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Abstract

This doctoral thesis investigates approaches to improve efficiency of A and D optimal

designs for the two parameter logistic model.

Aim 1: For A-optimality, by virtue of Cramér–Rao bound, the trace of the

inverse of Information matrix for the parameters serves as a lower bound for the

sum of variances of the estimators and the bound is attained asymptotically. Hence,

asymptotically, A-optimality is achieved by minimizing the trace of the inverse of the

Information matrix. For non-linear models, Cramér–Rao bound is crude for finite

samples and hence the asymptotic solution can be very different from the design that

minimizes the sum of variances. We explore the validity of the asymptotic solution

by directly minimizing the sum of variances using numerical methods in a restricted

search space. We demonstrate that even in a very restrictive search space of point

symmetric designs, the theoretical solution is half as efficient for a sample size of 100.

Further improvement can be achieved by relaxing the restriction of the solution being

point symmetric.

Aims 2 & 3: The solution to A and D optimal designs for the logistic model

depend on the unknown parameters of the model. Therefore, to obtain an optimal

design the experimenter must inform the design based on some prior knowledge, or

a guess, of the unknown parameters. This is a severe limitation on the ability to

identify an optimal design especially when there is little prior information to inform

the guess. Here we explore the use of a two-stage A-optimal design for finite samples

and three-stage D-optimal design for large samples to mitigate the loss in efficiency

which may arise due to poor guess values. We demonstrate that while two-stage finite

sample model results in gain in efficiency with small sample sizes at 70% allocation

to the first stage. The three-stage D optimal design is shown to be almost always

better than the single stage and the corresponding two-stage design.
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Chapter 1

Introduction

Statistical methodology is widely employed in the design and analysis of experiments

and is a corner stone of scientific investigation. Historically, methodological research

has focused extensively on addressing the properties of experiments that aim to com-

pare outcomes between groups. In such experiments, the conditions of the experi-

ments are known ahead of time and the goal is to evaluate the effect of a co-variate,

such as treatment, on a response variable. The choice of design is motivated by a need

to control the type I and type II errors through the choice of an appropriate sample

size. Whereas this continues to be a fertile and important area of research, another

important type of experiments aimed to describe and quantify the relationship be-

tween a stimulus and resulting response has gained much attention in recent years.

While the sample size for such studies is usually based on cost or other practical

considerations, important unknowns pertaining to the experimental design - such as

the number of levels of the co-variate to study, the particular levels to study, and the

proportion of the total sample size to be allocated to each of the chosen levels must

be determined before embarking on the conduct of the experiment. A metric, such

as a statistical criterion, is needed to choose among the potentially infinite number

of possible designs. Such a criterion can aid in evaluating potential designs and help
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identify a design that is best. It can also help to evaluate the loss in efficiency in

situations where a compromise must be made, e.g. when a particular design is not

feasible due to other practical limitations. The theory of optimal designs consid-

ers this problem formally and is concerned with identifying an ‘optimal design’ with

respect to a chosen statistical criterion.

1.1 Development of optimal design theory

In early 20th century, the use of statistics in design and conduct of experiments

was pioneered by Sir R. A. Fisher and exemplified by the famous lady tasting tea

experiment detailed in his book, The design of experiments, Fisher (1949). His work

established the notion of the null -hypothesis and the use of probability theory to

disprove the null. Soon thereafter the foundational principles from Fisher’s work were

adopted for application in several fields. The applications to industrial engineering in

particular lead to the development of Response Surface Methodology (RSM) aimed

to best characterize relationships between input and output variables, Box & Wilson

(1951). By mid-century, Kiefer’s initial investigations into optimal design theory

also began and the development of the General Equivalence Theorem had advanced

the estimation methods for linear models (Kiefer (1959); Kiefer & Wolfowitz (1960);

Kiefer (1961)). The extensions to non-linear models followed soon thereafter White

(1973) and specific applications of the optimal design theory to the two parameter

logistic model as they relate to dose-response studies in the pharmaceutical industry

were also developed Heise & Myers (1996); Wu (1985).

For a more complete review of the history and development of optimal design

theory the reader is directed to the following books - Shah & Sinha (1989); Silvey

(1980); Pukelsheim (1993); Fedorov & Leonov (2013).
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By early 21 th century, the advances in computer technology and availability of

cheap computational power have furthered several more advances specifically as they

apply to generalized linear models.

1.2 Relevance to Public Health

Public health investigations and interventions aim to maximize the common good for

populations by evaluating strategies to improve health. Experimental design is critical

to unambiguously identify factors that can improve health. For any interventions

involving a dose-response relationship, optimal design of experiments can provide a

way to maximize the information obtained.

Several recent studies in the public health sphere have employed optimal designs

in wide ranging fields. Fredrickson et al. (2005) applied optimal design methods in

survey methodology to determine ways to maximize the response rate to a survey

questionnaire. Through the use of an optimized contingent financial incentive they

were able to realize an increase in response rate of 20-25 %. Klick et al. (2012, 2014);

Cope (2019) considered the optimal design methods to study influenza transmission.

They investigated the design parameters of sample size and follow-up intensity for

estimation and comparison of secondary attack proportion of influenza.Santos et al.

(2020) investigated the use of optimal methods in antibiotic research to map the

response surface of Eosin Y concentration and irradiation time on Staphylococcus

aureus counts.

To illustrate the application of optimal design of experiments to public health

problems in a contemporaneous example, consider a public health department aiming

to increase COVID-19 vaccination rate through a monetary compensation program.

One way to approach this problem is to conduct an experiment by providing several

levels of compensation to groups of subjects and ascertaining the rate of vaccination
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at each compensation level. To conduct such an experiment the following questions

must be adequately considered:

• How many compensations levels to study?

• What is the compensation at each level?

• Given an overall sample size, what proportion of subjects should be allocated

to each level?

In practice, the answer to each of the above question is based on the best

judgment of the investigator and available historical evidence from literature and

other sources. This is subject to the experience of each investigator and does not

provide a quantitative way to evaluate the impact of varying a factor on the design

efficiency. The theory of optimal design of experiments provides answers each of these

questions based on optimization of a chosen statistical criterion.

While the example described here is simple and avoids the discussion of myriad

other factors which may affect the choice of the final design, it powerfully illustrates

a practical application to public health problems. The techniques presented in this

thesis can be expanded and applied to incorporate other factors and more parameters.

1.3 Optimality Criterion

Optimal designs aim to maximize the amount of information obtained from an ex-

periment. To this end, and owing to the inverse relationship between variability and

statistical information, it is helpful to think about the goal of the design in terms of

minimizing variability of the parameter estimates. When more than one parameter

is required to characterize a relationship, e.g. intercept and slope in a two-parameter

regression model, a carefully chosen function of the information matrix may serve as

the statistical criterion. The chosen criterion, based on the inferential goals of the
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study, may represent minimizing the variability of a single parameter, or a combina-

tion of parameters, or minimizing the generalized variance of the parameter estimates.

Jack Kiefer is credited with developing the alphabetical notations to describe the op-

timality criteria Kiefer (1959). The focus of this work will be two specific criteria

that are widely employed in the design of optimal experiments, A-optimality and

D-optimality. A-optimality seeks to minimize the sum of the variances of parameters

and D-optimality seeks to maximize the determinant of the information matrix and

hence minimize the generalized variance. Prior theoretical work primarily addressed

the optimal design problem for the linear models, but in recent years has been ex-

tended to non-linear models through recent developments in the theory of generalized

linear models (GLMs).

1.4 Scope of work

This doctoral thesis investigates approaches to improve efficiency of optimal design

of experiments for the two parameter logistic model.

While the theoretical A-optimal solution based on the Cramér–Rao bound is at-

tained asymptotically, it is hypothesized that direct minimization of the A-optimality

criterion using numerical methods can lead to identification of alternate designs with

improved efficiency. It is further hypothesized that by expanding the search outside

of the symmetric design space further efficiency can be gained.

It is also noted that the information matrix for linear models is independent

of the unknown parameters of the relationship that the experiment is intending to

model. This is not the case with non-linear models and, for such models, the experi-

menter informs the design based on some prior knowledge, or a guess, of the unknown

parameters to obtain an optimal design. This is a severe limitation on the ability to

identify an optimal design especially when there is little prior information to inform
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the guess. One approach to address this problem is through the use of multi-stage

models. Nandy & Nandy (2015), investigated the properties of a two-stage design and

demonstrated that when a proportion of the overall sample is utilized to inform and

update the initial guess, the resulting four point design results in improved efficiency

compared to the theoretical design and that this design performs better than using

a single stage framework, on average. However, it is also recognized that when the

initial guess for the first stage is very far from the true values the overall efficiency

reduces considerably.

This leads to the main topics of this thesis:

• Specific Aim 1: To explore the validity of the A-optimal asymptotic solution by

directly minimizing the sum of variances using numerical methods in a limited

search space for finite sample sizes using a two-parameter logistic model.

• Specific Aim 2: To explore the properties and efficiency of a two-stage finite

sample model employing the A-optimality criterion.

• Specific Aim 3: To explore the properties and efficiency of a three-stage model

employing the D-optimality criterion.

A brief description of the following chapters of the thesis follows. Chapter 2

provides an introduction to statistical theory relating to GLMs, parameter estimation,

and optimality criteria. Chapter 3, 4, and 5 present results from the investigation

of specific aim 1, 2, and 3 respectively. Chapter 6 summarizes the findings from the

investigations outlined in this thesis and describes future avenues of research.
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Chapter 2

Theory

2.1 Design notation

We introduce some notation and a formal definition of the optimal design problem.

As stated previously, for a given underlying model, the choice of a design com-

prises of three main decisions namely, number of doses (or levels), magnitude of each

dose, and the number of subjects at each dose.

Formally, an experimental design, D, is defined as D = {(xi, ξi), i = 1, 2, . . . ,m},

where xi and ξi are the ith dose (or level) of stimulus and weight at that stimulus

respectively such that
∑m

i=1 ξi = 1 and all ξi > 0, implying a continuous setting. We

also assume that the dose range is 0 < xi <∞. A design is represented as follows

D =

x1 x2 . . . xm

ξ1 ξ2 . . . ξm


The problem definition involves the identifying the number of experimental

levels m, the dose levels xi (also referred to as design points), and the proportion

of sample size allocated at each dose level ξi (also referred to as weights), also known
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as weights at each design point, such that a chosen statistical criterion is optimized

and amount of information obtained from the experiment is maximized.

2.2 Logistic regression

We begin by introducing the logistic model for binary data. Let Y1, Y2, . . . , Yn be

binary responses for n subjects and xi1, xi2,. . . , xip be the p regression variables for

subject i. The class of General Linear Models (GLMs) for this data can be formulated

as

prob(Yi = 1|xi) = P (Xi
Tθ)

Where, Xi = (1, xi1, . . . , xip)
T , θ = (θ0, θ1, . . . , θp)

T is the vector of unknown param-

eters, and P (x) is a cumulative distribution function (cdf). For the logistic model the

cdf is defined to be P (x) = 1
1+e−x . The likelihood function for θ can be written as

L(θ) =
n∏
i=1

P (Xi
Tθ)Yi(1− P (Xi

Tθ))(1−Yi)

The likelihood equations are

n∑
i=1

Xi
[Yi − P (Xi

Tθ)]P ′(Xi
Tθ)

P (Xi
Tθ)(1− P (Xi

Tθ))
= 0

The maximum likelihood estimates of θ, θ̂ are obtained by solving the non-linear

equations numerically. The Fisher information matrix can be obtained as follows

E

(
−∂

2lnL(θ)

∂θ∂θT

)
=

n∑
i=1

IXi
=

P ′(Xi
Tθ)2

P (Xi
Tθ)(1− P (Xi

Tθ))

IXi
is the information matrix for θ at a the design point Xi.The inverse of P (x) is

known as the link function for these GLMs and for logitic model, this link function

corresponds to the logit. For a two-parameter logistic model, the GLM can simplified
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to

prob(Yi = 1|xi) =
1

1 + e−(α+βxi)
= π(xi)

Where α and β are the unknown parameters and β > 0. This can also be written as

log

(
π(xi)

1− π(xi)

)
= logit[π(xi)] = α + βxi

The variance of Yi depends of the mean response µi. For the binomial response

model V (Yi) = riµi(1−µi), where ri is the number of observations at xi. It is worth-

while to note that the link function for a normally distributed response is identity

and hence the variance V (Yi) = σ2 is a constant. Note that both A and D optimality

criteria are functions of the information matrix which, in turn, is inversely related to

the variance. Thus, it is easy to see that the solution for the logistic model optimal

design depends on the true unknown parameters through µi, while the optimal design

solution for the standard linear model is independent of the unknown parameters.

2.3 Information matrix

The information matrix for the joint estimation of α and β for a two-parameter logistic

model is obtained as follows. The likelihood for the ith observation

Li(α, β|xi) =


π(xi) if yi = 1

1− π(xi) if yi = 0

Alternately, the above may be combined into

Li(α, β|xi) = π(xi)
yi(1− π(xi))

1−yi

9



The log-likelihood is

li(α, β|xi) = (1− yi) log(1− π(xi)) + yi log(π(xi))

Ignoring the constant term, the joint log-likelihood is

l(α, β|x1, . . . , xn) ∝
n∑
i=1

(1− yi) log(1− π(xi)) + (yi) log(π(xi))

=
n∑
i=1

yi log
π(xi)

1− π(xi)
+ log(1− π(xi))

=
n∑
i=1

[yi(α + βxi)− log(1 + eα+βxi)]

The information matrix for the two-parameter logistic model is a 2 x 2 matrix, with

the following elements

I(α, β) =

−E[∂
2l(α,β)
∂α2 ] −E[∂

2l(α,β)
∂α∂β ]

−E[∂
2l(α,β)
∂α∂β ] −E[∂

2l(α,β)
∂β2 ]


Substituting the second derivatives in the information matrix

I(α, β) =

 ∑n
i=1

e−(α+βxi)

(1+e−(α+βxi))2

∑n
i=1 xi

e−(α+βxi)

(1+e−(α+βxi))2∑n
i=1 xi

e−(α+βxi)

(1+e−(α+βxi))2

∑n
i=1 x

2
i

e−(α+βxi)

(1+e−(α+βxi))2


For a design with m levels, each with ξ1, ξ2, . . . , ξm proportion of the total sample,

the information matrix may be written as

I(α, β) =

 ∑m
i=1 ξi

e−(α+βxi)

(1+e−(α+βxi))2

∑m
i=1 ξixi

e−(α+βxi)

(1+e−(α+βxi))2∑m
i=1 ξixi

e−(α+βxi)

(1+e−(α+βxi))2

∑m
i=1 ξix

2
i

e−(α+βxi)

(1+e−(α+βxi))2


10



2.4 D-Optimality criterion

The D-optimality criterion seeks to minimize the generalized variance of the parame-

ter estimates or, alternatively, maximize the determinant of the information matrix,

there by maximizing the differential Shannon information content of the parameter

estimates. From the information matrix, the determinant is computed as follows

β2|I(α, β)| =
[ m∑
i=1

ξi
e−ai

(1 + e−ai)2

][ m∑
i=1

ξia
2
i

e−ai

(1 + e−ai)2

]
−
[ m∑
i=1

ξiai
e−ai

(1 + e−ai)2

]2

Where ai = α+βxi. It is well known that the theoretical D-optimal solution is a two-

point solution that is point-symmetric and weight-symmetric. That is, the D-optimal

solution has the following form

DD =

x1 x2

0.5 0.5


Where, x1 and x2 are the design points (levels) and the total sample size is

allocated equally to each of these design points. The design points are obtained by

solving −cD = α+βx1 and cD = α+βx2. The D-optimality criterion is maximized at

the critical value cD = 1.5434. In practice, α and β are unknown and guess values are

often used. The derivation of the D-optimal solution is detailed in several references

Minkin (1987); Khan & Yazdi (1988); Sitter & Wu (1993); Mathew & Sinha (2001).

2.5 A-Optimality criterion

The A-optimality criterion aims to minimize the sum of the variances of the esti-

mated parameters. That is, for the two-parameter logistic model, the A-optimality

criterion seeks to minimize V ar(α̂) + V ar(β̂). This criterion can be estimated from
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the information matrix as the trace of the inverse of the information matrix.

V ar(α̂) + V ar(β̂) ≥

∑m
i=1 ξi

e−ai
(1+e−ai)2

(
1 + (ai−α)2

β2

)
|I(α, β)|

Where ai = α + βxi, and equality is only attained for large sample sizes.

The solution to the A-optimal design was first postulated by Mathew & Sinha

(2001) under restricted conditions and later Yang (2008) established more rigorously.

The A-optimal design is known to point-symmetric but not weight symmetric.

DA =

x1 x2

ξ1 ξ2


Again, as with D-optimality, x1 and x2 are the design points and are obtained

by solving −cA = α + βx1 and cA = α + βx2. For the A-optimal solution, cA is the

positive solution of following quadratic equation

c2A − α2 − β2√
β2 + (cA + α)2 +

√
β2 + (cA − α)2

= 1 +
cA(1− ecA)

1 + ecA

The proportion of sample size allocated to the first design point is obtained by

ξ1 =

√
β2 + (cA + α)2√

β2 + (cA + α)2 +
√
β2 + (cA − α)2

Also, ξ2 = 1− ξ1. For a more complete treatment, see Yang (2008).
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Chapter 3

Finite Samples in A-Optimal

Designs

Sample size chosen for any given experiment is limited especially in health sciences,

either due to ethical considerations or resource limitations. Therefore, a finite sample

is a consideration that researchers often encounter in practice. While the D-optimal

design is independent of sample size, the A-optimal design is not. As discussed in the

previous chapter, an A-optimal design is one that minimizes the sum of variances of

all estimated parameters. The expression from section 2.5 for the lower bound for the

A-optimality criterion holds asymptotically by virtue of Cramér–Rao bound. For non-

linear models, the Cramér–Rao bound is known to be crude with small samples and

hence the asymptotic solution can be very different from the design that minimizes

the sum of variances.

This insight offers an opportunity to improve upon the A-optimal design by

directly minimizing the sum of variances of the estimated parameters in a given

search space through the use of numerical methods. The resulting improvement

can be quantified as a measure relative to the A-optimal criterion of the theoretical

solution.
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3.1 Methodology

Without loss of generality the true, unknown values for (α, β) are chosen to be (αt =

1, βt = 1) for all investigations in this chapter. The methods outlined here can be

easily applied to other values by re-scaling the results from this investigation. The

outline of the chapter is as follows:

1. We start by estimating the theoretical A-optimal design using the method out-

lined in section 2.5

2. Under a restricted search space of two-point, point-symmetric but not weight-

symmetric designs, we searched for designs which improve upon on the theoret-

ical estimate for finite samples under the following conditions:

• First, by fixing the doses to those determined by the theoretical solution,

and searching for a proportion that minimizes the A-optimality criterion

• Next, by fixing the proportion to the theoretical solution, and searching

for point-symmetric doses that minimizes the A-optimality criterion

• Finally, by conducting an exhaustive grid search in the aforementioned

restricted space.

3. We complete the investigation by relaxing the point-symmetric restriction, and

conducting an exhaustive grid search.

3.2 Performance of the theoretical A-optimal de-

sign

For (αt = 1, βt = 1), the theoretical A-optimal solution is identified to be cA = 1.482

and ξ1 = 0.29. The design points x1 and x2 are obtained by solving −cA = αt + βtx1

14



and cA = αt + βtx2. Therefore, the A-optimal design is

DA =

−2.482 0.482

0.29 0.71


For this design, the magnitude of the A-optimality criterion employing the asymptotic

solution is estimated as the trace of the inverse of the information matrix, standard-

ized by the sample size of the experiment. That is,

Aopt =
tr(I(αt, βt)

−1)

n

These estimates are considered to be reference values and indicate the best perfor-

mance of the optimal design if asymptotic results hold. Next, to investigate the finite

sample properties of this design under real experimental conditions, the following

algorithm was employed and the A-optimal criterion was estimated directly.

1. Given a design, the probability of observing a successful outcome at each dose

can be estimated using

p1 =
1

1 + exp (−1 + cA−α
β

)
and p2 =

1

1 + exp (−1 + −cA−α
β

)

2. For a given sample size, say n, random samples of size n1 = n ∗ ξ1 and n2 =

n ∗ (1 − ξ2) are generated representing the number of samples at each of the

design points, i.e. low dose x1 and high dose x2 respectively, from a binomial

distribution.

3. Next, a logistic regression model is fit to the resulting data set, with the random

sample as the outcome variable and the design points as the input variable, to

estimate the unknown parameters α̂ and β̂
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Sample Size (n) cA x1D x2D ξ1 Aopt A∗opt

20 1.482 -2.482 0.482 0.29 0.54 29.15

40 1.482 -2.482 0.482 0.29 0.27 4.84

60 1.482 -2.482 0.482 0.29 0.18 1.31

80 1.482 -2.482 0.482 0.29 0.14 0.57

100 1.482 -2.482 0.482 0.29 0.11 0.25

300 1.482 -2.482 0.482 0.29 0.04 0.04

1000 1.482 -2.482 0.482 0.29 0.01 0.01

Table 3.1: Theoretical and direct estimates of A-Optimality criterion for asymptotic
solution at (αt = 1, βt = 1)

4. Steps 2 and 3 are repeated for a large number of iterations (25, 000), and esti-

mated parameters are saved for each iteration.

5. The direct estimate of A-optimality at the given design is obtained by calculat-

ing A∗opt = V ar(α̂) + V ar(β̂)

6. Step 5 is repeated for each sample size and the results are presented in Table

3.1

It is evident from Table 3.1 that Aopt ≈ A∗opt, only for large sample sizes.

3.3 Efficiency of A-optimal designs

Section 3.2 outlines the procedure for directly estimating the A-optimality criterion

through simulations. In order to investigate the improvement that can be achieved

by directly minimizing the criterion under various assumptions, a search space was

set-up for cASearch ranging from 0.1 to 2.0 in 0.05 increments. For ξ1Search, the range

was set-up to be 0.1 to 0.9 in 0.04 increments. For various sample sizes, simulations
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Sample Size (n) cA ξ∗1Search A∗Search E(%)

20 1.482 0.13 25.00 14.25%

40 1.482 0.41 3.85 20.52%

60 1.482 0.41 0.62 52.78%

80 1.482 0.49 0.26 55.32%

100 1.482 0.41 0.14 43.72%

300 1.482 0.29 0.04 0.00%

1000 1.482 0.29 0.01 0.91%

Table 3.2: Optimal proportion ξ∗search for low dose at various sample sizes for (αt =
1, βt = 1)

were performed for every combination of cASearch and ξ1Search and an estimate of A-

optimal criterion (A∗opt) was obtained. An improvement (or loss) in efficiency for each

design was estimated as

E =
A∗Search − A∗opt

A∗opt
∗ 100%

where, A∗Search is the direct estimate at each design in the search space.

First, to investigate the impact of choice of allocation to each design point

alone, we fixed cA to the theoretical value of 1.482 and performed a search for the

proportion allocated to low dose ξ∗1Search which resulted in a design that minimized

the A-optimality criterion directly. The results from these simulations are presented

in Table 3.2.

Next, we investigate the impact of the design points alone by fixing the allocation

ratio ξ1 = 0.29 and searching for the optimal design points critical value c∗ASearch.

The results of this investigation are presented in Table 3.3. From Tables 3.2 and 3.3,

we note that while the designs converge at large sample sizes, there is substantial

efficiency to be gained at small to moderate sample sizes.
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Sample Size (n) c∗ASearch ξ1 A∗Search E(%)

20 1 0.29 17.88 38.68%

40 0.95 0.29 1.95 59.74%

60 0.65 0.29 0.49 62.53%

80 0.95 0.29 0.21 63.35%

100 1.25 0.29 0.14 42.11%

300 1.5 0.29 0.04 -0.89%

1000 1.55 0.29 0.01 0.00%

Table 3.3: Optimal c∗ASearch at various sample sizes for (αt = 1, βt = 1)

Sample Size (n) c∗ASearch ξ∗1Search A∗Search E(%)

20 0.5 0.55 12.938 55.62%

40 0.7 0.55 0.681 85.94%

60 1.15 0.51 0.289 77.99%

80 1.15 0.59 0.171 70.16%

100 1.3 0.63 0.128 48.18%

300 1.45 0.67 0.037 0.00%

1000 1.45 0.71 0.011 0.00%

Table 3.4: Optimal c∗ASearch and ξ∗1Search at various sample sizes for (αt = 1, βt = 1)

Next, in the class of point-symmetric two-point designs, we relax both compo-

nents of the theoretical design. The results are presented in Table 3.4. For small to

moderate sample sizes, the efficiency gained is more than that achieved by varying

the design points or the allocation alone. Further, we note that at large sample size

of 1000, the design converges to the theoretical design.
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Sample Size (n) x∗1Search x∗2Search ξ∗1Search A∗Search E(%)

20 -0.1 -3 0.87 10.27 64.78%

40 -0.1 -1.5 0.59 0.60 87.59%

60 0.3 -1.7 0.59 0.25 81.19%

80 0.6 -1.8 0.67 0.16 72.25%

100 0.5 -1.9 0.67 0.12 50.20%

300 0.5 -2.3 0.67 0.04 0.00%

1000 0.6 -2.3 0.71 0.01 0.00%

Table 3.5: Optimal designs at various sample sizes for (αt = 1, βt = 1)

Finally, we relax the restriction of point symmetric designs and conduct a full

grid search to investigate if there is more efficiency to be gained. We vary each

design point x∗1Search and x∗2Search independently, and also vary the allocation to low

dose ξ∗1Search, at various sample sizes. These simulations are highly resource intensive

and efficiency gained must weighed against the cost and time to search the full grid.

The results are summarized in Table 3.5. We note that while there is approximately

10% improvement at small sample sizes, at moderate sample sizes the improvement

reduces to 2− 5%. At large sample sizes, there is no efficiency to be gained.

Figures 3.1 and 3.2 present a level plot of the directly estimated A-optimality

criterion for symmetric designs for various designs.

The critical values CA of the symmetric weights is presented along the x-axis

and the proportion allocated at low dose ξ1 is presented along the y-axis for various

sample sizes of interest (40, 60, 80, 100). Lower values of the A-optimality criterion

are better and represented by the pink region. We note that, as the sample size

increases, the area of the pink region increases, i.e. a larger proportion of the designs

in the search space result in closer values of the A-optimality criterion. Further, the

directly estimated A-optimal design is farther away from the theoretical A-optimal
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Figure 3.1: ( ) Actual vs. ( ) Theoretical A-optimal design for (αt = 1, βt = 1)
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Figure 3.2: ( ) Actual vs. ( ) Theoretical A-optimal design for (αt = 1, βt = 1)
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design at smaller sample sizes and approaches the theoretical design as the sample

size increases.

3.4 Conclusions

The main conclusions from this investigation are presented below:

• Theoretical bounds are indeed achieved but for very large sample size

• Under finite samples the theoretical design does not minimize the sum of vari-

ances of the parameter estimates

• For finite samples significant improvement can be achieved by solving the op-

timality problem numerically even within the restricted space of symmetric

designs

• Further improvement can be achieved by relaxing the point symmetric restric-

tion – modest improvement observed at small sample sizes.
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Chapter 4

Two-stage Finite Sample in

A-Optimal Design

The preceding chapter established the importance and gain in efficiency that can be

realized by employing direct minimization of sum of variances for a finite sample A-

optimal design. This gain in efficiency is still constrained by the initial guess values

of the unknown parameters, with poor initial guess leading to less improvement in

efficiency. Nandy & Nandy (2015) demonstrated that, for large samples, a two-stage

design leads to greater efficiency for both A and D-optimal designs. In this chapter,

we investigate the applicability of this result to finite sample designs. We will evaluate

whether the impact of poor initial guess values can be mitigated by employing a two-

stage design in a finite sample setting by iterating the estimates of the unknown

parameters. We will consider the impact of the total size of the experiment and the

impact of the proportion of sample allocated to first stage.

4.1 Methodology

1. Consider an experiment of size N and an initial unknown parameter guess values

of α1 and β1.
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2. As with prior chapters, without loss of generality, the true values of the unknown

parameters are assumed to be (αt = 1, βt = 1).

3. For a given experiment, the sample size is divided into two proportions such

that
∑
πi = 1 where, i ∈ {1, 2} and represents the stage of the experiment.

4. For the first stage, guess values of the parameters, (α1, β1) are employed to

search for the finite sample A-optimal design as outlined in section 3.2.

5. The resulting design is employed to conduct an experiment (simulation) with

sample size N ∗ π1.

6. Estimates of unknown parameters are obtained from the resulting data, say α2

and β2.

7. α2 and β2 are then employed as the best estimates for unknown parameter

values for the next stage finite sample A-optimal design search as outlined in

section 3.2.

8. The resulting design is employed to conduct an experiment (simulation) with

the remaining sample of size N ∗ π2.

9. The simulated sample from stage I and stage II are combined and final estimates

of the unknown parameters α̂ and β̂ are obtained by performing a logistic re-

gression.

10. Steps 5 through 9 are repeated a large number of times (15, 000) to directly

estimate the A-optimal criterion var(α̂) + var(β̂) is obtained.

4.2 Approach and Efficiency

We investigate this approach using two sample sizes, N = 100 and 200, with the

proportion allocated to the first stage being varied from 0.3 to 0.7. The choice of
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sample sizes is based on findings from chapter 3 where sample sizes less than 300

are subject to the finite sample efficiency, while also allowing for adequate number of

samples to be available at stage I to avoid singularity issues.

The efficiency of the two-stage finite sample A-optimal design is evaluated

against the single stage finite sample A-optimal design which, in turn, has been

demonstrated to be better than theoretical design.

E =
A∗I−Stage − A∗II−Stage

A∗I−Stage
∗ 100%

Due to the large number of simulations involved, the direct estimation approach

is expensive in terms of computing resources and time. In a two-stage finite sample

design, there are two direct estimations involved for each experiment, one at the

initial search stage with the assumed guess values and another within the experimental

simulations with the estimates from stage I to obtain the design to be implemented for

the second stage. The number of simulations required for a complete characterization

of the two-stage finite sample approach for a single combination of the chosen finite

sample size and the proportion allocated to the first dose in the chosen search space

is in the order of several hundred billion simulations. To circumvent a portion of

this computation, a modified scaling approach is employed. In this approach, a look

up table of designs and associated dose values are first generated by setting the

initial guess values β1 = 1 and varying α1 ∈ (−50, 50). This lookup table can then

be leveraged to scale the unknown parameter estimates from stage I to the form

(α1

β1
, β1
β1

) = (α1

β1
, 1) and identify the corresponding dose values. Finally, these dose

values are scaled by β1 i.e. (xld
β1
, xud
β1

) and employed for the stage II experiment.

Even so, the number of simulations are still very large for each initial guess

value. To evaluate this design, the efficiency gained is evaluated under two conditions
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1. When the initial guess values (α1, β1) are far away from the true values (αt =

1, βt = 1) employed for the simulations

2. When the initial guess values (α1, β1) is identical to the true values (αt = 1, βt =

1) employed for the simulations

4.3 Results

Tables 4.1 and 4.2 present the results of the two-stage finite sample A-optimal designs

for sample sizes of N = 100 and N = 200, respectively. Stage I A-optimality criterion

is evaluated by searching for the finite sample A-optimal design under the assumed

initial guess conditions and then conducting the simulated experiments with the full

sample size allocated to the identified design. The two-stage design employs a portion

of the full sample size to conduct the initial search and rest is employed to stage II

of the design obtained from a second search using the estimates of the unknown

parameters from the first stage.

In Table 4.1, we see that when the guess value is far away from the true param-

eter values, the gain in efficiency is 60 − 75% based on the proportion allocated to

the first stage. Higher proportion of the total sample size allocated to stage I of the

design results in a higher efficiency or a lower loss in efficiency, when the when the

initial guess values are close to the unknown true values.

Table 4.2 presents the results comparing the efficiency of the two-stage design

to a single stage finite sample A-optimal design. We note that with a larger total

sample size, the two-stage design performs poorly. Again, we note that the larger the

proportion of the sample allocated to the first stage, the smaller the loss in efficiency.
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N=100
Single stage

design
Two stage design

E (%)

True values

for experiment

Initial guess

values

A-optimality

criterion

Stage I

proportion

A-optimality

criterion

(1.0,1.0) (0.5, 0.5) 0.879

30% 0.886 - 0.75%

40% 0.368 58.13%

50% 0.221 74.82%

60% 0.258 70.69%

70% 0.234 73.33%

(1.0,1.0) (1.0,1.0) 0.132

30% 0.886 -419.62%

40% 0.293 -121.70%

50% 0.202 -52.87%

60% 0.162 -22.47%

70% 0.150 -13.52%

Table 4.1: Efficiency of two-stage finite sample A-optimal design, N = 100

4.4 Conclusion

The two-stage finite sample A-optimal design is shown to be an improvement over the

single stage design under specific conditions. With sample sizes of approximately N =

100 and miss-specified initial guess values, an increase in efficiency of 60−75% can be

obtained by employing the two-stage finite sample model. This gain in efficiency is

not retained with larger sample sizes and the two-stage finite sample performs similar

to the single stage finite sample A-optimal design.
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N=200
Single stage

design
Two stage design

E (%)

True values

for experiment

Initial guess

values

A-optimality

criterion

Stage I

proportion

A-optimality

criterion

(1.0, 1.0) (0.5, 0.5) 0.069

30% 0.098 -42.65%

40% 0.087 -26.64%

50% 0.074 -7.71%

60% 0.074 -7.71%

70% 0.073 -6.26%

(1.0, 1.0) (1.0, 1.0) 0.058

30% 0.067 -15.52%

40% 0.062 -6.90%

50% 0.060 -3.45%

60% 0.060 -3.45%

70% 0.059 -1.72%

Table 4.2: Efficiency of two-stage finite sample A-optimal design, N = 200
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Chapter 5

Three-stage designs employing D

Optimal Designs

Chapters 3 and 4 are concerned with properties of finite sample models when dealing

with small sample sizes, in this chapter we explore potential increase in efficiency

that can be gained in larger experiments through an iterative process. As outlined

in Chapter 1, optimal designs for non-linear models are dependent on the unknown

parameters of the model. An informed guess is frequently employed to circumvent

this problem but there are inherent limitations to this approach.

1. In case of new products, little to no prior information may be available.

2. Due to subjectivity in investigator approach, there may be variability in choice

of initial guess value with no way to evaluate the correct choice until after the

experiment.

Nandy & Nandy (2015) demonstrated the improvement in efficiency when em-

ploying a two-stage design in lieu of a single stage design based on a guess value.

Their work established that a two-stage design in which a portion of the sample is

allocated to an initial design informed by guess values and the rest is allocated to the

another design informed by the parameter estimates obtained from the initial stage
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performs at least as well as a single stage design when the guess value is close to the

true value and significantly better, on average, when the guess deviates from the true

value.

In this chapter, we explore whether additional efficiency can be obtained by

employing a three stage D-optimal design and under which conditions it may be

better than a two-stage design. We will consider the impact of the total sample size

of the experiment and the impact of proportion of sample allocated to each stage.

5.1 Methodology

1. Consider an experiment of size N.

2. As with prior chapters, and without loss of generality, the true values of the

unknown parameters are assumed to be (αt = 1, βt = 1).

3. For a given experiment, the sample size is divided into three proportions such

that
∑
πi = 1 where, i ∈ {1, 2, 3} represents the stage of the experiment.

4. For the first stage, guess values of the parameters, say (α1, β1), are employed to

estimate the initial theoretical D-optimal design as outlined in section 2.4.

5. Given a design, the probability of observing a successful outcome at each dose

can be estimated using

p1 =
1

1 + exp (−1 + cD−α1

β1
)

and p2 =
1

1 + exp (−1 + −cD−α1

β1
)

6. For the sample size chosen for the first stage, n1 = N ∗ π1, random samples of

size n1/2 are generated representing the number of samples at each of the two

design points, i.e. low dose x1 and high dose x2 respectively, from a binomial

distribution.
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7. Next, a logistic regression model is fit to the resulting data set, with the random

sample as the outcome variable and the design points as the input variable, to

estimate the unknown parameters α̂1 and β̂1 at stage I.

8. The above estimates are employed as the guess parameter values for the next

stage such that α̂1 = α2 and β̂1 = β2. With (α2, β2), the theoretical D-optimal

design for the next stage is estimated.

9. Steps 5 to 7 are repeated with sample size stage II sample size of n2 to obtain

the stage II estimates α̂2 = α3 and β̂2 = β3. Note: The logistic regression model

is fit to all samples from the first and the second stage simulations such that

the total sample size is n1 + n2.

10. Steps 4 to 7 are repeated for a large number of simulations (10, 000) for each

pair of initial guess values (α1, β1) and the average D-optimality criterion is

calculated.

The above algorithm results in a three stage D-optimal design with six design points

as below

DD =

 x1 x2 x3 x4 x5 x6

0.5 ∗ π1 0.5 ∗ π1 0.5 ∗ π2 0.5 ∗ π2 0.5 ∗ π3 0.5 ∗ π3


The resulting three stage D-optimality criterion can be evaluated as a weighted

average of individual two-point designs, as outlined in section 2.4 from each stage.

DIII−Stage = |π1 ∗ I(α1, β1)I + π2 ∗ I(α2, β2)II + π3 ∗ I(α3, β3)III |
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5.2 Approach and Efficiency

We begin the investigation by defining three scenarios of sample size allocation to

each stage. The first scenario starts with a small proportion of the overall sample size

allocated to first stage with later stages being allocated with larger proportions. The

second scenario allocates equal proportion to all stages and the final scenario employs

the largest proportion to the first stage and and progressively smaller proportions for

later stages. These scenarios are summarized in 5.1.

The search grid for initial guess parameters (α1, β1) is setup such that the true

value (αt = 1) and (βt = 1) are contained. We vary α1 from −0.5 to 2.5 in steps of

0.1 and β1 from 0.5 to 2 in steps of 0.1.

Stage

I II III

Scenario 1 1/6 2/6 3/6

Scenario 2 2/6 2/6 2/6

Scenario 3 3/6 2/6 1/6

Table 5.1: Scenarios for proportion of sample allocated by stage

Finally, we repeat the investigation for several sample sizesN = 150, 300, 600, 900

and 1200. The sample sizes chosen ensure that each stage of the study has adequate

sample size and does not run in to finite estimation issues.

The efficiency of resulting six point design can be compared the reference values

of one-stage, two-point design outlined in 2.4 and the two-stage, four-point design

identified in Nandy & Nandy (2015) using the the following expressions

EIII−I =
DIII−Stage −DI−Stage

DI−Stage
∗ 100%
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EIII−II =
DIII−Stage −DII−Stage

DII−Stage
∗ 100%

Where,DI−Stage and DII−Stage are the reference D-optimality criteria for the one-stage

and two-stage designs, respectively. The proportion allocation to first stage of the

two-stage design was set to be the same as Stage I proportion in Table 5.1, with the

rest of the sample allocated to the second stage. For the one-stage design the entire

sample was allocated to the initial theoretical design based on guess values.

5.3 Results

Figures 5.1 to 5.5 present the gain in efficiency from a one-stage design to a three-stage

design in the form of a heat map for various sample sizes under each of the allocation

scenarios presented in 5.1. The initial guess values of the unknown parameters α and

β are depicted along the x and y axis respectively. Each (x, y) coordinate on the

grid represents the gain in efficiency obtained when employing a three stage design

compared to a reference one-stage design. For the sake of legibility of the plots,

the peak gain in efficiency is set to 100% with any higher values also set to 100%.

Similarly, any values less than 0% i.e. cases in which three-stage design is worse than

the one-stage design is set to 0%. Table 5.3 presents the actual minimum, media,

and maximum values of efficiency gained at various sample sizes under each scenario

without aforementioned limits.

Inspecting the figures and the tables, we observe that the three-stage design

results in a gain in efficiency over a one-stage design in most of the search space

except for when the guess values are very close to the true values. When the guess

values are far from the true values, the three stage design can result in a substantial

increase in the efficiency.

33



Gain in Efficiency

From One-Stage to Three-Stage

Min Median Max

N=150

Scenario 1 -20.6% 8.8% 1301.3%

Scenario 2 -7.5% 18.5% 992.0%

Scenario 3 -4.0% 17.9% 611.1%

N=300

Scenario 1 -7.5% 29.0% 1461.8%

Scenario 2 -3.5% 29.8% 1080.2%

Scenario 3 -2.0% 23.7% 664.2%

N=600

Scenario 1 -3.4% 39.3% 1566.5%

Scenario 2 -1.7% 34.1% 1155.6%

Scenario 3 -1.0% 26.4% 726.7%

N=900

Scenario 1 -2.3% 42.4% 1616.8%

Scenario 2 -1.2% 35.7% 1204.7%

Scenario 3 -0.7% 27.2% 783.9%

N=1200

Scenario 1 -1.7% 43.8% 1652.1%

Scenario 2 -0.9% 36.3% 1246.6%

Scenario 3 -0.5% 27.6% 830.2%

Table 5.2: Gain in efficiency from one-stage to three-stage design
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Figure 5.1: Gain in efficiency from one-stage to three-stage design, N = 150
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Figure 5.2: Gain in efficiency from one-stage to three-stage design, N = 300
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Figure 5.3: Gain in efficiency from one-stage to three-stage design, N = 600
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Figure 5.4: Gain in efficiency from one-stage to three-stage design, N = 900
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Figure 5.5: Gain in efficiency from one-stage to three-stage design, N = 1200
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Figures 5.6 to 5.10 present the gain in efficiency from a two-stage design to a

three-stage design in the form of a heat map for various sample sizes under each of

the allocation scenarios presented in 5.1. The initial guess values of the unknown

parameters α and β are depicted along the x and y axis respectively. Each (x, y)

coordinate on the grid represents the gain in efficiency obtained when employing a

three stage design compared to a reference two-stage design. For the sake of legibility

of the plots, the peak gain in efficiency is set to 100% with any higher values also set

to 100%. Similarly, any values less than 0% i.e. cases in which three-stage design is

worse than the one-stage design is set to 0%. Table 5.2 presents the actual minimum,

media, and maximum values of efficiency gained at various sample sizes under each

scenario without aforementioned limits.

Inspecting the figures and the tables, we observe that the three-stage design

results in a gain in efficiency over a one-stage design in most of the search space

except for when the guess values are very close to the true values. When the guess

values are far from the true values, the three stage design can result in a substantial

increase in the efficiency.
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Gain in Efficiency

From Two-Stage to Three-Stage

Min Median Max

N=150

Scenario 1 10.0% 19.9% 197.4%

Scenario 2 2.4% 6.3% 132.0%

Scenario 3 0.5% 2.0% 74.5%

N=300

Scenario 1 4.8% 11.0% 189.7%

Scenario 2 1.1% 3.2% 126.1%

Scenario 3 0.3% 1.0% 76.8%

N=600

Scenario 1 2.3% 5.4% 165.3%

Scenario 2 0.6% 1.5% 120.9%

Scenario 3 0.1% 0.4% 68.1%

N=900

Scenario 1 1.5% 3.5% 163.2%

Scenario 2 0.4% 0.9% 107.5%

Scenario 3 0.1% 0.3% 57.1%

N=1200

Scenario 1 1.1% 2.5% 154.7%

Scenario 2 0.3% 0.7% 95.7%

Scenario 3 0.1% 0.2% 50.0%

Table 5.3: Gain in efficiency from two-stage to three-stage design
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Figure 5.6: Gain in efficiency from two-stage to three-stage design, N = 150

42



Figure 5.7: Gain in efficiency from two-stage to three-stage design, N = 300
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Figure 5.8: Gain in efficiency from two-stage to three-stage design, N = 600
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Figure 5.9: Gain in efficiency from two-stage to three-stage design, N = 900
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Figure 5.10: Gain in efficiency from two-stage to three-stage design, N = 1200
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5.4 Conclusions & Recommendations

Although the D-optimal criterion is independent of sample size, we see that there is

an observable impact of total sample size and the proportion allocated to each stage.

There are two main reasons for this:

1. The three stage optimality criterion is a weighted average of the D-optimality

criterion at each stage and therefore, the proportion of sample allocated to each

stage creates some dependency on the sample size.

2. The iterative approach to refining the estimates of the unknown parameters α

and β mitigates the impact of poor initial guess values

We observe that the three stage D-optimal design performs at least as well as

the two-stage design on average when the guess values are close to the true values.

The further the guess values are from the true values, the greater the gain in efficiency.

When the sample size is small (N = 150 to N = 300) Scenario 1, with a small

proportion allocated to initial stage and progressively increasing the proportion of

data allocated at each stage, results in the largest gain across the search space. The

median efficiency achieved at these sample sizes is 10-20 % more than the correspond-

ing two-stage design. At larger sample sizes and ascending dose allocation works best.
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Chapter 6

Practitioner Recommendations

In this thesis we have considered practical issues concerned with the implementation of

optimal designs namely the issues related to the sample size and unknown parameter

estimates for a two parameter logistic regression model on which the optimal design

depends. Our main recommendations arising from the specific aims are as follows:

1. For finite samples significant improvement can be achieved by solving the A-

optimality problem numerically within a restricted space.

2. A two-stage A-optimal design can result in increased efficiency under specific

conditions. When the total sample size available for the experiment is small,

allocating 70% of the sample to the initial stage of two-stage finite sample design

can result in improvements of 60−70% compared to a single stage finite sample

design.

3. For large sample D-optimality designs, a three stage design performs at least as

well as a two-stage design, on average. For small sample sizes, an approach of

increasing the proportion of the total sample size allocated to progressive stages

results in a 10 − 20% median gain at N = 100 & N = 150. For large samples

the increase is 2− 5%.
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The methods employed in this work can be employed to evaluate logistic mod-

els with more parameters e.g. a quadratic logistic model, and to other underlying

models such as a Poisson regression model. Future work may also consider study

specific considerations and restrictions such as limits on dose values due to safety

considerations.
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Appendix A

Additional Aim 3 Results
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Gain in Efficiency (%)

Min Median Max

N=150

Scenario 1 -20.5 12.4 4919.3

Scenario 2 -7.4 21.4 4433.4

Scenario 3 -4.0 21.1 2622.5

N=300

Scenario 1 -7.6 33.0 6701.8

Scenario 2 -3.5 36.5 4868.4

Scenario 3 -1.2 29.0 2829.3

N=600

Scenario 1 -3.5 48.2 7287.3

Scenario 2 -1.8 42.3 5206.1

Scenario 3 -1.0 32.4 3001.2

N=900

Scenario 1 -2.3 52.4 7555.7

Scenario 2 -1.1 43.9 5379.3

Scenario 3 -0.7 33.4 3121.3

N=1200

Scenario 1 -1.7 54.2 7724.6

Scenario 2 -0.9 44.6 5495.1

Scenario 3 -0.5 33.8 3235.3

Table A.1: Gain in efficiency from one-stage to three-stage, (αt = 2, βt = 1)
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Figure A.1: Gain in efficiency from one-stage to three-stage design

N = 150, (αt = 2, βt = 1)
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Figure A.2: Gain in efficiency from one-stage to three-stage design

N = 300, (αt = 2, βt = 1)
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Figure A.3: Gain in efficiency from one-stage to three-stage design

N = 600, (αt = 2, βt = 1)
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Figure A.4: Gain in efficiency from one-stage to three-stage design

N = 900, (αt = 2, βt = 1)
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Figure A.5: Gain in efficiency from one-stage to three-stage design

N = 1200, (αt = 2, βt = 1)
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Gain in Efficiency (%)

Min Median Max

N=150

Scenario 1 10.3 24.8 250.3

Scenario 2 2.2 7.2 202.4

Scenario 3 0.5 2.3 134.9

N=300

Scenario 1 4.8 12.6 280.3

Scenario 2 1.1 3.6 232.5

Scenario 3 0.3 1.1 159.4

N=600

Scenario 1 2.2 6.2 299.9

Scenario 2 0.6 1.6 261.8

Scenario 3 0.1 0.5 168.2

N=900

Scenario 1 1.4 3.9 322.3

Scenario 2 0.4 1.0 264.8

Scenario 3 0.1 0.3 162.6

N=1200

Scenario 1 1.1 2.7 332.1

Scenario 2 0.3 0.8 256.9

Scenario 3 0.1 0.2 151.0

Table A.2: Gain in efficiency from two-Stage to three-Stage, (αt = 2, βt = 1)
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Figure A.6: Gain in efficiency from one-stage to three-stage design

N = 150, (αt = 2, βt = 1)
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Figure A.7: Gain in efficiency from one-stage to three-stage design

N = 300, (αt = 2, βt = 1)
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Figure A.8: Gain in efficiency from one-stage to three-stage design

N = 600, (αt = 2, βt = 1)
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Figure A.9: Gain in efficiency from one-stage to three-stage design

N = 900, (αt = 2, βt = 1)
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Figure A.10: Gain in efficiency from one-stage to three-stage design

N = 1200, (αt = 2, βt = 1)
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Gain in Efficiency (%)

Min Median Max

N=150

Scenario 1 -20.6 8.2 1317.0

Scenario 2 -7.4 18.7 996.1

Scenario 3 -4.0 18.0 613.1

N=300

Scenario 1 -7.6 28.9 1460.2

Scenario 2 -3.5 29.8 1080.1

Scenario 3 -2.0 23.8 662.3

N=600

Scenario 1 -3.5 39.2 1564.1

Scenario 2 -1.7 34.2 1155.4

Scenario 3 -1.0 26.4 730.0

N=900

Scenario 1 -2.3 42.4 1618.3

Scenario 2 -1.1 35.7 1207.9

Scenario 3 -0.7 27.2 783.8

N=1200

Scenario 1 -1.7 43.8 1650.5

Scenario 2 -0.9 36.4 1250.7

Scenario 3 -0.5 27.6 827.7

Table A.3: Gain in efficiency from one-stage to three-stage, (αt = −1, βt = 1)
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Figure A.11: Gain in efficiency from one-stage to three-stage design

N = 150, (αt = −1, βt = 1)
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Figure A.12: Gain in efficiency from one-stage to three-stage design

N = 300, (αt = −1, βt = 1)
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Figure A.13: Gain in efficiency from one-stage to three-stage design

N = 600, (αt = −1, βt = 1)
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Figure A.14: Gain in efficiency from one-stage to three-stage design

N = 900, (αt = −1, βt = 1)
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Figure A.15: Gain in efficiency from one-stage to three-stage design

N = 1200, (αt = −1, βt = 1)
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Gain in Efficiency (%)

Min Median Max

N=150

Scenario 1 10.18 20.3 195.4

Scenario 2 2.1 6.2 130.3

Scenario 3 0.5 2.0 72.9

N=300

Scenario 1 4.7 10.9 190.3

Scenario 2 1.1 3.2 125.8

Scenario 3 0.3 1.0 76.2

N=600

Scenario 1 2.3 5.4 164.7

Scenario 2 0.6 1.5 121.0

Scenario 3 0.1 0.4 68.9

N=900

Scenario 1 1.5 3.5 162.5

Scenario 2 0.3 0.9 108.3

Scenario 3 0.1 0.3 57.4

N=1200

Scenario 1 1.1 2.5 154.7

Scenario 2 0.3 0.7 96.2

Scenario 3 0.1 0.2 48.5

Table A.4: Gain in efficiency from two-stage to three-stage, (αt = −1, βt = 1)
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Figure A.16: Gain in efficiency from one-stage to three-stage design

N = 150, (αt = −1, βt = 1)
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Figure A.17: Gain in efficiency from one-stage to three-stage design

N = 300, (αt = −1, βt = 1)
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Figure A.18: Gain in efficiency from one-stage to three-stage design

N = 600, (αt = −1, βt = 1)
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Figure A.19: Gain in efficiency from one-stage to three-stage design

N = 900, (αt = −1, βt = 1)
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Figure A.20: Gain in efficiency from one-stage to three-stage design

N = 1200, (αt = −1, βt = 1)
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Gain in Efficiency (%)

Min Median Max

N=150

Scenario 1 -20.8 11.6 5768.5

Scenario 2 -7.2 21.6 4437.9

Scenario 3 -4.0 21.1 2615.4

N=300

Scenario 1 -7.5 33.0 6659.5

Scenario 2 -3.5 36.7 4858.6

Scenario 3 -2.0 29.0 2817.4

N=600

Scenario 1 -3.4 48.2 7289.4

Scenario 2 -1.7 42.3 5209.5

Scenario 3 -1.0 32.5 3001.6

N=900

Scenario 1 -2.3 52.3 7536.2

Scenario 2 -1.2 43.9 5374.2

Scenario 3 -0.7 33.4 3126.7

N=1200

Scenario 1 -1.8 54.1 7705.0

Scenario 2 -0.9 44.7 5492.5

Scenario 3 -0.5 33.8 3225.8

Table A.5: Gain in efficiency from one-stage to three-stage, (αt = −2, βt = 1)
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Figure A.21: Gain in efficiency from one-stage to three-stage design

N = 150, (αt = −2, βt = 1)
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Figure A.22: Gain in efficiency from one-stage to three-stage design

N = 300, (αt = −2, βt = 1)
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Figure A.23: Gain in efficiency from one-stage to three-stage design

N = 600, (αt = −2, βt = 1)
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Figure A.24: Gain in efficiency from one-stage to three-stage design

N = 900, (αt = −2, βt = 1)
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Figure A.25: Gain in efficiency from one-stage to three-stage design

N = 1200, (αt = −2, βt = 1)
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Gain in Efficiency (%)

Min Median Max

N=150

Scenario 1 10.2 20.3 195.4

Scenario 2 2.1 6.2 130.3

Scenario 3 0.5 2.0 72.9

N=300

Scenario 1 4.7 10.9 190.3

Scenario 2 1.1 3.2 125.8

Scenario 3 0.3 1.0 76.2

N=600

Scenario 1 2.3 5.4 164.7

Scenario 2 0.6 1.5 121.0

Scenario 3 0.1 0.4 69.0

N=900

Scenario 1 1.5 3.5 162.5

Scenario 2 0.4 1.0 108.3

Scenario 3 0.1 0.3 57.4

N=1200

Scenario 1 1.1 2.5 154.8

Scenario 2 0.27 0.7 96.2

Scenario 3 0.1 0.2 48.5

Table A.6: Gain in efficiency from two-stage to three-stage, (αt = −2, βt = 1)
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Figure A.26: Gain in efficiency from one-stage to three-stage design

N = 150, (αt = −2, βt = 1)

82



Figure A.27: Gain in efficiency from one-stage to three-stage design

N = 300, (αt = −2, βt = 1)
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Figure A.28: Gain in efficiency from one-stage to three-stage design

N = 600, (αt = −2, βt = 1)
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Figure A.29: Gain in efficiency from one-stage to three-stage design

N = 900, (αt = −2, βt = 1)
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Figure A.30: Gain in efficiency from one-stage to three-stage design

N = 1200, (αt = −2, βt = 1)
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