genomic prediction models. 
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Appendix A- GWAS Analysis Guide 

The following manual was written by Dr. Nicole Phillips and Dr. Robert Barber to 

detail the procedures required to execute the analysis pipeline created by Dr. Kirk 

Wilhelmsen at UNC Chapel Hill. It has been revised and updated to reflect the latest 

version of MaCHTools presented here. 

 

Steps:	
0. Perform	Eigenstrat	to	determine	population	structure	covariates.	

a. Kirk	used	smartpca	in	the	Eigensoft	suite,	the	files	are	very	similar	to	the	
ones	needed	for	plink.		
	

I. Run	plink	on	genotyped	markers	(file	name:	FinalGt)	
a. Make	plink	files	(see	Appendix	A	for	example	code)	

i. Generate	queries	to	produce	lgen,	fam,	cov,	phen,	map	tables	(see	
code	below)	

ii. Export	tables	to	file	space		**	add	steps	for	export**	
b. Move	from	terminal	server	to	BR	with	FileZilla	

i. Open	FileZilla	
ii. Connect	(host	à:	“br0.renci.org”;	User	à	<enter	UN	for	terminal	

server	access>;	passwordà	<same	PW	as	for	terminal	server	
access>;	port	à	“22”)	

iii. Move	files	to	BR	
1. Navigate	to	the	location	of	the	files	in	the	left	pane	(terminal	

server	directories)	
2. Navigate	to	the	desired	destination	in	the	right	pane	(the	BR	

directories)	
3. Drag	files	from	terminal	server	side	to	the	BR	side	

c. Open	a	bash	shell	create	needed	directories	with	needed	files	
i. Open	MRemote;	connect	to	BR	(right-click	BR0	and	select	connect)	

Note-	if	BR	connection	has	not	been	established,	right-click	
ConnectionsàAdd	Connection;	complete	the	Config	window	as	
shown	in	Appendix	B)	

ii. In	new	bash	window,	Change	Directory	to	the	TarcImpute	directory	
and	Make	a	Directory	called	impute<date>	

1. cd		/projects/sequence_analysis/vol1/chat/TARCImpute	
2. mkdir	impute<date>	

iii. Change	Directory	to	the	new	directory	named	impute<date>		
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1. cd	
/projects/sequence_analysis/vol1/chat/TARCImpute/imput
e<date>	

iv. Make	a	Directory	called	plink	
1. mkdir	plink	

v. Change	Directory	to	the	new	plink	directory	and	Copy	needed	plink	
COMMAND	files:	

1. cd	plink	
2. cp	

/projects/sequence_analysis/vol1/chat/TARCImpute/impute20121015/plink/plin
k	

3. cp	
/projects/sequence_analysis/vol1/chat/TARCImpute/impute20121015/plink/plin
k_maf	

4. cp	
/projects/sequence_analysis/vol1/chat/TARCImpute/impute20121015/plink/plin
k_logistic	

vi. Go	up	a	directory	to	the	impute<date>	directory	and	Copy	over	the	
plink	DATA	files:	

1. cd	..	(or	cd	
/projects/sequence_analysis/vol1/chat/TARCImpute/impute<<da
te>>)	

2. cp	/projects/sequence_analysis/vol1/chat/TARCImpute/impute<<date>>/	
Tarc<<date>>_lgen.txt	.	

3. cp	/projects/sequence_analysis/vol1/chat/TARCImpute/impute<<date>>/	
Tarc<<date>>_map.txt	.	

4. cp	/projects/sequence_analysis/vol1/chat/TARCImpute/impute20121015/	
Tarc20120615_fam.txt	.	

5. cp	/projects/sequence_analysis/vol1/chat/TARCImpute/impute20121015/	
Tarc20120911_phen.txt	.	

6. cp	/projects/sequence_analysis/vol1/chat/TARCImpute/impute20121015/	
Tarc20120615_cov.txt	.	

7. cp	/projects/sequence_analysis/vol1/chat/TARCImpute/impute20121015/	
Tarc20120615_chrom.txt	.	

	
d. Edit	plink	COMMAND	files	using	emacs	to	include	new	paths	and	ensure	file	

names	and	paths	are	correct.	
i. Make	sure	you	are	in	the	impute<date>	directory	

1. cd	
/projects/sequence_analysis/vol1/chat/TARCImpute/imput
e<date>	

2. Note-		a	shortcut	can	be	made	to	TARCImpute	in	each	user’s	
home	directory	

a. Ex:	home/Niphilli/TARCImpute	hyperlinks	to	
projects/sequence_analysis/vol1/chat/TARCImpute	

ii. In	shell,	enter	“emacs	.”	

Copy	over	the	
newest	versions	
of	the	lgen	and	
map	file	
	
	

These	older	
versions	of	the	
fam,	phen,	cov	
and	chrom	are	ok	
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1. Using	arrow	keys,	key	down	to	the	directory	named	plink;	hit	
Enter.	

2. Using	arrow	keys,	key	down	to	the	file	named	plink;		hit	
Enter.	

3. Using	the	arrow	keys,	modify	the	path	of	each	file	in	the	
command	line	to	reflect	the	newly	created	directory,	
impute<date>,	the	correct	file	names	(see	step	1.c.vi	above),	
and	enter	the	desired	output	name(after	--out	
<output_name>).	

4. Exit	emacs	
a. Hit	Ctrl+x,	Ctrl+s	to	save	
b. Hit	Ctrl+x,	Ctrl+c	to	exit	emacs	

iii. In	shell,	enter	“emacs	.”	
1. Using	arrow	keys,	key	down	to	the	directory	named	plink;	hit	

Enter.	
2. Using	arrow	keys,	key	down	to	the	file	named	plink_maf;		hit	

Enter.	
3. Using	the	arrow	keys,	modify	the	path	of	each	file	in	the	

command	line	to	reflect	the	newly	created	directory,	
impute<date>,	the	correct	file	names	(see	step	1.c.vi	above),	
and	enter	the	desired	output	name(after	--out	
<output_name>).	

4. Exit	emacs	
a. Hit	Ctrl+x,	Ctrl+s	to	save	
b. Hit	Ctrl+x,	Ctrl+c	to	exit	emacs	

iv. In	shell,	enter	“emacs	.”	
1. Using	arrow	keys,	key	down	to	the	directory	named	plink;	hit	

Enter.	
2. Using	arrow	keys,	key	down	to	the	file	named	plink_logistic;		

hit	Enter.	
3. Using	the	arrow	keys,	modify	the	path	of	each	file	in	the	

command	line	to	reflect	the	newly	created	directory,	
impute<date>,	the	correct	file	names	(see	step	1.c.vi	above),	
and	enter	the	desired	output	name	(after	--out		
<output_name>).	

4. Exit	emacs	
a. Hit	Ctrl+x,	Ctrl+s	to	save	
b. Hit	Ctrl+x,	Ctrl+c	to	exit	emacs	

e. Run	plink	command	files;	this	will	take	4-5	hours	
i. In	bash	shell,	make	sure	you	are	in	the	plink	directory	

1. cd	
/projects/sequence_analysis/vol1/chat/TARCImpute/imput
e<date>/plink	
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ii. Execute	the	plink	files	by	entering	the	following	commands	
1. qsub	./plink		

a. generates		output:		<output_name>_dat.assoc.linear		
b. generates		output	for	each	trait:			

<output_name>.<qtl_pheno_name>_qtl.assoc.linear	
2. qsub	./plink_maf	

a. generates		output:			<output_name>_qtl.freq	
3. qsub	./plink_logistic		

a. generates		output:				<output_name>_dat.assoc.logistic	
iii. Check	on	progress	using	the	command	qstat	

	
II. Process	plink	output	files	

a. Concatenate	and	process	files	with	sed	for	importation	into	db	
i. Make	sure	you	are	in	the	plink	directory	

1. cd	
/projects/sequence_analysis/vol1/chat/TARCImpute/imput
e<date>/plink	

ii. The	following	commands	are	performed	recursively	to	build	a	long	
command:	

1. Concatenate	all	qtl	outputs:		grep	[0-9]	
<output_name>.*.assoc.linear	

a. example:			grep	[0-9]	
Tarc20121015_out_qtl.*.assoc.linear	

b. The	wild	card	(*)	represents	any	of	the	quantitative	
traits	include	as	pheontypes:		Adiponectin,	
Alpha_2_Microglobulin,	AOO,	etc….	

2. Remove	output	name	and	“.”	From	filename:		↑	|sed	
‘s/<output_name>.//g’	

3. Remove	“assoc.linear:”	from	filename:			↑	|sed	
‘s/.assoc.linear://g’		

4. Replace	one-or-more	spaces	with	one	tab:			↑	|sed	‘s/	\+/\t/g’	
a. Note-	I	found	this	command	online	because	I	could	

not	get	it	to	work	with	the	notes	I	took	on	the	call;	see	
Call	Log	notebook,	pg	155.	The	command	in	my	notes	
said	sed	‘s/	/\t\t/\t/g’,	performed	multiple	times.				

5. Replace	NA	with	-99999:		↑	|sed	‘s/NA/-99999/g’	
6. Drops	header	line(?):			↑	|grep	-v	CHR			
7. Make	output:	↑	>	<	name_for_consolidated_file>_Plink_QTL.txt			
	
Note:	To	view	the	data	at	any	point,	add	|less	to	the	end	of	a	command;	
enter	“q”	to	quit	out	of	the	less	preview.				

	
b. Modify	the	.frq	file	

i. Make	sure	you	are	in	the	plink	directory	
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1. cd	
/projects/sequence_analysis/vol1/chat/TARCImpute/imput
e<date>/plink	

ii. The	following	are	performed	recursively	to	build	one	long	command:	
1. Remove	leading	tab:	cat	*.frq|sed	‘s/^[	\t]*//g’	
2. Replace	one-or-more	spaces	with	one	tab:			↑	|sed	‘s/	\+/\t/g’	

a. Note-	I	found	this	command	online	because	I	could	
not	get	it	to	work	with	the	notes	I	took	on	the	call;	see	
Call	Log	notebook,	pg	155.	The	command	in	my	notes	
said	sed	‘s/	/\t\t/\t/g’,	performed	multiple	times.			
Tested	and	works!	

3. Make	output:	↑	>	<name_for_mod_file>_Plink_Freq.txt	
c. Modify	the	.dat	file	

i. Make	sure	you	are	in	the	plink	directory	
1. cd	

/projects/sequence_analysis/vol1/chat/TARCImpute/imput
e<date>/plink	

ii. The	following	are	performed	recursively	to	build	one	long	command:	
1. Remove	leading	tab:	cat	*.dat.assoc.linear|sed	‘s/^[	\t]*//g’	
2. Replace	one-or-more	spaces	with	one	tab:			↑	|sed	‘s/	\+/\t/g’	

a. Note-	I	found	this	command	online	because	I	could	
not	get	it	to	work	with	the	notes	I	took	on	the	call;	see	
Call	Log	notebook,	pg	155.	The	command	in	my	notes	
said	sed	‘s/	/\t\t/\t/g’,	performed	multiple	times.			
Tested	and	works!	

3. Make	output:	↑	>	<name_for_mod_file>_Plink_DAT.txt	
d. Move	files	back	to	terminal	server	file	space	with	FileZilla	

i. See	Section	I.b	above	for	directions	on	connecting	and	using	FileZilla	
e. Import	into	sql	server	database	

i. Import	raw	data	
ii. Truncate	strings,	correct	field	lengths	&	names	&	convert	numeric	

values	to	int	or	float	
Needs	to	be	detailed;	see	notes	pg	177	from	041613.		

	
III. Check	clusters		for	SNPs	of	interest	and	a	random	set	of	markers	

across	genome	(~2000)	
a. Make	tables	for	SNP	Checker	(CheckerList,	CheckerOut,	CheckerReviewed,	

CheckerGT)	
b. Check	Clusters	with	Eclipse	on	terminal	server	

i. See	Appendix	C	for	detailed	instructions	
c. Update	EDITED	genotypes	in	appropriate	genotype	tables	in	SQL	database	

Needs	to	be	detailed;	see	notes	from	pg	182	from	041613.		
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IV. Run	Plink	on	EDITED	Genotypes	and	Process	plink	output	files	-	2nd	
cycle		
a. Regenerate	lgen	and	map	files	for	plink	&	imputation	(see	Appendix	A	for	

example	code)	
i. Generate	queries	to	produce	new	lgen	and	map	tables	named	with	

the	creation	date.	(do	we	always	have	to	create	a	new	map	table?)	
ii. Export	tables	to	Blue	Ridge	file	space	

b. Move	from	terminal	server	to	BR	with	FileZilla		
i. See	Section	I.b	above	

c. Run	plink	for	qtls,	qualitative	traits	and	affection	status,	determine	MAFs	
i. See	step	I.c.vi		and	Section	I.d	above	

d. Process	plink	outputs	
i. See	Section	II	above	

	
V. Run	Imputation	(can	be	done	concurrently	with	second	round	of	

Plink	tests)	
i. Create	new	MaCHTools	(MT)	projects	directory	

1. mkdir MaCHTools_projects 
ii. Navigate	to	projects	directory	and	run	MaCHTools	

1. cd	<<machtools	projects	directory	made	in	i.>>	
2. Execute MACHTool MakeProjectDB from	within	the	MT	

projects	directory	made	in	step	.i 
iii. Create	new	MT	project 

1. Type	name	of	project	in	the	‘new	project’	blank 
2. Click	‘Make	new	project’	button 
3. Your	project	will	appear	in	the	list	of	projects	and	a	directory	

will	be	made	in	the	MT	projects	directory	made	in	step	.i 
iv. Specify	reference	directory 

1. Click	‘Locate	path	to	refs’	button 
2. Navigate	to	parent	directory	of	references. 

a. if	1000G	directory	resides	in	~/references,	navigate	
to	select	~/references.	 

v. Specify	job	submission	parameters	and	settings 
1. See	appendix	MAKE	SCREENSHOT	IN	APPENDIX 

vi. Copy	input	files	to	inputFiles	directory 
1. cd NewProjectFolder/inputFiles 
2. cp plink	input	files	

a. lgen	
b. map	
c. cov	
d. fam	
e. phen	
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3. Click	‘Select	project’	button	to	refresh	inputFiles	file	list.	
Designate	lgen,	map,	cov,	fam,	phen	files	by	selecting	them	in	
the	list	and	selecting	the	appropriate	button	

vii. Check	plink	files	using	MACHTools	
1. FIRST…make	sure	that	the	lgen	does	not	have	a	header	line.		

(use	more	<filename>	to	take	a	look).		If	so	the	following	sed	
command	will	remove	the	headerline	in	the	source	file:	

a. sed	-i	‘1d’	<lgen_file.txt>	
2. Check	the	boxes	for	the	input	files	that	need	to	be	checked	

and	click	‘Check	Input	Files’	button.	
3. Jobs	will	launch	for	each	input	file	to	be	checked.	Outputs	

reside	in	directories	corresponding	to	each	job	within	input	
files	directory	

a. ~/inputFiles/.checkLgen,	etc.	
viii. Make	chromosome	specific	data	files	with	MACHTools	

1. Choose	the	‘Main’	tab	and	check	the	box	for	
‘makeChromSpecific…’,	then	click	Run	Beans	

2. The	‘Launched’	box	will	check	when	the	job	has	been	
launched	to	the	cluster.	Outputs	can	be	checked	
~/inputFiles/.makeChromSpecific…/slurm-12345.out	

3. Upon	successful	completion,	set	genotype	directory	
a. Click	‘Locate	Path	to	GTs’	in	Select	Project	tab	and	

navigate	to	~/inputFiles/ChromosomeSpecificData	
ix. Filter,	reorder	and	split	them	for	MACH	phasing	against	each	

reference	haplotype	set	(HAPMap2,	HAPMap3,	HAP1000G)	with	
MACHTools	

1. Check	the	box	for	filterChromSpecificMach	and	click	‘Run	
Beans’	button	

2. The	‘Launched’	box	will	check	when	the	job	has	been	
launched	to	the	cluster.	Outputs	can	be	checked	in	
~/inputFiles/.filterChromSpecificMach…/slurm-12345.out	

3. Repeat	sequentially	(not	concurrently)	with	
a. makeIdsUniqueInRefMaps	

i. inputFiles/.makeIdsUniqueInRefMaps	
b. compareAlleles	

i. inputFiles/.compareAlleles	
c. reorderSNPs	

i. inputFiles/.reorderSNPs	
d. splitChromSpecificMach	

i. inputFiles/.splitChromSpecificMach	
x. Phase	with	MACH	–	runHapMACH.sh	for	each	SplitJobs	directory	

created	in	each	of	the	ChromosomeSpecificData	directory	
1. Click	Run	MachHap	
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2. NOTE!!!		This	script	submits	many	jobs	to	the	cluster	and	

places	them	in	queue.		It	requires	a	lot	of	time	to	run	to	
completion.	Use	squeue –u <<username>> to	check	the	
status	of	jobs.		If	jobs	need	to	be	cancelled	from	the	queue,	
use	scancel <<jobID>> or scancel –u 
<<username>> to	cancel	all	your	jobs	
	

xi. Use	MACHTools	to	ligate	the	split	haplotype	files	back	together	and	
fix	marker	strand.	

1. Choose	the	‘Main’	tab	and	check	the	box	for	
‘mergeMachHaplotypes’,	then	click	Run	Beans	

2. The	‘Launched’	box	will	check	when	the	job	has	been	
launched	to	the	cluster.	Outputs	can	be	checked	
~/inputFiles/.mergeMachHaplotypes/slurm-12345.out	

3. Choose	the	‘Main’	tab	and	check	the	box	for	
‘’ParallelFixMarkerDefs…”,	then	click	Run	Beans	

4. The	‘Launched’	box	will	check	when	the	job	has	been	
launched	to	the	cluster.	Outputs	can	be	checked	
~/inputFiles/.planFixMarkerDef/slurm-12345.out	
	

xii. Use	runMinMACH.sh	to	impute	genotypes;	this	makes	dose	and	info	
files.	This	submits	the	jobs	to	a	large	memory	machine	queue;	these	
jobs	will	run	in	the	background.		To	see	the	status	of	the	jobs,	use	
squeue			

1. Click	Run	MinMach	button	
xiii. Use	runMach2QTL.sh	to	perform	association	between	imputed	SNPs	

and	quantitative	traits.				
1. Click	Run	Mach2QTL	button	

	
xiv. Use	runMach2Dat.sh	to	perform	association	between	imputed	SNPs	

and	affection	status.				
1. Click	Run	Mach2DAT	button	

	
xv. Use	MACHTools	to	process	and	concatenate	DAT.gz	and	QTL.gz	files	

1. Choose	the	‘Main’	tab	and	check	the	box	for	
‘cleanupDatAndQTL,	then	click	Run	Beans	

2. The	‘Launched’	box	will	check	when	the	job	has	been	
launched	to	the	cluster.	Outputs	can	be	checked	
~/inputFiles/.cleanupDatAndQtl/slurm-12345.out	

xvi. 	
xvii. Unzip	the	DAT.gz	and	QTL.gz	files,	format	and	rename		
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1. In	the	directory	where	the	DAT.gz	and	QTL.gz	files	are	
created	enter	the	following	command	to	unzip	the	files:	
gunzip	<name_of_zipped_file.gz>	

a. Example:	gunzip	DAT.gz	
2. Format	to	replace	spaces	with	one	tab	and	rename	the	new	

output.	
a. grep	[0-9]	QTL|sed	‘s/	

\+/\t/g’><<name_of_new_QTL.txt>>	
b. grep	[0-9]	DAT|sed	‘s/	

\+/\t/g’><<name_of_new_DAT.txt>>	
xviii. Concatenate	and	process	INFO	files	generated	by	minMACH	with	sed		

1. Add	Chr	column	to	info	files	
a. Add	Chr_*.info	filename	as	last	column	in	each	info	

file	
i. 	for	f	in	Chr_*.info;	do	sed	“s/$/\t$f/”	$f	>	

$f.infochrom;	done	
b. Strip	“Chr_”	and	“.info”	from	the		file	name	

i. for	f	in	Chr_*.info.infochrom;	do	sed	
“s/.info//”	$f	>	$f.infochrom	

ii. for	f	in	Chr_*.info.infochrom;	do	sed	
“2,$s/Chr_//”	$f	>	$f.infochrom	

iii. Delete	the	_1	from	the	Chr_1	column	using	
nano	in	Chr_1.info.infochrom	

2. Need	to	detail	sed	commands:	concatenate	the	info	files	in	
each	Hap	directory,	then	concatenate	the	resulting	three	files	
into	the	final	INFO	file;	NOTE	you	need	to	drop	the	header	
lines	using	either	a	shell	command	or	in	SQL	.		YOU	will	not	
be	able	to	cast	the	Rsq	and	MAF	as	float	with	the	header	lines	
in	the	table.		

a. JSM	used	the	following:	
i. head	-1	Chr_1.info.infochrom	>	all.info	#write	

the	header	line	
ii. tail	–n	+2	–q	Chr_*.info	>>	all.info	#write	the	

rest,	skipping	the	headers	
3. Move	info	files	to	terminal	server	file	space	with	FileZilla	

(See	step	X	above)	
xix. Import	into	sql	server	database	

1. Import	imputed	files:	.DAT,	.QTL,	and	.INFO	(See	Appendix	X)	
2. Truncate	strings	,	correct	length	/names	and	convert	

numeric	values	to	int	or	float	
a. Need	to	detail	this	out;	see	pg	177	of	notes	

VI. Identify	imputed	SNPs	of	interest		
a. Run	a	query	in	sql	server	to	generate	SNP	table	
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i. Uses	rsq	values	from	info	file	to	select	SNPs	that	were	imputed	
reliably:	
refHap	 resqThresholds	
Map1000G	 0.5	
HapMap2	 0.3	
HapMap3	 0.3	

b. Export	table	to	BR	with	FileZilla	
c. Use	MACHTools	to	identify	SNPs	that	drove	imputation	
d. Move	list	of	SNPs	to	terminal	server	file	space	with	FileZilla	
e. Import	into	sql	server	

VII. Check	clustering	of	SNPs	that	drove	imputation	
a. Generate	SNP	Checker	tables	(don’t	check	SNPs	already	checked)	
b. Check	Clusters	with	Eclipse	on	terminal	server	
c. Update	genotypes	in	appropriate	genotype	tables	in	db	(see	example	script	

in	Nicole’s	folder;	also	pasted	here	as	an	appendix).	
VIII. Repeat	Step	IV	(above)	
IX. Generate	output	statistics	

a. Calculate	lambda	for	sampled	genotypes	for	each	trait	of	interest	(in	a	single	
step)	

b. Generate	publication	figures:	
i. Generate	tables	in	sql	server	&	export	files	to	BR	with	FileZilla	

1. Find	interesting		
a. FILL	IN	instructions	here	to	use	the	Interesting	snps	

template	
2. Generate	Genome-wide	Manhattan	plots	

a. Make	required	tables	in	SQL	and	export	
i. Open	the	most	recently	generated	template	

(e.g.,	Eotaxin_3_NRP;	code	is	appended	
below)	

ii. Save	query	with	name	of	new	trait	
iii. Do	a	global	find	and	replace	‘Eotaxin_3’	for	

‘TraitName’	
[NAME	TRAIT	EXACTLY	THE	SAME	AS	IN	
DATABASE	(TARCC	vs.	ADNI)]	
Do	a	global	find	and	replace	‘Name’	for	
‘User	(your	name)’	

iv. Execute	query	
(Comment	out	all	of	the	rows	that	say	top	1000;	used	
to	test	code)	

v. Export	Tables	(4)		-		Walk	through	export	
Wizard	for	each	file	(4X);		 (to	launch	
Wizard;	right	click	on	name	of	database,	
right	click	‘tasks’,	then	select	‘export’)	
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Destination	=	Flat	file,	browse	to	
Texas_access>PlotsTarcAdni>TraitName>File
name	

	 Select	‘Columns	in	first	data	row’,	‘Column	
delimited	Tab’,	finish	

1. User_Dataset_Man_Trait	
2. User_Dataset_Man_Trim_Trait	
3. User_Dataset_Plink_Trait	
4. User_Dataset_Imp_Trait	
(User	=	Nicole,	Bob,	Ryan,	etc;	Dataset	=	
TARCC	or	ADNI;	Trait	=	new	trait	ID’ed	
above)	

b. Move	files	to	BR	
i. Open	Filezilla	(See	Step	1b	above)	
ii. In	left	pane,	Browse	to	location	of	exported	

Tables:	
Texas_access>PlotsTarcAdni>TraitName>File
name	

iii. In	right	pane,	Browse	to	
/Home/User/TarcPlot/TraitName	
(for	ADNI	data,	use	AdniPlot,	not	TarcPlot)	

iv. Drag	folders	from	left	to	right	pane	
c. Run	the	tools	for	QQ	and	manhattan	plots	

i. Open	MRemote	
Connect	to	BlueRidge	(see	Appendix	B	below)	

ii. Type	“qsub	-I”	to	request	one	interactive	node	
1. Qsub	-I	may	be	busy;	use	“ssh	

largemem-0-0”	instead	
iii. Change	directory	(cd)	to:	

/Home/User/TarcPlot/TraitName	
iv. Run	R	(Command:	‘R’	then	hit	‘enter’)	

1. Type	R;	return	
2. [Source	the	code		

a. Type:		
Source(http://dl.dropbox.com/u
/66281/0_Permanenet/qqman.r)
;	return]	DEPRECATED	

3. cp	.tar	from	
/projects/sequence…/vol1/chat/TARCI
mpute/niphilli/qqman_0.1.2.tar	to	
directory	where	you	are	working	
(where	your	Manhattans	will	be)	
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4. Run	this:	
install.packages("qqman_0.1.2.tar",	
repos	=	NULL,	type="source")	

5. Then	your	manhattan	function	should	
work.		 

6. 1.       Read	data	table	into	R	
desired_dataset_name<-read.table	
(“name_of_man_table.txt”,	header=T) 

7. 2.       Run	the	
pdf(“desired_name_of_pdf_output.pdf
”)	step	first	to	open	a	pdf	for	the	
output. 

8. 3.       Then	run	manhatttan(dataset	
name)	to	generate	the	plot.	 

9. Possible	error	may	crop	up	due	to	the	
order	of	columns.	Awk	them	into	the	
right	order	

v. Read	incat	data	once	for	each	file	
Command:		‘TraitName_Man<-read.table	
(“FileName.txt”,	header=T)’	
(Example	FileName”	
User_Dataset_Man_TraitName;	
User_Dataset_Man_Trim_Trait;	
User_Dataset_Plink_TraitName;	
User_Dataset_Imp_TraitName)	

vi. Run	pdf	commands	for	Manhattan	Plot:	
1. Pdf(“OutputFileName.pdf”)	hit	enter	
2. Manhattan(TraitName_Man)	hit	enter	
3. Dev.off	()	hit	enter	

vii. Run	pdf	commands	for	Q-Q	Plots:	
1. Pdf(“OutputFileName.pdf”)	hit	enter	
2. qq(TraitName_plink	$P)	hit	enter	
3. Dev.off	()	hit	enter	

viii. To	change	working	directories	in	R,	use	the	
following	command		

1. setwd	(“<<path_to_new_dir>>”)	
3. Run	Metal	

a. Connect	to	Blue	Ridge	via	MRemote	(see	Appendix	B	
below)	

b. Change	directory	(cd)	to:	
/Home/User/TarcPlot/TraitName	

c. Copy	Metal	script	into	the	new	Trait	folder	
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Example	command:	cp	
../Eotaxin_3/metal_Eotaxin_3.sh	
../TraitName/metal_TraitName.sh	

d. Open	emacs	
emacs	.	hit	enter	
Scroll	down	with	arrow	keys	to	locate	the	
metal_TraitName.sh	file	
Hit	enter	
Global	find	and	replace	old	TraitName	with	new	
TraitName	

i. Hit	Ctrl+x,	Ctrl+s	to	save	
ii. Hit	Ctrl+x,	Ctrl+c	to	exit	emacs	

e. Run	Metal	in	bash	shell	
Command:	metal	<metal_TraitName.sh	

f. To	look	at	results;	
open	emacs	
emacs	.	hit	enter	
Scroll	down	with	arrow	keys	to	locate	the	new	metal	
file	(METAANALYSIS.tbl)	hit	enter	

g. To	write	most	significant	results	to	a	file;	
run	a	grep	command	
grep	‘e-0’	METAANALYSIS.tbl	>	
TraitName_SigP_metal.tbl	
	

4. Generate	Local	Manhattan	plots	(LocusZoom)	for	all	SNPs	in	
TARCC	&	ADNI	where	p≤10-6	AND	any	metal	results	where	
p≤10-7	

a. Connect	to	Blue	Ridge	via	MRemote	(see	Appendix	B	
below)	

b. Change	directory	(cd)	to:	
/Home/User/TarcPlot/TraitName	

c. Copy	LocusZoom	script	into	the	new	Trait	folder	
Example	command:	cp	
../Eotaxin_3/runLocuszoom.sh	../TraitName/	
runLocuszoom.sh	

d. To	look	at	results;	
open	emacs	
emacs	.	hit	enter	
Scroll	down	with	arrow	keys	to	locate	the	new	
LocusZoom	file	
hit	enter	
Change	the	text	file	that	LocusZoom	references	to:	
User_Dataset_Man_TraitName	
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Change	the	SNP	reference	to	the	current	SNP	of	
interest	
Save:	Ctrl	xs	
Close:	Ctrl	xc	

e. Run	LocusZoom	
Command:	cat	runLocuszoom.sh	

f. Highlight	the	text	that	is	returned	
g. Right	click	to	paste	and	execute	the	command		

(this	will	take	a	while	to	run)	
h. To	view	results:	

Open	Filezilla	
Refresh	Blueridge	folder	
A	new	folder	will	appear	with	the	name	of	the	SNP	
just	examined	
Folder	will	contain	a	pdf	file	showing	local	Manhattan	
plot	
Rename	folder	to	indicate	if	result	are	from	TARCC	or	
ADNI	

VI.		Check	the	typed	“driver”	SNPs	that	were	important	for	the	significant	imputation	association	results	
A. 	Generate	list	of	driver	SNPs	

a. Modify	the	MACHTools.xml	file	
i. Navigate	to	the	directory	where	the	imputation	was	performed	
ii. emacs	.	

1. Key	down	to	make	the	following	bean	active	by	removing	the	
“<!--“	from	before	the	block	and	the	“-->”	after	the	block	
(highlighted	below).		The	color	of	these	lines	will	change	
from	red	(inactive)	to	multicolor	(active).	
<!--										<<ref	bean="CalculateCorrForList"/>>-->	
	
IMPORTANT	NOTE!!		The	commands	at	the	beginning	of	this	
file	(that	appear	before	the	first	line	that	says	<list>)	and	the	
commands	at	the	end	of	this	file	(that	appear	after	the	second	
line	that	says	</list>)	should	not	be	altered	and	should	
appear	as	active	at	all	times.		Only	the	lines	between	the	two	
lines	that	say	list	should	ever	be	commented	in	or	out	by	the	
user.		

2. Key	down	close	the	bottom	of	the	file	to	the	bean	id	
properties	for	the	“CalculateCorrForList”	bean;		enter	the	file	
name	for	the	.txt	file	which	has	the	list	of	imputed	SNPs	of	
interest	(example	of	filename	to	change	highlighted	below).		
This	.txt	file	should	be	generated	and	placed	in	the	same	
“impute”	directory	that	you	are	working	on.	
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		<bean	id="CalculateCorrForList"	
class="org.renci.machtool.interpreter.ParallelIdentifyWhichS
npsDroveImputationSingleChromForLIstBasedOnRe	
fMapRunnable">	
				<property	name="minCorr"	value="0.10"/>	
				<property	name="listOfSnps"	
value="RBM_metal_imp_SNPs_of_interest.txt"/>	
<property	name="properties"	ref="configProperties"/>	
	

3. Save	the	.xml	file	and	close.	
	

b. 	Modify	the	machTools.properties	file	
i. Make	sure	you	are	still	in	the	imputation	directory	
ii. emacs	.	

1. Make	sure	that	the	lines	that	say	“projectRefDir=,	
projectMachHapDir=,	and	projectMiniMachHapDir=”	only	
have	the	reference	database	of	interest	shown.		In	previous	
MACHTool	steps	for	imputation,	all	three	databases	were	
specified,	separated	by	commas;	however,	for	this	bean,	
there	must	only	be	one	specified.			

iii. Save	the	properties	file	and	close.	
c. Run	MACHTools	and	designate	a	log	file	name	

i. MACHTool	MACHTool.xml	>log_file_name.log	
d. Format	outputs	

i. Add	file	name	as	a	column	
1. For	f	in	Corr_list_of_snps_*.txt;	do	sed	“s/$/\t$f/”	$f	>	

$f.corrChrom;	done	
ii. Strip	file	extension	from	that	column	

1. For	f	in	Corr_list_of_snps_*.txt.corrChrom.corrChrom;	do	sed	
“s/.txt//”	$f	>	$f.corrChrom;	done	

iii. Strip	file	name	leaving	chromosome	number	
1. For	f	in	Corr_list_of_snps_*.txt.corrChrom.corrChrom;	do	sed	

“s/Corr_list_of_snps_//”	$f	>	$f.corrChrom;	done	
iv. Move	Chr	number	to	front	of	first	column	

1. For	f	in	
Corr_list_of_snps_*.txt.corrChrom.corrChrom.corrChrom;	do	
awk	b=$4”:”$1;	print	b,	$2,	$3	$f.finalchrom;	done	

v. Remove	chrom	from	header	in	Corr_list_of_snps_1.txt…finalchrom	
vi. Write	header	to	new	file	

1. Head	-1	Corr_list_of_snps.txt….finalchrom	>	allcorrChrom.txt	
vii. Write	the	rest	of	the	files	to	allcorrChrom.txt	

1. Tail	–n	+2	–q	Corr_list_of_snps_*.txt….finalchrom	>>	
allCorrChrom.txt	
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I. Making	plink	files	using	lgen	style	(See	Long-format	filesets		In	the	plink	
documentation	(http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml))	

• a	LGEN	file	containing	genotypes	(5	columns,	one	row	per	genotype)		
• a	MAP	file	containing	SNPs	(4	columns,	one	row	per	SNP)		
• a	FAM	file	containing	individuals	(6	columns,	one	row	per	person)		

Consider	the	following	example:	A	MAP	file	test.map		
     1 snp2 0 2 
     2 snp4 0 4 
     1 snp1 0 1 
     1 snp3 0 3 
     5 snp5 0 1 
as	described	above.	A	FAM	file	test.fam		
     1 1 0 0 1 2 
     2 1 0 0 2 2 
     2 2 0 0 1 1 
     9 1 1 2 0 0 
as	described	below.	Finally,	an	LGEN	file,	test.lgen		
     1 1 snp1 A A 
     1 1 snp2 A C 
     1 1 snp3 0 0 
     2 1 snp1 A A 
     2 1 snp2 A C 
     2 1 snp3 0 0 
     2 1 snp4 A A 
     2 2 snp1 A A 
     2 2 snp2 A C 
     2 2 snp3 0 0 
     2 2 snp4 A A 
The	columns	in	the	LGEN	file	are		
     family ID 
     individual ID 
     snp ID 
     allele 1 of this genotype 
     allele 2 of this genotype 
	 	



	 64	

Appendix	B-	Establishing	Blue	Ridge	Server	Connection	

	
Figure	1-		Creating	a	BR0	connection	and	open	a	BR	bash	shell.		Open	MRemote;	FileàNew	
Connection;	fill	in	the	configuration	as	shown.		Right	Click	on	the	new	connection	name	in	the	top	
pane	and	select	“Connect”.		A	new	bash	shell	will	open	in	the	right	pane	(tab	named	“General”).			
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Appendix	C-	Manual	SNP	Cluster	Checking	
Access	the	Remote	Desktop	Space	

1. Launch	Remote	Desktop.			
Note:		if	you	do	not	see	the	icon	in	your	Start	Menu,	you	may	need	to	search	for	the	
application.		StartàSearchàType	“Remote	Desktop”	in	the	field.		Double	click	on	
the	Remote	Desktop	Connection	line	in	the	results	window.	You	can	drag	and	drop	
this	item	onto	your	desktop	to	create	a	shortcut	to	the	Remote	Desktop	Application.	
	

2. Enter	the	Computer	path	as	shown	below.		In	the	User	name	field,	enter	“AD\”	
followed	by	your	RENCI	assigned	user	name.			

	
	

3. Click	Connect.	
4. Once	in	the	remote	space,	click	on	your	user	icon	and	enter	your	RENCI	account	

password.	Your	screen	should	show	the	RENCI	remote	desktop	space	(a	plain	black	
desktop).	You	can	minimize	the	remote	space	at	anytime	and	return	to	your	local	
space	by	using	the	blue	tab	in	the	top,	center	of	the	screen.			
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Checking	SNP	Clustering	
1. Open	a	Computer	browser.		Navigate	to	the	Network	location	called	Texas_Access	

(Z:\\)	then	enter	the	directory	called	SnpCheckerModified	
(\Texas_Access\SnpCheckerModified).			

2. Double-click	the	file	called	ADNI_runSNPChecker	(a	Windows	Batch	file),	and	click	
Run	in	the	Security	Warning	popup	window.		See	the	figure	below	for	the	path	to	
the	file.			

	
3. In	the	first	window,	change	“kirk”	to	your	initials	in	the	User	entering	data	field	and	

enter	the	number	7	in	the	Count	to	skip	to	avoid	conflict	field.		See	the	figure	below	
for	guidance.			
	

	
4. Click	Check	Clusters.			
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5. The	program	will	launch	and	automatically	show	the	first	SNP	for	you	to	check.	
a. Editing	SNPs-		Edit	the	SNP	if	there	are	data	points	that	called	incorrectly.	

Note,	edits	can	be	made	in	either	view.			
i. Edit	many	data	points	at	once:	

1. Select	a	group	of	data	points	by	dragging	a	box	around	the	
points.	

2. Use	the	bottom	row	quick	keys	to	designate	the	genotype	
that	you	wish	to	call:			
	z	=	blue	(AA)				x	=	green	(AB)			c	=	yellow	(BB)			v	=	clear	
(do	not	call)	

3. Enter	g	(group	change)	to	execute	the	group	change	and	
make	all	selected	data	points	the	designated	genotype.			

ii. Edit	single	data	points:	
1. Use	the	bottom	row	quick	keys	to	designate	the	genotype	

that	you	wish	to	call:			
	z	=	blue	(AA)				x	=	green	(AB)			c	=	yellow	(BB)			v	=	clear	
(do	not	call)	

2. Click	on	any	individual	data	point	to	change	the	point	to	the	
designated	genotype.			

iii. Once	all	required	edits	are	made,	Save	Edits	(quick	key	=	d).		
b. Accept	SNP	(quick	key	=	f)	if	all	data	points	fall	into	three	distinct	clusters	

(homozygous	A,	homozygous	B,	and	heterozygous	AB).			
c. Reject	SNP	(quick	key	=	g)	if	a	SNP	does	not	have	distinct	clustering	of	data	

points/genotypes.		
d. If	you	need	to	re-visit	the	previous	SNP,	click	Reconsider	last?	(quick	key	=	

s),	and	the	last	marker	will	be	reloaded	without	the	edits	previously	made.			
6. At	any	time,	you	can	exit	the	program	by	clicking	Exit	program?	And	the	current	

SNP	will	not	be	saved.		Log	out	of	the	remote	space	when	you	are	finished	checking.			
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Examples	
Ex	1:		Accept;	no	edits	required:	
	
	
	
	
	
	
	
	
	
	
	
	
Ex	2:		Reject;	data	points	do	not	cluster	well	into	distinct	genotype	groups:	

	
Ex	3:		Edit;	there	are	many	points	too	called	too	close	to	the	origin	(area	circled	in	red):	
Before	edits:	
	
	
	
	
	
	
	
	
	
	
	
	

After	edits:	
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Appendix B – MaCHTools Example Outputs 

 
Checking input files: 
INFO: 
Running...org.renci.machtoolv4.interpreter.MakeChromSpecificMachFromPli
nkRunnable 
The chromosome file had 23 lines. 
There were 23 unique lines in the chromosome file. 
The sample fam had 692 lines 
The map file had 903007 lines of which 901454 are being used 
Chrom 1 has 70913 snps. 
Chrom 2 has 73588 snps. 
Chrom 3 has 60373 snps. 
Chrom 4 has 55733 snps. 
Chrom 5 has 56153 snps. 
Chrom 6 has 55981 snps. 
Chrom 7 has 46766 snps. 
Chrom 8 has 48369 snps. 
Chrom 9 has 41228 snps. 
Chrom 10 has 47990 snps. 
Chrom 11 has 44333 snps. 
Chrom 12 has 42333 snps. 
Chrom 13 has 34069 snps. 
Chrom 14 has 27924 snps. 
Chrom 15 has 25958 snps. 
Chrom 16 has 27573 snps. 
Chrom 17 has 20558 snps. 
Chrom 18 has 26401 snps. 
Chrom 19 has 11840 snps. 
Chrom 20 has 22743 snps. 



	 70	

Chrom 21 has 12496 snps. 
Chrom 22 has 11473 snps. 
Chrom X has 36659 snps. 
Had to create chromsome specific data directory called 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imputatio
n/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificData. 
Had to create chromsome specific data directory called 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imputatio
n/MaCHTools_projects/MT4test/F7/inputFiles/TempChromosomeSpecificRawDat
a. 
Sorting genotype: dot printed for each 10M genotypes read 1000M/row 
............................................................. 
Genotype records for chromosome 1 = 47992881 
Genotype records for chromosome 2 = 49755287 
Genotype records for chromosome 3 = 40773057 
Genotype records for chromosome 4 = 37586524 
Genotype records for chromosome 5 = 37941035 
Genotype records for chromosome 6 = 37858487 
Genotype records for chromosome 7 = 31619602 
Genotype records for chromosome 8 = 32700978 
Genotype records for chromosome 9 = 27852960 
Genotype records for chromosome 10 = 32518836 
Genotype records for chromosome 11 = 29975294 
Genotype records for chromosome 12 = 28629138 
Genotype records for chromosome 13 = 23018662 
Genotype records for chromosome 14 = 18885474 
Genotype records for chromosome 15 = 17595346 
Genotype records for chromosome 16 = 18688357 
Genotype records for chromosome 17 = 13953762 
Genotype records for chromosome 18 = 17852117 
Genotype records for chromosome 19 = 8029414 
Genotype records for chromosome 20 = 15426694 
Genotype records for chromosome 21 = 8462338 
Genotype records for chromosome 22 = 7796449 
Genotype records for chromosome X = 24879711 
............................................... 
Warning there were a total of 29489 samples-snp pairs with discordant 
genotypes.  
A list is written to 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imputatio
n/MaCHTools_projects/MT4test/F7/inputFiles/discordantGenotype01.txt. 
Review before deciding to proceed. 
total of 47992881 genotypes for chromosome 1 read 
................................................. 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imputatio
n/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificData/Genot
ypeChrom_01.ped written with 49071796 genotypes. 
...................................................................... 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imputatio
n/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificData/Genot
ypeChrom_01.dat written with 70983 lines, including 692 samples and 
70913 SNPs. 
Also includes 69 traits and covariates. 
................................................. 
Warning there were a total of 31097 samples-snp pairs with discordant 
genotypes.  
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A list is written to 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imputatio
n/MaCHTools_projects/MT4test/F7/inputFiles/discordantGenotype02.txt. 
Review before deciding to proceed. 
total of 49755287 genotypes for chromosome 2 read 
.................................................. 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imputatio
n/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificData/Genot
ypeChrom_02.ped written with 50922896 genotypes. 
.......................................................................
.. 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imputatio
n/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificData/Genot
ypeChrom_02.dat written with 73658 lines, including 692 samples and 
73588 SNPs. 
Also includes 69 traits and covariates. 
 
Filtering by user defined QC measures 
	
INFO: 
Running...org.renci.machtoolv4.interpreter.FilterChromSpecificMachRunna
ble 
Created chromsome specific data directory called 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imputatio
n/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificData/Backu
p_org. 
The chromosome file had 23 lines. 
There were 23 unique lines in the chromosome file. 
There are expected to be 69 traits plus covariates and 70913 SNPs based 
on the dat file for chrom 1. 
................................................. 
Finished reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imputatio
n/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificData/Genot
ypeChrom_01.ped 
................................................. 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imputatio
n/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificData/Genot
ypeChrom_01.ped written with 49071796 genotypes. 
...................................................................... 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imputatio
n/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificData/Genot
ypeChrom_01.dat written with 70983 lines, including 692 samples and 
70913 SNPs. 
Also includes 69 traits and covariates. 
There are expected to be 69 traits plus covariates and 73588 SNPs based 
on the dat file for chrom 2. 
.................................................. 
Finished reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imputatio
n/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificData/Genot
ypeChrom_02.ped 
.................................................. 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imputatio
n/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificData/Genot
ypeChrom_02.ped written with 50922896 genotypes. 
.......................................................................
.. 
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/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imputatio
n/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificData/Genot
ypeChrom_02.dat written with 73658 lines, including 692 samples and 
73588 SNPs. 
Also includes 69 traits and covariates. 

	
Make SNP IDs unique in references 

INFO: 
Running...org.renci.machtoolv4.interpreter.MakeIdsUniqueInRefMapsRu
nnable 
The chromosome file had 23 lines. 
There were 23 unique lines in the chromosome file. 
Reading ref map for 1000G dir  for chrom 1 had 943778 snps 
Reading ref map for 1000G dir  for chrom 2 had 1008166 snps 
Reading ref map for 1000G dir  for chrom 3 had 855225 snps 
Reading ref map for 1000G dir  for chrom 4 had 876838 snps 
Reading ref map for 1000G dir  for chrom 5 had 758761 snps 
Reading ref map for 1000G dir  for chrom 6 had 793578 snps 
Reading ref map for 1000G dir  for chrom 7 had 712005 snps 
Reading ref map for 1000G dir  for chrom 8 had 672841 snps 
Reading ref map for 1000G dir  for chrom 9 had 525998 snps 
Reading ref map for 1000G dir  for chrom 10 had 609026 snps 
Reading ref map for 1000G dir  for chrom 11 had 598263 snps 
Reading ref map for 1000G dir  for chrom 12 had 579840 snps 
Reading ref map for 1000G dir  for chrom 13 had 433811 snps 
Reading ref map for 1000G dir  for chrom 14 had 394379 snps 
Reading ref map for 1000G dir  for chrom 15 had 354493 snps 
Reading ref map for 1000G dir  for chrom 16 had 378740 snps 
Reading ref map for 1000G dir  for chrom 17 had 328899 snps 
Reading ref map for 1000G dir  for chrom 18 had 343862 snps 
Reading ref map for 1000G dir  for chrom 19 had 281732 snps 
Reading ref map for 1000G dir  for chrom 20 had 266037 snps 
Reading ref map for 1000G dir  for chrom 21 had 170073 snps 
Reading ref map for 1000G dir  for chrom 22 had 170949 snps 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/references/1000G/Chr_X.map does not exist 
All ref map SNP names are at unique place on one chromsome. 
 

Reorder sample SNPs to match reference SNPs 

INFO: 
Running...org.renci.machtoolv4.interpreter.ReorderSNPsBasedOnRefMap
Runnable 
The chromosome file had 23 lines. 
There were 23 unique lines in the chromosome file. 
Created chromsome specific data directory called 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/projects/sequence_an
alysis/vol1/chat/TARCImpute/txjeffm/UCSF/imputation/MaCHTools_proje
cts/MT4test/F7_validation/inputFiles/ChromosomeSpecificData. 
Checking MACH dat files 
Checking project map file 
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Compare allele definitions between samples and references 
 
INFO: 
Running...org.renci.machtoolv4.interpreter.CompareAllelesRunnable 
The chromosome file had 23 lines. 
There were 23 unique lines in the chromosome file. 
There are expected to be 69 traits plus covariates and 70913 SNPs 
based on the dat file for chrom 1. 
................................................. 
Finished reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/GenotypeChrom_01.ped 
Reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/references/1000G/Chr_1.gz 
...................................................................
................................. 
...................................................................
................................. 
...................................................................
................................. 
...................................................................
................................. 
...................................................................
................................. 
 
Reading ref map for 1 had 943778 lines. 
All ref map SNP names are at unique place on  chromsome 1. 
rs41457352 had alleles GT the test data and TA for the ref 
haplotypes for chrom 1 for 1000G 
There are expected to be 69 traits plus covariates and 73588 SNPs 
based on the dat file for chrom 2. 
.................................................. 
Finished reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/GenotypeChrom_02.ped 
Reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/references/1000G/Chr_2.gz 
...................................................................
................................. 
...................................................................
................................. 
...................................................................
................................. 
...................................................................
................................. 
...................................................................
................................. 
 
Reading ref map for 2 had 1008166 lines. 
All ref map SNP names are at unique place on  chromsome 2. 
There are expected to be 69 traits plus covariates and 60373 SNPs 
based on the dat file for chrom 3. 
......................................... 
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Finished reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/GenotypeChrom_03.ped 
Reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/references/1000G/Chr_3.gz 
...................................................................
................................. 
...................................................................
................................. 
...................................................................
................................. 
...................................................................
................................. 
...................................................................
................................. 
 
Reading ref map for 3 had 855225 lines. 
All ref map SNP names are at unique place on chromosome 3. 
 
Split chromosomes into manageable jobs for haplotype estimation 
INFO: 
Running...org.renci.machtoolv4.interpreter.SplitChromSpecificMachRu
nnable 
Created chromsome specific data directory called 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs. 
The chromosome file had 23 lines. 
There were 23 unique lines in the chromosome file. 
There are expected to be 69 traits plus covariates and 70913 SNPs 
based on the dat file for chrom 1. 
................................................. 
Finished reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/GenotypeChrom_01.ped 
. 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_0.ped written with 1384692 genotypes. 
.. 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_0.dat written with 2071 lines, including 692 
samples and 2001 SNPs. 
Also includes 69 traits and covariates. 
. 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_1.ped written with 1384692 genotypes. 
.. 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_1.dat written with 2071 lines, including 692 
samples and 2001 SNPs. 
Also includes 69 traits and covariates. 
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. 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_2.ped written with 1384692 genotypes. 
.. 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_2.dat written with 2071 lines, including 692 
samples and 2001 SNPs. 
Also includes 69 traits and covariates. 
. 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_3.ped written with 1384692 genotypes. 
.. 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_3.dat written with 2071 lines, including 692 
samples and 2001 SNPs. 
Also includes 69 traits and covariates. 
. 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_4.ped written with 1384692 genotypes. 
.. 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_4.dat written with 2071 lines, including 692 
samples and 2001 SNPs. 
 

Merge MaCH haplotypes back together after haplotype estimation 

INFO: 
Running...org.renci.machtoolv4.interpreter.MergeMachHaplotypesRunna
ble 
Reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_0.dat 
There are expected to be 69 traits plus covariates and 2001 SNPs 
based on the dat file for chrom 1. 
Reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_0.gz 
............. 
Reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_1.dat 
There are expected to be 69 traits plus covariates and 2001 SNPs 
based on the dat file for chrom 1. 
Reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_1.gz 
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............. 
Ligating haps 
............. 
... 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_temp.dat written with 3071 lines, including 3001 
SNPs. 
Also includes 69 traits. 
Hap file 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_temp.gz written. 
Reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_temp.dat 
There are expected to be 69 traits plus covariates and 3001 SNPs 
based on the dat file for chrom 1. 
Reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_temp.gz 
............. 
Reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_2.dat 
There are expected to be 69 traits plus covariates and 2001 SNPs 
based on the dat file for chrom 1. 
Reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_2.gz 
............. 
Ligating haps 
............. 
.... 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_temp.dat written with 4071 lines, including 4001 
SNPs. 
Also includes 69 traits. 
Hap file 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_temp.gz written. 
Reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_temp.dat 
There are expected to be 69 traits plus covariates and 4001 SNPs 
based on the dat file for chrom 1. 
Reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_temp.gz 
............. 
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Reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_3.dat 
There are expected to be 69 traits plus covariates and 2001 SNPs 
based on the dat file for chrom 1. 
Reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/SplitJobs/Chr_1_3.gz 
............. 
Ligating haps 
............. 
..... 
 
Resolving ambiguities regarding strand orientation for sample SNPs – Chr 1 
INFO: 
Running...org.renci.machtoolv4.interpreter.SingleChromFixMarkerDefI
nHaplotypesRunnable 
Reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/Chr_1.dat 
There are expected to be 69 traits plus covariates and 70913 SNPs 
based on the dat file for chrom 1. 
Reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/Chr_1.gz 
............. 
Reading ref map for 1 had 943778 lines. 
All ref map SNP names are at unique place on chromosome 1. 
Reading 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/references/1000G/Chr_1.gz 
...................................................................
................................. 
...................................................................
................................. 
...................................................................
................................. 
...................................................................
................................. 
...................................................................
................................. 
 
1 incompatible markers 
29874 markers with assays from the other strand based on alleles 
observed 
10112 markers that are ambiguous whether they are coded the same 
way as the ref that need to be checked 
Switching alleles of test haps to base pairing compliment to make 
consistent with ref haps 
............................. 
Testing best marker configuration of markers where base pairing 
rules do not specify which way to code snps 
...................................................................
................................. 
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...................................................................

................................. 

...................................................................

................................. 

...................................................................

................................. 

...................................................................

................................. 

...................................................................

................................. 

...................................................................

................................. 

...................................................................

................................. 

...................................................................

................................. 

...................................................................

................................. 

........... 
10112 of 10112 snps that were ambiguously coded were recoded. 
...................................................................
... 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/Chr_1.snp written with 70913 lines, including 70913 SNPs. 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/Chr_1.gz backed up to 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/Backup 
1 is/are being removed because they were incompatible the reference 
haplotypes based on observed alleles 
 or are gt or AT polymorphisms and the reference genotypes were 
monomorphic 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/Chr_1.dat backed up to 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/Backup 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/Chr_1.snp backed up to 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/Backup 
.........Now excluded 9823 rs41457352 
............................................................. 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/Chr_1.dat written with 70982 lines, including 70912 SNPs. 
Also includes 69 traits. 
...................................................................
... 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/Chr_1.snp written with 70912 lines, including 70912 SNPs. 
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Hap file 
/projects/sequence_analysis/vol1/chat/TARCImpute/txjeffm/UCSF/imput
ation/MaCHTools_projects/MT4test/F7/inputFiles/ChromosomeSpecificDa
ta/Chr_1.gz written. 
1 chromsome files changed. 
 
Appenix C – Factor VII Validation Table 
 
Trait Chromosome SNPs P-value 

in 
published 
analysis 

P-value in 
MaCHTools 
validation 

Factor 
VII 

13 rs7630910 
rs1755685 
rs2637255 
rs1545251 
rs6762390 
rs12151434 
rs9600699 
rs7804867 
rs207482 
rs113114 

1.87E-06 
2.11E-06 
5.38E-06 
6.10E-06 
6.14E-06 
7.71E-06 
8.81E-06 
9.59E-06 
1.37E-05 
1.64E-05 
 

1.87E-06 
2.11E-06 
5.38E-06 
6.10E-06 
6.14E-06 
7.71E-06 
8.81E-06 
9.59E-06 
1.37E-05 
1.64E-05 
 

 
Table 1: Summary of the most significant signals observed in each QTL analysis. 
Factor VII p-values were pulled from Manhattan tables before meta-analysis. All 
significant p-values were replicated identically. 
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. 
 
Appendix D – D Plots 

 
Figure 11. QQ plot of expected vs. observed p-values in GWAS of D using 
participants with D scores recorded during wave 1. 
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Figure 11. QQ plot of expected vs. observed p-values in GWAS of D using 
participants with D scores recorded during wave 2. 
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Figure 12. QQ plot of expected vs. observed p-values in GWAS of D using 
participants with D scores recorded during wave 3. 
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Figure 13. QQ plot of expected vs. observed p-values in GWAS of D using 
participants with D scores recorded during wave 4. 
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Figure 14. QQ plot of expected vs. observed p-values in GWAS of D using 
participants with D scores recorded during wave 5. 
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Figure 15. Manhattan plot of –log p-values across the 22 chromosomes in the 
GWAS of D using participants with D scores recorded during wave 1. 
 
 
 



	 86	

 
Figure 16. Manhattan plot of –log p-values across the 22 chromosomes in the 
GWAS of D using participants with D scores recorded during wave 2. 
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Figure 17. Manhattan plot of –log p-values across the 22 chromosomes in the 
GWAS of D using participants with D scores recorded during wave 3. 
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Figure 18. Manhattan plot of –log p-values across the 22 chromosomes in the 
GWAS of D using participants with D scores recorded during wave 4. 
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Figure 19. Manhattan plot of –log p-values across the 22 chromosomes in the 
GWAS of D using participants with D scores recorded during wave 5. 
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