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Abstract 

 Alzheimer’s disease (AD) is the most common form of age-related neurodegenerative 

dementia, and it is estimated that over 5 million people currently have AD within United States. 

AD can either be early onset or Late Onset AD (LOAD). Early onset AD has an age of onset 

below 60 years, and LOAD has an age of onset of above 65 years. Early onset AD accounts for 

<5% of the cases and the genetic variants responsible have been well documented and are 

inherited in a Mendelian dominant manner. Even though Late Onset (LOAD) accounts for >95% 

of AD cases, and numerous genetic loci have been linked to LOAD; these loci have small effect 

sizes, and explain only 50% of AD risk. We hypothesize that epigenetic mechanisms are 

responsible for a significant portion of this missing heritability. The impact of epigenetic 

mechanisms on AD risk and progression are relatively unexplored, and should be considered 

when addressing a portion of the remaining missing heritability. 

 Within this project, post mortem frontal cortex brain tissue from 11 AD patients and 12 

age matched controls were used to investigate DNA methylation and differential gene expression 

in AD. Since post mortem human tissue was used, preliminary analysis showed presence of 

degraded RNA, most likely due to post mortem intervals. To combat degraded RNA, a novel 

library preparation process was utilized prior to performing RNA sequencing. DNA methylation 

was investigated using two methods. For site specific investigation, the Illumina® Infinium 

HumanMethylation450 BeadChip array was utilized. To investigate differential methylated 
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regions,  a Methyl-Binding Protein capture approach was used to precipitate out methylated 

regions of the genome. This precipitated DNA was then analyzed for methylated regions by 

using  high throughput sequencing. 

The Differentially Expressed Genes (DEGs) found within our RNA-seq dataset all 

elucidate the importance of some previously suspected pathways involved in the pathogenesis of 

AD. Gene Ontology (GO) analysis performed indicate that DEGs implicate numerous genes 

correlated with neurological disease, and collectively effect regulation of synaptic transmission, 

cell-cell signaling, neurotransmitter transport, genes involved in the inflammatory response, and 

Amyloid Precursor Protein (APP) processing. The overlap of 32 DEGs and differentially 

methylated CpGs was observed. GO analysis demonstrated the same GO terms (synaptic 

transmission & cell-cell signaling) impacted within both, RNA and DNA datasets. This indicates 

a link between CpG methylation and differential gene expression.  
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Chapter I 

INTRODUCTION AND LITERATURE REVIEW 

The Alzheimer’s disease problem 

Alzheimer’s disease (AD) is the most common form of age-related neurodegenerative 

dementia, a serious health problem in the industrialized world, and is currently the 6th leading 

cause of death in the United States1. AD is the most common type of dementia, which is a term 

that describes a wide range of symptoms such as trouble with memory, language, ability to focus, 

reasoning skills, and visual perception2. AD is an heterogeneous, progressive disease that is fatal 

given that no other cause of death intervenes3.  

The current figures from the Alzheimer’s Association state that one in three seniors will die 

with AD or another form of dementia. One in eight people 65 years of age and older have AD1, 

and when examining the people that are 85 years old or older, the incidence of AD increases to 

one in two individuals1. It is estimated that currently within United States, over 5 million people 

have AD, and its prevalence is expected to rise to over 13 million by the year 20501. Currently, it 

is estimated that the care provided by family, and other unpaid caregivers of people with 

dementia is valued at about $210 billion annually3.  

AD occurs in both a familial and a sporadic form, also known as early onset (familial) or late 

onset Alzheimer’s disease (sporadic), respectively. Familial Alzheimer’s Disease (FAD) is an 

autosomal dominant disorder that is inherited in a Mendelian fashion4. FAD accounts for a 

minority of the total AD cases (<5%)5,6, and has an earlier age of onset (<60 years)7. In 



 13 

comparison, late onset Alzheimer’s disease (LOAD) typically has an age of onset above 65yrs.7. 

LOAD results from various genetic and non-genetic factors, and is hypothesized that 

pathogenesis begins anywhere between 15-20 years before symptom onset.
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Early warning signs of AD include mild cognitive impairment (MCI), which is characterized 

by individuals having memory problems as well as a decline in cognition, such as impaired 

judgment, vision and spatial issues. Some, not all individuals, progress towards AD, and others 

develop some form of dementia. Once a person develops the clinical symptoms of AD, they are 

classified into three categories: mild, moderate, and severe AD.  Mild AD symptoms include 

increases in memory loss and changes in cognitive abilities, such as getting lost, taking longer to 

complete daily tasks, and personality changes. Moderate AD includes the loss of ability to learn 

new things, problems recognizing family, and potentially hallucinations. Severe AD includes an 

inability to communicate, ultimately resulting in complete reliance on others for care. Clinically, 

severe AD includes wide distribution of plaques and tangles throughout the brain, and a 

significant amount of atrophy of brain tissue. Clinically, AD is characterized by the loss of 

memory, inability to learn new things, loss of language function, depression, delusions, among 

other manifestations.  AD is ultimately fatal within 5 to 10 years, where affected individuals 

usually die of complications of chronic illness8.  

  



 15 

Alzheimer’s disease pathogenesis 

AD is characterized by cortical atrophy, synapse loss, and neuronal cell death, and is 

pathologically defined by the abnormal accumulation of extracellular amyloid βeta (Aβ), and 

intracellular neurofibrillary tangles (NFTs). The disease was first characterized by Dr. Aloysius 

“Alois” Alzheimer in 1907, and was based upon his observations and treatment of a 51 year old 

patient named August ‘D’9, The patient showed symptoms of short term memory loss, unusual 

behavior and the neuropathological characteristics that have become the hallmarks of 

Alzheimer’s disease9. The two hallmarks of AD are extracellular Aβ plaques and NFTs10,11. Aβ 

plaques are formed from cleavage of Amyloid Precursor Protein (APP), which is an integral 

membrane protein that is expressed throughout the body and is particularly concentrated in 

neuronal synapses. The primary function of APP is not fully understood, but it has been 

implicated in neurite extension and synaptic plasticity3. Beta (β) and Gamma (γ) secretases 

cleave APP to produce fragments that aggregate together to form the Aβ plaques. β-secretase is 

an integral membrane aspartyl protease encoded by the β-site APP-cleaving enzyme 1 (BACE1) 

gene12. γ-secretase, is composed of 4 subunits: Presenilin 1(PSEN1), Presenilin 2 (PSEN2), 

nicrastin, and APH12,3 , where the active site consists of presenilin2 . Normally, Aβ is degraded 

by peptidases such as neprilysin, insulin-degrading enzyme, and endothelin-converting enzyme2. 

A widely held theory of AD pathogenesis is the amyloid cascade hypothesis13, which states 

that accumulation of the amyloid beta peptide in the brain is the initiating event in disease 

pathology14. This hypothesis postulates that the disease is the result of an imbalance between the 

production & degradation of Aβ15, and (Aβ) in a variety of forms, triggers a cascade that harms 

synapses and ultimately neurons, producing the pathological presentations of Aβ plaques, tau 
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tangles, synapse loss and neurodegeneration, leading to dementia. Aβ accumulation is thought to 

initiate AD pathology by destroying synapses, causing formation of NFTs, and subsequently 

inducing neuron loss. Recently there has been a shift toward defining soluble Aβ oligomers as 

the toxic agent, rather than plaques, but the theory and the way data is interpreted have remained 

largely the same, i.e. Aβ accumulation as oligomers or plaques triggers AD. A large, growing 

literature embraces the amyloid hypothesis (Figure 1)13. This central theory has strong support, 

from work beginning with Alois Alzheimer9 and continuing through deduction of the steps that 

generate the amyloid beta protein16 and cloning of mutations in APP17,18, PSEN1 and PSEN2 

genes19,20 that cause familial AD. A recent development that significantly strengthened the 

amyloid hypothesis was the discovery by Jonsson et al.21 of an APP mutation that reduces 

production of Aβ plaques and is protective against AD, as well as age-related cognitive decline. 

It has been hypothesized that Aβ plaques protein deposition precedes NFTs22, cell loss, and 

vascular damage23. In transgenic murine models, Aβ plaque deposition developed prior to 

NFTs24. Working in a transgenic mouse model, Xu et al.22 described an accumulation of Aβ 

plaques precipitated a loss of solubility of intracellular cytosolic proteins such as glycolytic 

enzymes and members of the chaperone family. Aβ plaques have also been thought to induce 

neuronal oxidative stress, resulting in phospholipid peroxidation and protein oxidation in AD 

brain25.  

The second hallmark of AD is the presence of NFTs that arise due to hyper-

phosphorylated microtubule associated protein tau (MAPT). The tau protein is primarily 

expressed in neurons26 and has been shown to be involved with tubulin polymerization as well as 

acting to stabilize microtubules against depolymerization 27, stabilize microtubules responsible 

for axonal transport 26, increase neuritic stability, impact the rate of neurite elongation, and 
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increase net microtubule stability2,28. Different isoforms of the tau protein are expressed due to 

alternative RNA splicing, and each of these isoforms displays a varied degree in 

phosphorylation. All isoforms are capable of forming the NFTs that are a hallmark of AD29. A 

balance between kinases (ex. GSK-3Beta, CDK5) and phosphatases (ex. PP-1, PP2) plays a role 

in regulating tau phosphorylation2. Tau hyper phosphorylation leads to disassembly of 

microtubules causing disruption in axonal transport, and impaired synaptic & neuronal 

function2,30. Hyperphosphorylated tau aggregates into filaments, causing an inability to bind and 

stabilize microtubules 31, and subsequent formation of NFTs2,31.  

This neuronal atrophy has been documented by magnetic resonance imaging (MRI) and 

positron emission tomography (PET), as an individual progresses from mild cognitive 

impairment to Alzheimer's disease 32,33. Presence of Aβ plaques and NFTs is often used, by 

neuropathologists, to diagnose an individual as having AD post-mortem, and currently is the 

only way AD can be confirmed. Using PET, with radio tracers that bind to Aβ plaques, one can 

now quantify pathological changes within the human brain. Currently, only a few radio tracers 

are available, and new Aβ tracers are under development34. These techniques still make 

diagnosing AD is difficult due to variability in the pathology, where some individuals have high 

Aβ load, but do not show symptoms. 

Synapse loss is also an early feature of AD, where there is a strong correlation between the 

extent of synapse loss and the severity of dementia, and significant synapse loss also occurs in 

MCI individuals35. Synapse loss is a pathological correlate of cognitive dysfunction in AD, 

suggesting that synaptic changes are crucial for AD pathogenesis36–39. Synapse loss is prevalent 

near senile plaques, suggesting that plaques may be a reservoir of synaptotoxic molecules. The 

cognitive symptomatology of AD has a temporal correlation with the progression of 
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neurofibrillary tangles in the frontal cortex35. Synaptic dysfunction may be a result of toxicity 

caused by the Aβ-amyloid plaques or NFTs. Mouse AD-models show loss of memory and 

cognitive impairments before accumulation of Aβ plaques, suggesting that synapse dysfunction 

may precede and cause neurodegeneration within AD. The nature of many peptidic cerebrospinal 

biomarkers for early detection of Alzheimer’s suggest that presynaptic failures affecting 

neurotransmission are early events in the progression of this disease.  AD may be a disease of 

synaptic dysfunction and synapse loss that then progresses to include widespread neuronal loss 

and network failure of neurons. Aβ could be a key player in the induction of synaptic failure, as 

Aβ activates a variety of molecular cascades that culminate in synapse dysfunction, shrinkage, 

collapse and loss35. 

Pathogenic mechanisms such as oxidative stress, inflammation, cell-cycle abnormalities, and 

mitochondrial dysfunction40,41 have been reported to precipitate neuropathological changes that 

cause degeneration of neurons and synapses in the cerebral cortex and subcortical regions of the 

brain2. Loss of neurons results in atrophy of the affected regions of the brain, including 

degeneration in the temporal and parietal lobes, as well as parts of the frontal cortex42. In 

addition to these two hallmarks of AD, pathology and clinical symptoms have been correlated 

with oxidative stress, inflammation43,44, obesity45, cardiovascular disease46, traumatic brain 

injury47–51, and diabetes52.  

AD is characterized by cortical atrophy, synapse loss, and neuronal cell death, and is 

pathologically defined by the abnormal accumulation of extracellular amyloid βeta (Aβ), and 

intracellular neurofibrillary tangles (NFTs). The disease was first characterized by Dr. Aloysius 

“Alois” Alzheimer in 1907, and was based upon his observations and treatment of a 51 year old 
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patient named August ‘D’9, The patient showed symptoms of short term memory loss, unusual 

behavior and the neuropathological characteristics that have become the hallmarks of 

Alzheimer’s disease9. The two hallmarks of AD are extracellular Aβ plaques and NFTs10,11. Aβ 

plaques are formed from cleavage of Amyloid Precursor Protein (APP), which is an integral 

membrane protein that is expressed throughout the body and is particularly concentrated in 

neuronal synapses. The primary function of APP is not fully understood, but it has been 

implicated in neurite extension and synaptic plasticity3. Beta (β) and Gamma (γ) secretases 

cleave APP to produce fragments that aggregate together to form the Aβ plaques. β-secretase is 

an integral membrane aspartyl protease encoded by the β-site APP-cleaving enzyme 1 (BACE1) 

gene12. γ-secretase, is composed of 4 subunits: Presenilin 1(PSEN1), Presenilin 2 (PSEN2), 

nicrastin, and APH12,3 , where the active site consists of presenilin2 . Normally, Aβ is degraded 

by peptidases such as neprilysin, insulin-degrading enzyme, and endothelin-converting enzyme2. 

A widely held theory of AD pathogenesis is the amyloid cascade hypothesis13, which states 

that accumulation of the amyloid beta peptide in the brain is the initiating event in disease 

pathology14. This hypothesis postulates that the disease is the result of an imbalance between the 

production & degradation of Aβ15, and (Aβ) in a variety of forms, triggers a cascade that harms 

synapses and ultimately neurons, producing the pathological presentations of Aβ plaques, tau 

tangles, synapse loss and neurodegeneration, leading to dementia. Aβ accumulation is thought to 

initiate AD pathology by destroying synapses, causing formation of NFTs, and subsequently 

inducing neuron loss. Recently there has been a shift toward defining soluble Aβ oligomers as 

the toxic agent, rather than plaques, but the theory and the way data is interpreted have remained 

largely the same, i.e. Aβ accumulation as oligomers or plaques triggers AD. A large, growing 

literature embraces the amyloid hypothesis (Figure 1)13. This central theory has strong support, 
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from work beginning with Alois Alzheimer9 and continuing through deduction of the steps that 

generate the amyloid beta protein16 and cloning of mutations in APP17,18, PSEN1 and PSEN2 

genes19,20 that cause familial AD. A recent development that significantly strengthened the 

amyloid hypothesis was the discovery by Jonsson et al.21 of an APP mutation that reduces 

production of Aβ plaques and is protective against AD, as well as age-related cognitive decline. 

It has been hypothesized that Aβ plaques protein deposition precedes NFTs22, cell loss, and 

vascular damage23. In transgenic murine models, Aβ plaque deposition developed prior to 

NFTs24. Working in a transgenic mouse model, Xu et al.22 described an accumulation of Aβ 

plaques precipitated a loss of solubility of intracellular cytosolic proteins such as glycolytic 

enzymes and members of the chaperone family. Aβ plaques have also been thought to induce 

neuronal oxidative stress, resulting in phospholipid peroxidation and protein oxidation in AD 

brain25.  

The second hallmark of AD is the presence of NFTs that arise due to hyper-

phosphorylated microtubule associated protein tau (MAPT). The tau protein is primarily 

expressed in neurons26 and has been shown to be involved with tubulin polymerization as well as 

acting to stabilize microtubules against depolymerization 27, stabilize microtubules responsible 

for axonal transport 26, increase neuritic stability, impact the rate of neurite elongation, and 

increase net microtubule stability2,28. Different isoforms of the tau protein are expressed due to 

alternative RNA splicing, and each of these isoforms displays a varied degree in 

phosphorylation. All isoforms are capable of forming the NFTs that are a hallmark of AD29. A 

balance between kinases (ex. GSK-3Beta, CDK5) and phosphatases (ex. PP-1, PP2) plays a role 

in regulating tau phosphorylation2. Tau hyper phosphorylation leads to disassembly of 

microtubules causing disruption in axonal transport, and impaired synaptic & neuronal 
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function2,30. Hyperphosphorylated tau aggregates into filaments, causing an inability to bind and 

stabilize microtubules 31, and subsequent formation of NFTs2,31.  

This neuronal atrophy has been documented by magnetic resonance imaging (MRI) and 

positron emission tomography (PET), as an individual progresses from mild cognitive 

impairment to Alzheimer's disease 32,33. Presence of Aβ plaques and NFTs is often used, by 

neuropathologists, to diagnose an individual as having AD post-mortem, and currently is the 

only way AD can be confirmed. Using PET, with radio tracers that bind to Aβ plaques, one can 

now quantify pathological changes within the human brain. Currently, only a few radio tracers 

are available, and new Aβ tracers are under development34. These techniques still make 

diagnosing AD is difficult due to variability in the pathology, where some individuals have high 

Aβ load, but do not show symptoms. 

Synapse loss is also an early feature of AD, where there is a strong correlation between the 

extent of synapse loss and the severity of dementia, and significant synapse loss also occurs in 

MCI individuals35. Synapse loss is a pathological correlate of cognitive dysfunction in AD, 

suggesting that synaptic changes are crucial for AD pathogenesis36–39. Synapse loss is prevalent 

near senile plaques, suggesting that plaques may be a reservoir of synaptotoxic molecules. The 

cognitive symptomatology of AD has a temporal correlation with the progression of 

neurofibrillary tangles in the frontal cortex35. Synaptic dysfunction may be a result of toxicity 

caused by the Aβ-amyloid plaques or NFTs. Mouse AD-models show loss of memory and 

cognitive impairments before accumulation of Aβ plaques, suggesting that synapse dysfunction 

may precede and cause neurodegeneration within AD. The nature of many peptidic cerebrospinal 

biomarkers for early detection of Alzheimer’s suggest that presynaptic failures affecting 

neurotransmission are early events in the progression of this disease.  AD may be a disease of 
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synaptic dysfunction and synapse loss that then progresses to include widespread neuronal loss 

and network failure of neurons. Aβ could be a key player in the induction of synaptic failure, as 

Aβ activates a variety of molecular cascades that culminate in synapse dysfunction, shrinkage, 

collapse and loss35. 

Pathogenic mechanisms such as oxidative stress, inflammation, cell-cycle abnormalities, and 

mitochondrial dysfunction40,41 have been reported to precipitate neuropathological changes that 

cause degeneration of neurons and synapses in the cerebral cortex and subcortical regions of the 

brain2. Loss of neurons results in atrophy of the affected regions of the brain, including 

degeneration in the temporal and parietal lobes, as well as parts of the frontal cortex42. In 

addition to these two hallmarks of AD, pathology and clinical symptoms have been correlated 

with oxidative stress, inflammation43,44, obesity45, cardiovascular disease46, traumatic brain 

injury47–51, and diabetes52.  
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Figure 1. The Amyloid Hypothesis.(Adapted from Morris et al13.): Alzheimer’s disease is the 

result of an imbalance between the production and degradation of Aβ15, and Aβ in a variety of 

forms, triggers a cascade that harms synapses and ultimately neurons, producing the pathological 

presentations of Aβ plaques, tau tangles, synapse loss and neurodegeneration, leading to 

dementia. Aβ accumulation is thought to initiate AD pathology by destroying synapses, causing 

formation of NFTs, and subsequently inducing neuronal loss.   
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Genetics of Alzheimer’s disease 

Familial Alzheimer’s Disease (FAD) is an autosomal dominant disorder that is inherited in a 

Mendelian fashion4. FAD accounts for a minority of the total AD cases (<5%)5,6, and has an 

earlier age of onset (<60 years)7. FAD has been associated with mutations in the APP, Presenilin 

1 (PSEN1), and Presenilin 2 (PSEN2) genes7,14,29,53,54. Mutations in the APP gene that cause FAD 

are clustered near the α, β, and γ- secretase cleavage sites, where most of these mutations 

increase cleavage by γ-secretase55.  So far, 24 mutations for APP, 185 mutations for PSEN1, and 

13 mutations for PSEN2 mutations have been found. All of these mutations, except one, are 

inherited in a Mendelian autosomal dominant fashion, and are fully penetrant7. The early onset 

forms of AD fit the amyloid cascade hypothesis, where APP, PSEN1 and PSEN2 mutations 

increase production of Aβ53,54.  

LOAD results from various genetic and non-genetic factors. The strongest known genetic 

risk factor is carriage of the epsilon (ε) 4 allele at the Apolipoprotein-E (APOE) locus. The 

protein product of this gene combines with lipids to form lipoprotein molecules that are involved 

in packaging cholesterol and other fats as well as their transport into blood3. In AD pathology 

APOE is believed to play a role in the clearance of Aβ7. There are three different alleles of APOE 

known as ε2, ε3, and ε4. These alleles code for three isoforms of the protein that differ among 

each other for amino acid residues at position 112 and 158. The ε3, and ε4 alleles code for 

cysteine/cysteine, cysteine/arginine, and arginine/arginine residues respectively7. Individuals that 

are homozygous for the ε4 allele are 10 to 20 times more likely to develop AD in comparison to 

ε4 negative individuals, and the presence of the ε2 allele in an individual has a decreased risk for 

AD3. In addition to APOE, genome wide association studies (GWAS) have identified 22 other 

loci that are associated with LOAD. These genes are HLA-DRB5-DRB1, SORL1, PTK2B, 
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SLC24A4, ZCWPW1, NME8, CASS4, INPP5D, MEF2C, CR1, BIN1, CLU, PICALM, 

MS4A4/MS4A6E, CD2AP, CD33, EPHA1, SORL1, ATXN1 and ABCA77,56–59. However, 

combining the effects of all known genetic variants that are associated with the disease does not 

fully explain the presumably genetic component60. Taken together, these genetic loci account for 

only 50% of the genetic variation among LOAD cases57, leaving a large portion of the 

heritability still unidentified.     This is the missing heritability.  The remaining unexplained 

heritability within individuals that develop LOAD may be explained through a variety of 

mechanisms. I hypothesize that a significant portion of this missing heritability is due to 

epigenetic factors. 

Given that AD is such a complex and heterogeneous disease that is impacted by various 

factors, there arises a need to better understand the complexities of AD that will lead to 

prevention methods or a cure.  
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Overview of Epigenetics  

The term epigenetics was coined by Conrad Waddington in 1942 to describe “the branch 

of biology which studies the casual interactions between genes and their products, which bring 

the phenotype into being”61. Today the term broadly applies to changes in gene regulation and 

cellular phenotype without changes to the DNA sequence itself, as the phenotype of a cell is 

determined by its expression profile62. Epigenetic marks drive much of this expression and 

provide diversity to this phenotype via chromatin alteration that affects gene transcription. 

Epigenetics is the molecular phenomenon by which phenotypic changes are transmitted from one 

generation to another with no apparent alterations to the sequence of DNA itself63. Epigenetics 

incorporates several aspects that include DNA methylation, histone modifications, and 

microRNAs regulation. Epigenetic modifications regulate gene expression pre-transcriptionally, 

whereas miRNAs suppress gene expression post-transcriptionally. Epigenetic status is modified 

by environmental exposures such as nutrition, social status, chemical and emotional 

environment, pregnancy conditions, infertility, contraception, and different modalities of 

pharmacological intervention63. Epigenetic status is also influenced by genotype, genetic 

variation in genes encoding numerous enzymes63,64. Furthermore, DNA methylation contributes 

to natural human variation63,65. 

An epigenome is the chromatin state found across the genome at a certain time point and 

cell type, and therefore thousands of epigenomes can exist for a single given genome66. Even 

though there is no alteration in the DNA sequence itself, epigenetic marks, chromatin activity, 

and histone modifications67 are heritable during cell division, keeping these epigenetic marks 

intact and passed on to dividing cells68. Some epigenetic modifications are stabilized and 

maintained throughout the life of an organism, while others change over time due to intrinsic or 
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environmental factors69.  The epigenome can be influenced by many aspects that impact DNA or 

the histones that are bound to DNA. An example of an epigenetic modification to DNA in 

mammals is the covalent addition of a methyl group to the 5-carbon of cytosine in CpG 

dinucleotides to form 5-MethylCytosine (5mC) 67,68 (Figure 2)70. Similar to DNA, histones can 

be methylated, or acetylated. Histone methylation and demethylation are are performed by 

enzymes termed histone methyltransferases, and demethylatses. Histone acetylation and 

deacetylation is performed by histone acetyltransferases (HATs) and histone deacetylates 

(HDACs). Further, regulation of histones can occur via modifications that involve 

phosphorylation, ADP-ribosylation, ubiquitylation, sumoylation, crotonylation, propionylation, 

deiminiation and O-GlcNAcylation, which are all controlled by a et of enzyme complexes71. 

 In mammalian genomic DNA, methylation of the cytosine residue within DNA is 

achieved by the addition of a methyl group from S-adenosyl-L-methionine(SAM). This residue 

is added by a subset of enzymes known as DNA methyltransferases (DNMT1, DNMT3a, and 

DNMT3b). DNMT1 is highly expressed in neurons and has high affinity to hemimethylated 

CpGs, thereby acting as a maintenance methyltransferase72. The other two transferases, 

DNMT3a and DNMT3b, methylate previously unmethylated cytosines of CpG dinucleotides and 

therefore are de novo methyltransferases. Modification of DNA via 5mC is considered crucial in 

mammals, as genome-wide disruption of DNA methylation results in embryonic lethality72. In 

mammals, the 5mC is mostly restricted to CpG dinucleotides that are confined to short genomic 

regions called CpG Islands (CGIs) and to promoters linked to 70% of all genes, which contain 

high numbers of hypomethylated CGIs. CGIs are short stretches of DNA where the presence of 

the CpG sequence is higher than in other regions73. The frequency of CpG islands varies greatly 

between mammalian genomes74. CGIs tend to be in GC rich regions and are methylated in 
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various cell types under certain pathological conditions73. They are rarely larger than 5kbp and 

overlap with the promoter regions for 50% to 60% of human genes73. Most housekeeping and 

widely expressed genes have a CpG island covering the transcriptional start site75, except when 

they are associated with imprinted genes. These islands tend to be unmethylated for 

housekeeping and tissue specific genes at developmental stages76. De novo methylation of these 

CGIs is associated with gene-specific or tissue-specific gene expression regulation and is 

influenced by composition of individual cis-regulatory regions within chromatins. Compared 

with histone modification, DNA methylation is a more stable mark, especially in differentiated 

cells, and is essential in gene expression control and cell type maintenance.  Regulation of gene 

expression doesn’t always directly correlate to the global genome levels of 5mC. DNA 

methylation characteristics of a given locus contribute to whether the locus would be subjected to 

specific regulatory mechanisms in gene expression. In addition to the 5mC-mediated gene 

regulation, the density and distribution of 5hmC in the genome show cell- and tissue-type 

specificity that further contributes complexity to the epigenetic regulation of gene expression. 

 The machinery involved in the methylation of DNA in mammals consists mainly of two 

components, a DNA methyltransferases (DNMTs) and  methyl-CpG binding proteins (MBD)68. 

DNMTs establish and maintain DNA methylation patterns, whereas MBDs read methylation 

marks. The maintenance enzyme DMNT has subclasses where DMNT1 is responsible for 

methylation of hemi-methylated CpG dinucleotides in nascent strands of DNA following DNA 

replication. One important function of DMNT1 includes maintaining DNA methylation patterns 

in proliferating cells67. DNMT3a and DNMT3b are involved in de novo methylation and for 

establishing new DNA methylation patterns in cells during development67. Both enzymes also 

interact with histone deacetylase to repress transcription77. Mouse models have shown that 
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DNMT1 and DNMT3b are essential for embryonic development and that DNMT3a deficient 

mice die within a few weeks of birth68.   

 The methylation of DNA is usually associated with the silencing of gene expression by 

directly blocking transcription regulatory factors from binding to their target sequences67. 

Methylation of promoter regions has shown to be associated with lower levels of gene 

expression78, and methylation within the gene body has been associated with increased gene 

expression79. The proposed mechanism is that the methylation of DNA causes recruitment of 

binding proteins that recognize the methylated DNA and associate with histone deacetylase and 

chromatin remodeling complexes to cause the stabilization of condensed chromatin80. These 

proteins that recognize methylated DNA contain a methyl-binding domain (MBD) that recognize 

methylated cytosine residues. These binding proteins play a role in chromatin modification and 

remodeling and do not act in isolation; evidence has shown that they often interact with each 

other by forming large protein complexes67.  The main components of chromatin modification 

and remodeling can be divided into four sub categories. The first category consists of DNA 

cytosine methyl-transferases such as DMNT1, DMNT3a and DMNT3b. The second are Methyl-

CpG-binding proteins that bind methylated DNA. There are six such known proteins that have 

been identified in mammals. These proteins can act as transcriptional repressors or can recruit 

further chromatin modifying proteins and transcription-regulatory complexes upon binding 

methylated DNA67. The third category includes Histone-modification enzymes that modify core 

histones (H2A, H2B, H3 and H4) at their amino-terminus. Modifications to the histones include 

phosphorylation, methylation, and acetylation which also regulate gene transcriptional activity67. 

Methylation of the Lysine4 residue of the H3 complex has been associated with gene repression, 

while methylation of the Lysine9 of H3 complex has been associated with transcriptional 
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silencing67. The last subsets of complexes are ATP-dependent remodeling complexes. These 

enzymes utilize ATP hydrolysis to modify super helical torsion in nucleosomal DNA, which 

modifies nucleosomes and alters the accessibility of chromatin to various proteins that further 

control downstream transcription, replication, or recombination events67. The term epigenetics 

incorporates all of the mechanisms described above and involves complex interplay between 

these mechanisms.  

 DNA methylation is a major epigenetic mechanism that has been shown in eukaryotes to play 

an important role for gene control, cell differentiation during development73, embryonic 

development, chromatin structure, X chromosome inactivation, chromosome stability and 

genomic imprinting68. DNA methylation is crucial for numerous cellular processes, where 

altered DNA methylation has been linked to many common human diseases81. Numerous lines of 

evidence indicate that DNA methylation plays a direct role in carcinogenesis. Defects in 

enzymes involved in epigenetic modification have been linked to various types of tumor 

formation and leukemia; elevated levels of DNMTs and MBD-containing proteins have been 

observed in human tumors81. Both hyper- and hypo-methylation have been observed in cancer 

cells and the loss of methylation from repetitive regions of the genome results in genomic 

instability and is a hallmark of some tumors68. Outside of cancer, DNA methylation has been 

shown to play an important role in neurodevelopmental disorders, neurodegenerative, 

neurological, and autoimmune diseases.   

 Further, the finding that global 5mC decreases with age in various tissues of mammals, has 

made DNA methylation a considerable topic of interest in age related neurological disorders. 

Johansson et al.82 found that methylation plays an important role in the process of aging. Testing 

476,366 sites within peripheral blood of individuals whose age ranged from 14 to 96 years, it 
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was shown that 29% of the sites were affected due to age, where 60.5% of the sites become 

hypomethylated and 39.5% of sites become hypermethylated as age increases. Epigenome wide 

analysis of CpG nucleotide methylation was performed at 27,000 loci within the frontal cortex, 

temporal cortex, pons and cerebellum of 387 individuals aged from 1 to 102 years83. The authors 

report that some loci showed differential DNA methylation with increasing age. DNA 

methylation is impacted by multiple environmental factors like alcohol consumption, body mass 

index, smoking, folate intake, among others, which is why an individual’s lifestyle can play an 

important role in terms of epigenetic factors impacting numerous diseases. Evidence for this is 

given that methylation status varies among monozygotic twins since epigenetic differences arise 

throughout the lifetime of an individual. Fraga et. al.69 examined locus specific and global DNA 

methylation as well as histone acetylation patterns in a cohort of monozygotic twins. They found 

that during their early life, twins are epigenetically indistinguishable, but the overall epigenetic 

profile is different monozygotic twins’ age.  Investigating this dynamic epigenetic process, that, 

is within the infancy phase in the field of neurological diseases.  
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Figure 2: Transition of Cytosine to 5-MethylCytosine in Mammals (Adapted from 

Richardson et. al.70) DNA methyltransferases catalyze the transfer of the methyl group from 

SAM to the 5 position of cytosine in DNA, producing 5-methylcytosine and SAH. Accumulation 

of SAH suppresses the reaction. The lines under the cytosine bases indicate that these are not 

free molecules, they are components of DNA. Abbreviations: SAH, S-adenosylhomocysteine; 

SAM, S-adenosylmethionine. 
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DNA Methylation and Alzheimer’s disease 

 The field of epigenetics has had an impact on understanding of brain function and 

neurological disorders. Environmental modulation of epigenetic mechanisms is implicated with 

many neurological conditions such as depression, Parkinson’s disease, Huntington’s disease, 

multiple sclerosis, dementia, and Alzheimer’s disease. When examining factors that contribute to 

LOAD, a large network of interactions has to be taken under consideration. Genomic mutations 

and epigenetics combine in a complex and dynamic cellular phenotype that impacts important 

neurobiological functions such as homeostasis, stress response, neuroplasticity, neuroprotection, 

and neurodegeneration. It is also known that neuronal activity is associated with DNA 

methylation and histone modifcation84,86–89.  

 Various epigenetic modifications have also been reported in disorders of synaptic plasticity 

and cognition90 and DNA Methylation has also been suggested as an important molecular 

mechanism in the maintenance of memory87. Studies have shown that in brain, about 80% of 

CpG sites are methylated, and about 25% of this methylation occurs outside the context of CpG 

methylation; occurring in Cytosine residues that are not next to Guanine71,84. Recent studies 

show significant associations between alterations of genomic DNA methylation patterns and 

distinct phenotypes in neuronal systems. Deletion of DNMT1, the enzyme responsible for 

transferring methyl residues to cytosine, in neural precursor cells causes DNA hypomethylation 

within Central Nervous System (CNS), that disrupts neural control of breathing at birth, and 

ultimately causes neonatal lethality in mice. In humans, mutations within the DNMT1 gene is 

linked to the hereditary sensory and autonomic neuropathy type 1 (HSAN1). DNMIT1 mutations  

cause global hypomethylation, but near CpG Isalnds, hypermethytlation is observed that can 

potentially contribute to neurodegeneration that manifests clinically with HSAN1. In addition, de 
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novo mutations of methyl-CpG binding protein-2 (MeCP2) are linked to sporadic cases of Rett 

syndrome (RTT). RTT is an X-linked, progressive neurodevelopmental disorder caused by 

mutations in MECP2, a nuclear protein that binds specifically to methylated DNA. Deficiency in 

MeCP2 protein causes neuronal dysfunction of mature neurons. In mice showing an RTT-like 

phenotype, MeCP2 has been shown to regulate the expression of a wide range of genes within 

the hypothalamus by functioning as both an activator and a repressor of transcription. Within 

humans, a strong correlation between the frequency of MeCP2 mutations and distinct clinically 

diagnosed RTT phenotypes has been found within a cohort of patients. Additional studies show 

that neuronal activity can cause genome-wide changes to 5mC residues. Guo et al.89 

demonstrated that activating dentate granular neurons within the hippocampus via electro 

stimulation resulted in specific modifications in 5mC residues. In these experiments, de novo 

methylation occurred at new CpG sites and caused demethylation of CpG sites that were 

previously methylated.  

 In terms of the two hallmarks of AD, the APP promoter is estimated to have a GC content of 

72% and the rate of the CpG dinucleotides is five times higher than what is normally observed in 

other eukaryotic promoters 91. Analysis of methylation status in healthy brain tissue failed to 

detect the presence of methylcytosines in the 460bp-275bp region of the APP promoter. 

However, the 500bp upstream region showed brain tissue specific profiles of methylation that 

were associated with APP expression91 . Studies have also suggested that age related 

demethylation may impact β-Amyloid deposition in the brain91 . β - secretase (BACE1), and 

Presenilin 1 (PSEN1) have also been shown to be regulated by methylation91. In addition to 

methylation of cytosines, acetylation/deacetylation of histones has also shown to impact 

neurological disorders. The balance between Histone Acetyltransferases (HATs) and Histone 
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Dacetylase(HDAC) expression plays a role in neurological disorders, where the imbalance has 

been showing to play a role in neuronal apoptosis92. Recently it has been found that malfunction 

of the HAT-CREB-binding protein causes changes in chromatin acetylation status and this loss 

of function is associated with neurodegenerative disease92. The dysregulation of histone 

Acetyltransferases (HATs) can play a role in AD93 and has been linked to clinical disorders, and 

inhibitors of histone acetyltransferases have been studied for use in treating neurodegenerative 

disorders such as Huntington’s disease, depression, and schizophrenia90. After initial cleavage of 

APP, γ  secretase activity generates Aβ and an intracellular tail fragment. This intracellular 

fragment has been found to recruit HAT-Tip60, and may play a role in the expression of certain 

genes90. The protein HDAC6 positively correlates with tau burden, and a decrease in HDAC6 

promotes tau clearance, making HDAC6 a key factor in regulation of tau protein levels31. HDAC 

inhibition could be an avenue potential therapeutic approach for the treatment of a range of 

nervous system disorders93.  

 Environmental factors such as oxidative stress and its impact on epigenetic modifications 

have been studied in human neuroblastoma cell lines. Gu et al.94 found that oxidative stress 

increased intracellular Aβ levels, and BACE1 expression. An increase in BACE1 expression and 

a decrease in DNA methyltransferases was also correlated with demethylation of the BACE1 

promoter region. Oxidative stress has also been observed to induce an increase in HAT 

expression and a decrease in HDAC expression. Caffeine has also been speculated as an 

environmental agent that is protective against AD progression, potentially as an epigenetic 

modulator95. Going further than just cell line studies, there have been studies that examined the 

physiological benefits of environmental factors on aging and AD within animal models. Exercise 

and environmental enrichment (EE) is found improve learning and memory, and leads to an 



 36 

increase in neurogenesis and angiogenesis within the hippocampus of aged mice96. At the same 

time, EE and exercise has shown to slow the progress of aging within the brain in rodents96. 

Physical exercise itself has shown to delay cognitive deterioration that is observed in AD 

patients. The epigenetic changes caused by certain environmental factors on CNS are not well 

known. In mammals, specifically monkeys, exposure to lead (Pb) at a young age and its impact 

on APP and BACE1 expression has been studied. The authors reported that exposure of lead 

caused an increase in APP, Aβ, and BACE1 gene expression; a decrease in DNMT1, DNMT3a, 

MECP2 expression, and also observed higher levels of oxidative damage to DNA97. 

 Another study has shown that global levels of 5mC inversely correlate with the presence of 

NFTs72, a hallmark of AD. The study examined 5mC levels in post mortem cortical tissues in 

AD patients and age matched controls. A recent study demonstrated that immunoreactivity of 

5mC in the neurons of postmortem cortical tissue from AD patients is significantly less than in 

age-matched controls, proposing that a significant global loss of 5mC takes place within AD. 

Another finding showed the promoter region of APOE ɛ4, was hypermethylated in brain tissue 

samples of AD patients. In addition, studies have shown a loss of DNA methylation in the 

entorhinal cortex, and hippocampus of AD individuals98,99. This illustrates the complex 

relationship that has to be considered when looking at DNA methylation within the AD brain.  

 It is clear that epigenetics plays an important role in AD. Evidence thus far illustrates the 

multifaceted role of DNA methylation in the neurodegenerative process. Investigating this 

dynamic epigenetic modification is still within the infancy phase in the field of Alzheimer’s 

disease. Understanding how DNA methylation contributes to AD pathogenesis is unclear given 

the problem of DNA methylation being such a dynamic process that is impacted by various 

external processes and highly variable within individuals.  
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 RNA and Alzheimer’s disease  

 The one gene and one protein hypothesis was first stated by Beadle & Tatum116, and the 

central dogma of molecular biology117 provides the classic view of how DNA is translated to 

protein via an RNA intermediate. However, as sequencing techniques have advanced, our 

knowledge of molecular biology has tremendously increased and it has become lucid that the 

pathway from gene to protein is a very intricate and complicated process. It is known that there is 

no correlation between genome size, number of genes, and the complexity of an organism. This 

seems counter intuitive as it would be assumed that increased organism complexity would 

correlate to a larger number of protein coding genes. The human genome contains about 30,000 

protein coding genes, compared to the salamander, which has 20 times the number of genes as 

does a human118. One trend that does exist among higher eukaryotes and indeed humans is an 

increase in alternative splicing events. It has been thought that up to 98% of the transcriptional 

output of the genome is made up of non-coding RNAs(ncRNAs)119. This would seem as an 

immense waste of cellular energy, but it is now known that these ncRNAs play major regulatory 

roles and are involved in chromatin remodeling, RNA-DNA, RNA-RNA, and RNA-protein 

interactions, as well as other ways of regulation that are not yet understood120.  

 The transcriptome of a cell reflects cellular activity within a tissue at a given point in time. 

Transcriptome profiling can help provide an unbiased approach for investigating the 

pathogenesis of complex diseases like AD. Transcriptome analyses has been performed using 

transgenic animal models of AD and patient-derived cell lines. In contrast to these approaches, 

post-mortem human brain tissue is difficult to obtain, and some RNA quality concerns exist that 

might potentially influence transcriptome studies. Nevertheless, post-mortem brain tissue, being 

identical to the tissue affected by the disease, is the gold standard against which all other model 
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systems are evaluated. Transcriptome studies of AD utilizing brain tissue have however 

generated mostly discordant results109. 

 In transcriptome studies performed so far for neurodegeneration (ND) and neuropsychiatric 

disorders, source of RNA used has been the mRNA isolated from transgenic animal models and, 

recently, patient-derived cell lines. Even though post-mortem brains have been frequently 

reported as the ‘gold standard’, there are definite difficulties that arise as a result of the nature of 

using postmortem human brain tissue and the fragile nature of isolated RNA render 

transcriptome studies quite difficult. Microarray analysis, widely used for ND and 

neuropsychiatric disorders, provided much information about the transcriptional profiles in 

pathological states, and results that are not concordant have been reported109. This non-

concordance may be due to microarray drawbacks, but also due to the variable quality/integrity 

of RNAs, affecting the measure of gene expression levels. As ND patients have prolonged 

agonal state in brain tissue (strongly correlated with pH alterations), differences in RNA integrity 

may, to some extent, account for aberrant gene expression profiles121.  

 Some recent papers have pointed out the great advantages of using RNA-seq to profile the 

transcriptome of brain tissue affected by ND. Nonetheless, to date a few studies have been 

published with direct use of RNA-Seq on AD patient brains109,122,123. Most others have utilized 

animal models and human neurons derived from induced pluripotent stem cells proposing an 

ideal system for further studies on defective neurogenesis in patients. The study of Twine et 

al.109 has provided, for the first time, an extensive transcriptome analysis of postmortem frontal 

and temporal lobes of AD patients, highlighting a differential expression of known causative 

genes and also of previously unannotated expressed regions. It should be considered that given 

the high-level complexity of the human brain, achieved with the same number of genes as those 
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of less evolved organisms, some of its complexity may probably be due to alternative splicing 

and alternative promoter usage. Such events have been described in this study and possibly 

associated to the progression of neurodegeneration in patients. Twine et al.109 utilized RNA-seq 

as their tool for analysis of differentially expressed genes (DEG) within postmortem human brain 

tissue and tissue of normal individuals and individuals affected by AD. Significant differences in 

gene isoform expression levels, alternated use of promoters and transcription start sites between 

normal and AD brain tissue were reported, however, it’s important to note that their cohort did 

not contain enough biological replicates nor did it contain age matched controls. Mills et al. 122, 

have also utilized RNA-seq on normal and AD parietal lobes of postmortem human brain tissue, 

where differentially expressed genes were revealed in pathways related to lipid metabolism.   

 Transcriptional profiling has been performed in mouse models that overexpress the human 

tau protein. These studies have shown that when compared with non-NFT-bearing CA1 neurons 

obtained from normal control brains, NFT-bearing CA1 neurons from AD brains significantly 

under express genes for cytoskeletal elements, dopamine (DA) receptors, glutamate receptors 

(GluRs), protein phosphatase subunits 1α and 1γ, kinases, APP and synaptic markers including 

synaptophysin, synaptotagmin, synapsin I, α-synuclein and β-synucleing124–126. These neurons 

where NFT was over expressed in AD hippocampi also show overexpression of protein 

phosphatase 3CB127.  

 Transcriptomic studies have also implicated the possible role of genes related to synaptic 

function in AD pathogenesis. These studies emphasize genes coding for proteins associated with 

presynaptic vesicles or with the postsynaptic binding machinery39,126,128–131. Synaptic failure has 

been thought to be an affiliated feature, along with amyloid or tau pathology, that contributes to 

the cognitive decline observed in AD13,132. It has also been found that the expression of genes 
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coding for synaptic markers including synaptophysin, synaptotagmin, synapsin I, α-synuclein 

and β-synuclein124–126 are down-regulated in NFT-bearing CA1 neurons. Reduction in synapsin I 

gene expression was also found in the entorhinal cortex133.  

 Only a handful of studies109,122,134,135 have utilized RNA directly from postmortem brain 

tissue of humans for transcriptome analysis. These studies either lack enough biological 

replicates, a key entity that increases the power to detect differentially expressed genes136, or 

lack enough sequencing depth as recommended by ENCODE137. These studies, limited as they 

are, show DEGs that cluster within synaptic transmission, transmission of nerve impulse, 

immune response, lipid metabolism, mitochrondrial dysfunction, and neurotransmitter transport 

when performing gene ontology analysis109,122,134,135.  

 The complexity of humans is not only because of the number of genes present within the 

entire genome, but largely due to the complex intertwined connection between regulation of 

these genes and their expression. Such a fine-tuned system is subject to certain disturbances that 

result in disease. Hence, it is important to examine gene expression differences between cases 

and controls to understand the changes that could be contributing to disease pathology, rather 

than focusing on finding on a one gene causative approach.  

 For the approach used within this project, the source of RNA is from postmortem brain tissue 

made available by the University of Texas Southwestern Medical Center at Dallas. We utilize 

postmortem brain tissue as it is considered the gold standard for these studies, since one is able to 

directly look at tissue impacted by the disease. However, this has considerable challenges, as 

RNA is fragile and easily degrades due to the high availability of RNAses. These studies are 

very limited because brain tissue is the only majorly affected tissue in these neurodegenerative 

diseases, and the availability of samples is scarce. The fragility of RNA, and post mortem 
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intervals, along with the complexity of RNA degradation, accompany post mortem human 

samples, and is something that cannot be controlled for. A novel probe-based capture approach 

that combats RNA degradation and allows for the use of RNA-seq even in poor quality samples 

was used within this project. 
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Chapter II 

MATERIALS  AND METHODS 

All methods were performed at the High Throughput Sequencing Facility, located at University 

of North Carolina Chapel Hill. 

Project Overview 

Alzheimer’s disease (AD) is a rising problem; it is estimated that the affected U.S. 

population will reach 13 million by 2050.  Gaps in knowledge still exist in terms of 

understanding Late Onset AD pathogenesis, progression, and diagnosis.  In terms of 

pathogenesis, two hypotheses currently dominate within the field: the amyloid beta (Aβ) cascade 

hypothesis and the presence of neurofibrillary tangles (NFTs).  

The purpose of this project is to investigate DNA methylation and RNA expression 

between age-matched controls and AD patients.  DNA methylation was assessed using a probe-

based microarray method that investigates over 450,000 individual CpG dinucleotides, and using 

a CpG Methyl Binding Protein capture approach followed by deep sequencing. RNA expression 

was assessed by developing cDNA libraries using a novel probe-based capture approach 

followed by deep sequencing.  
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Hypothesis: Late Onset Alzheimer’s disease (LOAD) is a heterogeneous disease where a large 

portion of the heritability is unknown. We hypothesize that DNA Methylation alters gene 

regulation and contributes towards the AD pathogenesis 

This hypothesis was tested in collaboration with Dr. Kirk C. Wilhelmsen at University of 

North Carolina at Chapel Hill. Human post-mortem prefrontal cortex brain tissue of 11 AD 

individuals and 12 age-matched controls, were acquired from the brain bank located at 

University of Texas Southwestern Medical Center at Dallas, Texas. Individuals were classified 

as controls if a score of four and lower was achieved, and classified as an AD patient if they 

achieved a score of five on the Braak staging scale138,139.  

 

DNA and RNA extracts from postmortem frontal cortex brain tissue were investigated for three 

measures:  

(1) Change in RNA expression using a novel RNA sequencing approach; 

(2) Site specific genomic DNA methylation using the Illumina® 450K methylation 

microarray; and  

(3) Analysis of genomic DNA for differentially methylated regions using a protein 

capture approach to enrich for methylated regions, followed by deep sequencing. 
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Sample Description:  

The subjects used for these studies were acquired following protocols approved by 

University of Texas Southwestern Medical Center at Dallas. Freshly frozen human postmortem 

Frontal Cortex samples of 11 AD individuals and 12 age-matched controls, were acquired from 

the UT Southwestern brain bank. Individuals were classified as having AD if they achieved a 

score of V on the Braak staging scale138,139. A Braak staging of V is achieved when the NFT 

distribution is found within the neocortical region of the brain, with a clinical impression of 

having AD. The samples utilized in this study, and the patients’ age, sex, Post Mortem Interval in 

hours (PMI), the cortical region of the brain from where the tissue was acquired, and the 

respective Braak Staging Score is outlined in Table 1. 
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Table 1: Samples utilized within this study.  Sample ID, Disease Category (Control (CTL) or 

Alzheimer’s disease (AD)), Patient’s Age, Sex, Post Mortem Interval in hours (PMI), Cortical 

Region of the brain from where the tissue was acquired, and the respective Braak Staging Score 

of each patient.      

Sample ID Category Age Sex PMI(hrs) Cortical Region Braak
24381 CTL 68 Male 6.3 Frontal II
24385 CTL 73 Male 4.8 Frontal 0
24430 CTL 72 Male 8 Frontal I
24509 CTL 67 Male 9.5 Frontal 0
25666 CTL 96 Female 5 Frontal II
36082 CTL 69 Male 14.8 Frontal 0
36359 CTL 84 Male 23.5 Frontal IV
42133 CTL 100 Female 12.2 Frontal IV
45116 CTL 79 Male 10.3 Frontal III
46202 CTL 77 Male 19.5 Frontal II
25667 CTL 75 Female 3.7 Frontal II
42990 CTL 84 Female 14 Frontal I
Average 78.67 10.97
40482 AD 81 Male 18 Frontal V
41176 AD 79 Male 9 Frontal V
35289 AD 74 Female 12.7 Frontal V
41639 AD 69 Female 11.5 Frontal V
41969 AD 86 Female 25 Frontal V
43045 AD 69 Male 10.2 Frontal V
43172 AD 91 Male 8.5 Frontal V
43192 AD 82 Male 24.8 Frontal V
43509 AD 79 Male 5 Frontal V
44624 AD 95 Female 10.5 Frontal V
45392 AD 65 Male 16.8 Frontal V
Average AD 79.09 13.82
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RNA Methods 

Overview of RNA Sequencing  

Deep sequencing is rapidly becoming the method of choice for transcriptional profiling 

experiments. Unlike RNA microarrays, sequencing RNA (RNA-seq) allows identification of 

novel transcripts, avoids background noise associated with fluorescence quantification as used in 

microarrays. RNA-seq goes beyond just providing information on gene expression, by 

incorporating data on alternative splicing events and the presence of non-coding RNAs. RNA-

seq allows genome-wide analysis of transcription at single base pair resolution and allows 

identification of alternative splicing events, and post-transcriptional RNA editing. RNA-Seq also 

detects new splicing variants, and allows for precise quantitative determination of exon and 

splicing isoform expression.  

Next Generation Sequencing (NGS) techniques have several advantages over current 

microarray technologies. RNA-Seq has a low frequency of false-positive findings and is highly 

reproducible compared with microarray technology. RNA-Seq produces a digital signal from the 

cDNA template sequence, whereas microarray analyses must overcome the issue of nonspecific 

probe hybridization. Validation techniques such as quantitative PCR (qPCR) and spike-in RNA 

have demonstrated that RNA-seq is extremely accurate109–111. A false positive rate <2% has been 

demonstrated for this technique. As recently reported by Marioni et al.112, qPCR results agreed 

more closely with Illumina® sequencing results than with microarrays112. Furthermore, RNA-Seq 

has a much higher resolution of transcript structure than microarrays, which allows for the 

identification of the transcript boundaries at the level of a single base. These qualities make 
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RNA-Seq particularly useful for studying complex transcriptomes, such as those found in the 

human brain113.   

RNA-seq is not only highly suited to investigations of the complex human brain tissue 

but it can potentially overcome technical issues inherent to case–control comparisons of 

postmortem brain tissue in neurodegenerative diseases. RNA-seq experiments follow an overall 

similar protocol. Total RNA is isolated from a sample of interest, which may be purified to 

enrich for messenger RNAs (mRNAs), microRNAs (miRNAs) or long non-coding RNAs 

(lncRNAs) before preparing an RNA library that is created by reverse transcription to cDNA. 

Sequencing can produce one read in a single-end sequencing reaction, or two ends separated by 

an unsequenced fragment in paired-end reactions. Together, RNA-seq has allowed an 

unparalleled view of the transcriptome in normal and pathological processes and has revealed 

that the transcriptome is more complex than previously described.   

 Transcriptome analysis using microarray-based methods is responsible for most of the 

current understanding of gene expression in development and disease. One disadvantage of 

microarray analysis is the limitation of detection of only known transcripts. Microarray 

hybridization-based detection suffers from many disadvantages such as poor sensitivity, and low 

specificity. Reports that compare microarrays and RNA-seq, do state that RNA-seq is superior to 

microarrays, when considering low frequency of false positive signals and high reproducibility 

of the method. Van Bakel et al.114 report that the transcript analysis of intragenic regions 

unambiguously showed the hybridization signals from microarrays can lead to false positive 

signals of transcripts that are in low abundance.  RNA-seq on the other hand, reduces these 

limitations. Non-specific hybridization or cross-hybridization is also of concern when 

interpreting microarrays, especially with closely related gene family members with highly 
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similar sequences. RNA-seq addresses this by eliminating the ambiguity of sequence detection 

by mapping reads to a reference genome; however, a single sequenced read may map to multiple 

locations. To avoid this dilemma, paired-end sequencing solves this problem, and this additional 

information of a paired read allows for more accurate mapping. 

One disadvantage of RNA-seq could be the introduction of bias that PCR introduces due 

to GC content and length of the amplicon. A number of analysis tools accordingly correct for 

this. Since the total number of reads per transcript is proportional to the level of a transcript 

multiplied by transcript length, a long transcript will be sequenced more often than a short 

transcript when expressed at equivalent levels. Since statistical power is closely linked to sample 

size, a long transcript is more likely to be found differentially expressed than a short transcript. 

To get around this problem, expression levels are frequently expressed by calculating the number 

of reads as fragments per kilobase per million reads (FPKM). FPKM transformation enables 

direct comparison of RNA transcript expression levels between two libraries with different 

sequencing depth and determination of relative expression levels between two or more 

transcripts in a single library.  

There have been some concerns regarding sense and anti-sense transcription and its 

biological relevance. Even though the field tends to agree that if the goal is to determine 

differential gene expression, the strand information will not affect the data generated,  a stranded 

library approach was pursued anyway which is standard within the Illumina® TruSeq® RNA 

Access Library Preparation protocol. When making stranded libraries, during the 2nd strand 

cDNA synthesis, uracil is incorporated instead of thymine. Illumina® library prep continues as 

normal, but after adapter ligation and before PCR amplification, Uracil-DNA glycosylase is used 

to degrade the 2ndstrand. This results in all reads starting in the same orientation so you can 
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determine which strand was being transcribed within the sample. Figure 3 (Adapted from Zhao 

et al.115) illustrates non-stranded versus stranded RNA-seq protocol. The disadvantage of using a 

stranded library approach is that you lose the information about antisense transcription. It been 

realized non-coding RNAs are more than just artifacts of erroneous transcription and play vital 

regulatory roles at the genomic, transcriptional and translational level. Transcription of DNA 

sense strand produces these antisense RNA transcripts. This antisense transcription results in the 

production of non-coding RNAs that are complementary to their associated sense transcripts, and 

some studies that show production of protein from some antisense transcripts. It seems that 

antisense transcriptional ‘hot spots’ are located around nucleosome-free regions such as those 

associated with promoters, indicating that it is likely that antisense transcripts carry out important 

regulatory functions, and does occur within mammals.  

 Lastly, there are some benefits for utilizing paired-end reads (PER) instead of single-end 

reads when performing deep sequencing. Having pairs of reads improves read alignment and 

allows for detection of chromosomal rearrangements, like deletions and insertions.  Specifically, 

within RNA, PER allow for detection of different isoforms. When utilizing paired-end reads, one 

knows roughly the range of the distance of two reads. This helps when mapping reads back to a 

reference genome. In the case of splicing junction events, two exons maybe joined together. If 

paired-end read 1 and read 2 are mapped to a genome with 1kb between them and the expected 

distance between them in the transcript is only about 500bp at maximum, then one may conclude 

that an intron of around 500bp may be removed. This information is lost when using only single-

end reads. Paired-reads also improve directional sequencing accuracy.  
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Figure 3: Non-stranded versus stranded RNA-seq protocol (Adapted from (Zhao et al.115). 

The stranded protocol differs from the non-stranded protocol in two ways. First, during cDNA 

synthesis, the second-strand synthesis continues as normal except the nucleotide mix includes 

dUTPs instead of dTTPs. Second, after library preparation, a second-strand digestion step is 

added. This step ensures that only the first strand survives the subsequent PCR amplification step 

and hence the strand information of the libraries. 
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RNA extraction, library preparation, and sequencing:  

 RNA extraction was performed by utilizing the RNeasy Lipid Tissue Mini Kit (Qiagen, 

Catalog No. 74804). This kit was chosen due to its inclusion of the QIAzol Lysis Reagent 

(Qiagen, Catalog No. 79306), that allows for high yields of RNA from fatty tissues, since the 

brain is comprised of a large amount of lipids.  It also includes a clean-up column step to 

minimize the carryover of any compounds used within the organic extraction method that may 

interfere with the downstream library preparation process. Approximately, 95 µg of freshly 

frozen tissue was placed in 1ml of QIAzol Lysis Reagent. The tissue was homogenized within 

the QIAzol solution for 60 seconds at 20,000 rpm using the TissueRuptor (Qiagen, Catalog No. 

9001271). After homogenization, the manufacturer recommended protocol was followed for 

RNA extraction. RNA quality was assessed by using the Agilent RNA 6000 Nano Kit (Agilent 

Technologies, Catalog No. 5067-1511). The Agilent 2100 Bioanalyzer (Agilent Technologies, 

Catalog No. G2940CA) system was used to perform the analysis. This system allows for the 

sizing, quantitation, and quality assessment of RNA. The system comes with the proprietary 

2100 Expert Software that is used for RNA integrity number (RIN) analysis. This tool was 

designed to help scientists estimate the integrity of total RNA in samples. The expert software 

automatically assigns an integrity number to any eukaryote total RNA sample. The RIN 

algorithm uses the entire electrophoretic trace, and not just by the ratio of the 18S and 28S 
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ribosomal RNA, which makes up ~80% of most RNA samples. This tool allows for a robust and 

reliable prediction of RNA integrity140. A wide range of RINs was observed within our samples, 

from 3.7 to 6.8, most likely due to the variation in post mortem intervals before sample 

collection. Sample purity of RNA and RNA quantification was done utilizing the NanoDrop 

2000 UV-Vis Spectrophotometer (ThermoFisher). Table 2 provides the RIN, quantity of RNA in 

ng/µL and sample purity using the A260/280 and A260/230 ratios as given by the NanoDrop for 

the test samples. RNA extractions were repeated three times for all 23 samples, and the samples 

with the highest RIN among the three extraction trials were chosen for library preparation. The 

average RIN for the samples advanced to the library preparation process was 5.6. 
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Table 2: List of RNA samples characteristics that were advanced to library preparation. 

Sample IDs, quantity of RNA sample obtained (ng/µl), A260/230, A260/280, and RNA Integrity 

Number is given for each sample. 

Controls	 Nanodrop	quantification	(ng/µl) A260/230 A260/280 RIN	from	Agilent
24381 322 2.07 2 6.7
24385 228 0.99 1.98 4.5
24430 254 2.1 1.99 6.4
24509 183 2.21 1.97 6.2
25666 227 1.27 1.99 5.7
36082 245 1.76 1.96 6.1
36359 260 2.17 1.99 5.5
42133 349 2.2 1.98 6.1
45116 226 2.07 1.96 6.2
46202 197 1.49 1.93 5.1
25667 268 1.2 2.02 6
42990 203 1.47 1.93 5.8

AD	Cases
40482 231 2.18 2 5.6
41176 273 2.13 1.98 5
35289 217 0.88 1.99 4.3
41639 242 1.46 2.01 3.7
41969 248 2.08 2 5.5
43045 265 2.24 1.9 5.6
43172 209 1.51 2.02 4.5
43192 247 2.14 1.95 5.4
43509 240 1.56 2.02 6.2
44624 260 1.8 2.01 5.9
45392 314 2.22 1.92 6.8

Average 248.17 1.79 1.98 5.6
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A novel probe based capture method was used for the library preparation process in 

contrast to the traditional approach. Traditional approaches for mRNA sequencing involves the 

use of ribosomal RNA (rRNA) reduction methods or poly-A mRNA enrichment followed by the 

TruSeq® Stranded Total RNA (Illumina®) library preparation method. However, rRNA-reduced 

whole transcriptome analysis, requires deep sequencing to sufficiently cover both coding and 

non-coding transcripts, which tend to be very costly. For our mRNA library preparation, the 

TruSeq® RNA Access Library Prep Kit by Illumina® (Catalog Number RS-301-2001) was used. 

This kit provides an exon-capture approach that is effective for difficult samples, such as RNA 

isolated from formalin- fixed paraffin-embedded (FFPE) tissues. FFPE sample archives tend to 

yield low RINs, as observed within our samples, and the use of this kit helps combat this low 

quality RNA issue. The TruSeq® RNA Access Library Prep Kit overcomes these challenges by 

capturing the coding regions directly rather than a poly(A) tail pull-down. Poly(A) capture is 

problematic in cases of highly fragmented RNA. A combination of over 425,000 probes that 

target over 98% of the known RefSeq exome are used. The probe set was designed to capture > 

214,000 targets, spanning 21,415 genes of interest as seen in Table 3.  

Table 3: TruSeq® RNA Access Coverage Details. Table lists the characteristics of the RNA 

Access library preparation kit.  

Number	of	Target	Genes 21,415
Number	of	Targeted	Exonic	Regions 214,126
RefSeq	exome	covered 98.30%
Number	of	Probes 425,437

RNA	Access	Coverage	Details
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A tremendous advantage of utilizing RNA-seq is the ability to get high quality data at a 

fraction of the cost that’s associated with traditional methods. Illumina® demonstrates much 

deeper coverage of exons using the TruSeq® RNA Access method, at 1/10 th the number of reads 

as using the TruSeq® Stranded total RNA Kit141. Sequencing of paired FFPE lung tumor and 

normal samples prepared using TruSeq® RNA Access revealed that > 85% of the bases covered 

were within the coding and UTR regions of RNA. Figure 4 displays a direct comparison between 

the TruSeq® Stranded total RNA kit and TruSeq® RNA Access Kit. Samples using the TruSeq® 

Stranded RNA kit were used to sequence at 250 Million reads, and samples using the TruSeq® 

RNA Access kit was sequenced at 25 Million reads. One can note the large difference between 

the amount of coding regions obtained at a fraction of the coverage depth, which means more 

information per sample at a fraction of the cost.  

 

Figure 4: TruSeq® RNA Access vs TruSeq® Total RNA: The same Lung Tumor FFPE sample 

is sequenced with both the TruSeq® Stranded Total RNA and TruSeq® RNA Access. These 

samples were sequenced on a Illumina® HiSeq at 250 million reads for Total RNA and 25 

million reads for RNA Access. This demonstrates that less than 20% of reads align to the coding 

region when using TruSeq® Total RNA, in comparison to 70% when using TruSeq® RNA 

Access. Figure adapted from the Illumina® RNA Access Application Note141. 
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The RNA sample libraries were prepared following the manufacturer recommended 

protocol. Stranded RNA-Seq libraries were prepared using the Illumina® TruSeq® RNA Access 

chemistry. Figure 5 depicts an overview of the TruSeq® RNA Access Capture Chemistry. During 

the first step, unique oligonucleotides were added to each library, tagging them for downstream 

pooling (Figure 5-A). This allows multiple samples to be loaded on a single sequencing run. 

After libraries were pooled, they underwent a series of capture steps that produce a targeted 

library, depleted of ribosomal RNA and intronic and intergenic regions. Pooled libraries were 

hybridized to biotin-labeled probes specific for coding RNA regions (Figure 5-B). Specific 

targets within the library were then captured by adding streptavidin beads that bind to the 

biotinylated probes (Figure 5-C) and then magnets pulled the bound RNA fragments from the 

solution (Figure 5-D). Figure 6 depicts the library preparation workflow that was followed. The 

library preparation process was completed after a series of capture reactions and PCR reactions 

as depicted in Figure 6. Validation of library was performed to observe a PCR product, which 

demonstrated successful completion of library preparation. The average cDNA library fragment 

size observed was 277bp. The library was then submitted for cluster generation and subsequent 

sequencing. 
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Figure 5: Overview of the Truseq® RNA Access 

Capture Chemistry. (Adapted from the Illumina® 

Truseq® RNA Access Application Note141). Overview 

of the TruSeq® RNA Access Capture Chemistry. 5-A:  

Unique oligonucleotides added to each library, allows 

for multiplexing of samples. 5-B:  Pooled libraries were hybridized to biotin-labeled probes 

specific for coding RNA regions. 5-C: Streptavidin beads bind to the biotinylated probes to 

capture specific fragments. 5-D:  RNA fragments separated and eluted from the magnetic beads. 
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Figure 6: TruSeq® RNA Access Library Prep Workflow: Adapted from Truseq® RNA Access 

Library Preparation Guide(Revision B)142. Work flow of the Truseq® RNA Access Library 

preparation process that involves a series of capture, amplification and clean up steps.  
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Sequencing was performed on the Illumina® Hiseq 2500 instrument, in a paired end 2 x 

100bp manner. A total of three lanes were utilized for RNA-seq, where two lanes consisted of 8 

samples, and one lane received 7 samples (n=23).  

RNAseq Data Analysis:  

RNA-seq experiments must be analyzed with robust, efficient and statistically principled 

algorithms. The bioinformatics community has successfully been able to develop ideas into tools 

that utilize mathematics, statistics and computer science for RNA-seq analysis. FASTQ files 

generated by the HiSeq were first processed using TopHat143,144.  TopHat is a fast splice junction 

mapper for RNA-seq reads. It aligns reads to mammalian-sized genomes using the short read 

aligner Bowtie145, and then analyzes the mapping results to identify splice junctions within 

exons.   TopHat finds splice junctions without a reference annotation by first mapping RNA-Seq 

reads to the genome, and identifies potential exons, since many RNA-Seq reads will 

contiguously align to the genome. Using this initial mapping information, TopHat builds a 

database of possible splice junctions and then maps the reads against these junctions to confirm 

them. All the FASTQ files generated were aligned to the UCSC RefSeq (hg19) annotation. After 

alignment, a list of read alignments called ‘accepted hits’ are stored in a .bam file (binary format 

for storing sequence data) file.  “BioC2014: RNA-Seq workflow for differential gene 

expression”, a guide published by Love et al.146 was followed to analyze DEGs. This workflow 

uses DeSEQ2146 as the package to run the pipeline. DeSEQ2 is an available R/Bioconductor 

package that is widely used for differential gene expression analysis.  

RNA-seq counts also show a gene length bias: the expected number of reads mapped on a 

gene is proportional to both the abundance and length of the isoforms transcribed from that gene. 
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Indeed, longer genes produce more reads than shorter ones, causing higher power for DEG 

detection. This is corrected by Mortazavi et al.’s147 approach that proposes to summarize mapped 

reads as ‘Reads Per Kilobase of exon model per Million mapped reads’ (RPKM), that is 

calculated by dividing the number of reads aligned to gene exons by the total number of mapped 

reads and by the sum of exonic bases. RPKM helps reduce both differences in library size and 

length bias. Some DEG packages use RPKM method for analysis. It’s a simple method is to 

count reads overlapping each region, dividing by the length of the region of interest to 

accommodate differences in gene length. A problem with this approach is that reads are not 

sampled uniformly across genes, so gene length (the ‘PK’ part of RPKM) is not a good proxy for 

expression level. Each read represents an observation, and contributes to the certainty with which 

a gene is measured as ‘expressed’. The summary RPKM measure fails to incorporate 

uncertainty, which is where a particular value of RPKM may result from alignment of one or 100 

reads. This contrasts with a simple count of the number of reads in the region of interest. Count 

data has known statistical properties that can be exploited in statistical analysis. Therefore, it is 

stated the most useful for assessing differential expression is read count.  

DeSEQ2 uses a generalized linear model to evaluate differential expression while 

accounting for biological variance and uses a Wald test statistic to evaluate significance. A 

DESeqDataSet object is created using HTSeq counts and the DeSEQ wrapper function is called 

to perform differential analyses. The fold change is determined by dividing the average 

normalized read counts of AD samples over control samples for each transcript. P-values are 

corrected using the Benjamini and Hochberg False Discovery Rate148.  

 DeSEQ2, uses raw count data obtained from .bam files. These count values are raw 

counts of sequencing reads. This allows DeSEQ2 to use a data-driven approach to provide more 
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robust dispersion estimates, and rely on strategies to moderate per-gene estimates with more 

robust local estimates derived from genes with similar expression values. The estimation of the 

parameters for the respective statistical model is followed by the test for differential expression, 

the calculation of the significance of change in expression of gene between two conditions. 

DeSEQ2 uses a variation of the Fisher exact test; hence, they return exact P values computed 

from the derived probabilities. DeSEQ2 uses raw counts as input and has its own normalization 

methods. 

 For the RNA-seq dataset in this project, the use of multiple samples within the same 

disease category (i.e. AD vs Control) served as biological replicates within each comparison 

category. Genes were identified as differentially expressed if they were observed at ± 0.6 

logarithmic fold change (lfc) and significance expressed as q-value (FDR-adjusted p-value < 

0.001) as determined by DeSEQ2. These stringent  thresholds were chosen, based on what is 

accepted within the RNA-seq community, and due to the large number of replicates we have 

within our dataset for each treatment. 

DEGs from DeSEQ2 were imported and a core analysis was performed utilizing 

QIAGEN’s Ingenuity® Pathway Analysis software (IPA®), (Qiagen, Redwood City, 

www.qiagen.com/ingenuity). Core analysis performed by IPA®, helps understand complex 

transcriptonomics data at multiple levels by providing insight into the molecular and chemical 

interactions and disease processes within the RNA-seq data. IPA® identifies regulators, 

relationships, mechanisms, functions, and pathways relevant to changes observed in our dataset. 

Analytics go beyond pathway analysis to understand experimental results within the context of 

biological systems. The same parameters, Padj <0.001, lfc ± 0.6 were used. Conservative settings 

for the Core Analysis were used: direct relationships only, excluded casual & indirect interaction 
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networks, direct interaction networks only with 35 molecules per network & 25 Networks per 

analysis, using all data sources, confidence setting of experimentally observed, human species 

only, and excluded all tissues or cell lines.  
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DNA Methods 

Overview of Methylated DNA Enrichment:  

All current methods have certain drawbacks that prevent a truly high-throughput, 

unbiased, and detailed profiling of genomic cytosine methylation. Whole genome bisulfite 

sequencing is the gold standard for cytosine methylation analysis, and provides single base pair 

resolution of methylation patterns throughout the entire genome. Bisulfite treatment of genomic 

DNA chemically converts unmethylated cytosine to uracil, but leaves methylated cytosines 

intact. Uracil corresponds to thymine with respect to its basepairing behavior, and after 

sequencing, DNA-methylation status differences are implied by sequence differences mapped to 

a genome. To be able to obtain a complete DNA methylome, a minimum of 30X coverage depth 

(90Gigabases) is the standard set for each biological replicate by the scientific community. In 

addition, a considerable amount of unconverted DNA is usually spiked in during sequencing to 

compensate for the lack of diversity of bases in bisulfite-treated DNA; this further increases the 

cost of performing whole genome bisulfite sequencing.  Alternative approaches are based on 

specific enrichment of methylated portions of the genome. Methylation-sensitive restriction 

enzyme digestion allows the enrichment of highly methylated regions of the genome 100,101. This 

method introduces recognition site biases, gives poor resolution, and is prone to false positives 

due to incomplete enzymatic digestion. Anti-5-methyl-cytosine antibody immunoprecipitation, 

known as MEDIP-seq, captures any DNA fragment containing one or more methylated 

cytosines100,101. This causes sporadically methylated DNA fragments to make up a significant 

portion of the data.  
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Alternatively, relatively inexpensive bead array-based methods have been developed for 

bisulfite treated DNA Such as the Illumina® 450K Infinium BeadChip. Though this covers a 

major part of the human DNA-methylome, it lacks genome-wide coverage102. The 450K 

microarray includes CpG and CNG sites, CpG islands/shores/shelves/open sea, non-coding RNA 

(microRNAs and long non-coding RNAs) and sites surrounding the transcription start sites (-200 

bp to -1,500 bp, 5'-UTRs and exons 1) for coding genes, also for the corresponding gene bodies 

and 3'-UTRs, in addition to intergenic regions derived from GWAS studies. It covers over 96% 

of CpG islands, and is a widely used and well-documented tool for epigenome analyses102. 

The alternative for bisulfite-treated DNA characterization is the capture of methylated 

DNA fragments followed by sequencing, which allows for a cost-efficient genome-wide 

approach. To overcome these limitations, a method that uses the human Methyl CpG Binding 

Domain 2 protein to capture methylated genomic DNA, can be used. Following capture using a 

Methyl Binding Domain(MBD), the DNA undergoes deep sequencing, known as MBD-seq, and 

allows for high-throughput analysis of multiple samples. Genomic DNA is sheared, followed by 

the use of the MBD protein construct to precipitate densely methylated sequences. In vivo, 

MBD2 has shown to bind specifically to methylated CpGs via its Methyl Binding Domain 

(MBD) and facilitates gene silencing through its transcriptional repression domain and also thru 

the recruitment of additional transcription inhibitors100,103 . It is important to note that MBD 

binds with increasing affinity to multiple methylated cytosines in a close proximity, hence 

predominantly precipitating biologically relevant, multiply methylated fragments as opposed to 

sporadically methylated CpGs of uncertain biological relevance100,104. Random shearing of the 

genome by sonication minimizes sequence-specific fragmentation, as compared to restriction 

enzyme digestion. Aberg et al.105–107 also demonstrated how using MBD sequencing is a cost 
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effective tool when considering large scale studies.   

It was recently demonstrated that, when coverage is sufficient, MBD-seq is generally 

more sensitive than MeDIP-seq and methylation specific microarrays. A greater sensitivity for 

MBD-seq compared to MEDIP-seq was also confirmed in a microarray based study108. 

Therefore, until further optimization of sequencing technologies allows for a cost-efficient 

whole-genome sequencing of bisulfite-treated DNA or direct detection of methylated cytosines 

at base-resolution, MBD-seq is the better alternative.  

DNA extraction, sonication and size selection 

 Genomic DNA was extracted by using an organic extraction method following the 

UNTHSC organic extraction protocol149. Stain Extraction Buffer (SEB) was freshly prepared 

using an in house method (Pg. 117). Approximately 90 µg of freshly frozen post mortem brain 

tissue was placed in 600 µL of working SEB solution. 5 µL of proteinase K (proK) (20mg/mL, 

ThermoFisher Catalog no. AM2548) was added to this solution. After 12 hour incubation at 

65°C, another 5 µL of proK was added. Total incubation time was 24 hours at 65°C. After 

organic extraction, DNA was ethanol precipitated as stated within the protocol, and pasteurized 

by incubation at 65°C for two hours. Post extraction, samples were stored at -20°C until further 

use. 
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Illumina® 450k Methylation Bead Array  

Bisulfite conversion was conducted on 2 µg of DNA for all samples. Conversion was 

performed following the manufacturer recommendations by using the Zymo Research EZ-96 

DNA Methylation™ Kit (Catalog Number D5004).  The Illumina® Infinium 

HumanMethylation450 BeadChip (Illumina®) was processed on the Illumina® HiScan® system.  

Illumina® 450k Methylation Bead Array Data Analysis 

The following data analysis was performed on the Kure Cluster located at UNC Chapel Hill.  

 

RnBeads150, is a widely used tool that was developed for analysis and interpretation of 

DNA methylation data. It builds on prior bioinformatics methods, and allows the implementation 

of a pipeline with options to customize workflow using custom R scripts. R151 is a free software 

environment for statistical computing and graphics, where multiple packages are published and 

available for data analysis use.  The script utilized for this analysis is located within the 

Appendix (Pg 128). Data analysis starts from raw intensity data (IDAT) files produced from 

Illumina® Infinium microarrays. RnBeads performs necessary steps such as data normalization, 

addresses quality control, covariate adjustment, cell type heterogeneity adjustment, and performs 

differential methylation analysis. Methylation levels (β-values) were estimated as the ratio of 

signal intensity of the methylated alleles to the sum of methylated and unmethylated intensity 

signals of the alleles (β-value=C/(T+C)). The β-values vary from 0 (no methylation) to 1 (100% 

methylation). 

Covariate adjustment for the dataset included, age and sex for each sample. The R 

package, CETS152, was used to estimate neuronal cell populations within our dataset. CETS is 
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capable of quantifying neuronal proportions and generating in silico neuronal profiles from DNA 

methylation data. CETs analysis determined that there was less than 1.7% difference in neuronal 

cell populations between the Control and AD group. Cell type heterogeneity of profiled samples 

is a source of confounding in DNA methylation profiling studies. A reference free method to 

adjust for cell type heterogeneity issues using a reference free approach was used. Given that 

there has been some interest in effects of cell mixture on the measurement of DNA methylation, 

where small perturbations in cell mixture proportions may register as changes in DNA 

methylation; where the changes in DNA methylation may arise due to difference in cell mixtures 

among samples rather than actual change in DNA methylation.  To address this problem, 

Houseman et al.153  published a reference-free approach for cell mixture adjustment within DNA 

methylation data, which is an option incorporated within RnBeads. Adjustments usually are 

made after the incorporation of existing reference datasets, that may not always be available for a 

given tissue.  
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DNA sonication, size selection, and enrichment of Methylated DNA 

After extraction, DNA was quantified using the Qubit™ dsDNA Broad Range kit 

(ThermoFisher Catalog no. Q32853). After quantification, proper dilutions were made to obtain 

5 µg of DNA. DNA was then sonicated using the Covaris® E220 (Covaris, Wobrun, MA).  5 µg 

of DNA was suspended within 100 µL of elution buffer (Qiagen, Catolog number 19086). This 

solution was placed within the Covaris microTUBE AFA Fiber Crimp-Cap 6x16mm tube 

(Catalog number 520052), which was placed within the E220 sonicator.  The following settings 

were used for sonication of whole genomic DNA: Time 200 seconds, Duty 10.0, Peak Incident 

Power 175, Cycles per Burst 200, Amplitude 0, Velocity 0, and Dwell 0. Random shearing of the 

genome by sonication minimizes sequence specific fragmentation, as compared to restriction 

enzyme digestion. Sonicated DNA samples were run on the Bio-Rad Experion™ Automated 

Electrophoresis System to confirm successful sonication. The distribution of sheared DNA 

ranged  between ~160 base pairs (bp) to ~450bp. Figure A.1 (Pg 109), provides an example 

electropherogram of a sample that was 68uantifie using the settings stated above. Following 

sonication, DNA was vacuum evaporated down to 30µL by using a Eppendorf Vacufuge® Plus 

(Eppendorf, Hauppuage, NY), providing the maximum volume allowed in the downstream size 

selection step. DNA was size selected using the Pippen Prep (Sage Science, Beverly, MA) 

instrument according to manufacturer recommendations. A 5µg of DNA was chosen as the initial 

quantity, as it was the recommended maximum input when utilizing the automated size selection 

instrument. 2% Ethidium-free Agarose Gel Cassettes (Catalog number CEF2010) were used for 

size selection of DNA. The size selection range was set from 160bp to 220bp on the instrument. 

For all samples, the entire sonication and size selection process was repeated with an additional 5 

µg. This was due to the low recovery yield observed from the use of the automated size selection 
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method. For every 5 µg of sample used for sonication, total recovery after size selection ranged 

from ~80ng to 110 ng. It should be noted that some loss occurs during the vacufuge evaporation 

step, but majority of the loss occurs during size selection step, as >90% sample loss was 

observed. After size selection, both batches of size selected DNA were combined for each 

sample into one batch. For all steps mentioned below DNA Lo-Bind 1.7mL tubes (BiooExpress, 

catalog number C-3228-1) were used to minimize loss of fragmented DNA. 

Within this project, the MethylMiner™ Methylated DNA Enrichment Kit (Life 

Technologies, Catalog Number ME 10025) was used for enrichment of methylated DNA 

according to manufacturer’s recommendation.  It allows for the enrichment of double-stranded 

DNA based on CpG methylation density, with increased sensitivity over antibody-based 

methods100,107,154. First, dynabeads containing streptavidin are bound to the MBD protein biotin 

construct. Then fragmented DNA is introduced into the capture reaction and allowed to incubate 

for one hour. Following this incubation, a salt solution is used to denature the protein and isolate 

methylated genomic DNA fragments (Figure 7). In this project, sonicated and size selected DNA 

was first quantified using the Qubit™ dsDNA High Sensitivity kit (ThermoFisher Catalog no. 

Q32854), and then introduced to the MBD protein for methylated DNA capture. After 60 

minutes of incubation, the supernatant, which contains unmethylated DNA, is removed. Then a 

single, high concentration salt solution is added to release captured methylated DNA fragments 

from the MBD proteins. The only changes that were made to the manufacturers protocol was the 

use of GlycoBlueTM Coprecipitant (ThermoFisher, Catalog Number AM 9515) during the 

ethanol precipitation step and precipitation at -80°C for 24 hours. The incorporation of 

GlycoBlueTM  was done for the identification of the DNA pellet after ethanol precipitation, and 

the time frame of 24 hours was chosen to maximize the amount of DNA recovery within the 
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ethanol precipitation step. Following capture, DNA was quantified using the Qubit™ dsDNA 

High Sensitivity kit. 
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Figure 7: Illustration of the Methylated DNA Capture Process.(Adapted from 

MethylMiner™ User Guide155)  Dynabeads containing streptavidin are bound to the MBD 

protein biotin construct. Fragmented DNA is introduced where methylated fragments are 

captured and retained by the MBD protein. Following incubation, a salt solution is used to 

denature the protein and isolate methylated genomic DNA fragments. 
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The MethylMiner™ kit includes a control to ensure enrichment of methylated DNA is 

occurring properly. Control capture reactions were prepared and performed following 

manufacturer’s protocol. The control reaction involves the use of a non-methylated DNA control 

duplex and a methylated DNA control duplex. Each control is spiked into the capture reaction 

process, and PCR is used to verify the enrichment of methylated DNA and absence of non-

methylated DNA within the captured fraction. Similarly, absence of methylated DNA, and 

abundance of non-methylated DNA is observed within the supernatant.  Figure 8 depicts a gel 

that demonstrates the proper functionality of the capture process. DNA was amplified using PCR 

with primers that are specific for methylated and non-methylated controls. The amplified 

products were electrophoresed on a 4% agarose gel (ThermoFisher Catalog number G501804).  

Figure 8, below, depicts the proper functionality of the MethylMiner™ kit. Controls 

included in the kit were PCR amplified, and gel electrophoresis was used to identify the presence 

or absence of control methylated and non-methylated DNA. Lane M contains a ladder. Lane 1 

contains the primers for the control methylated dsDNA. Presence of a band indicates successful 

enrichment of the methylated control DNA present within the captured methylated fraction. Lane 

2 contains primers for the non-methylated control DNA; presence of a band confirms the 

presence of non-methylated control DNA within the non-methylated supernatant. Lane 3 

contains primers for the non-methylated control DNA, within the methylated capture fraction; 

absence of a band indicates the absence of non-methylated control DNA within the methylated 

captured fraction. Lane 4 contains primers for control methylated dsDNA. The presence of a 

barely visible band indicates that there is very little product; indicating that there were minuscule 

amounts of methylated control dsDNA product present within the non-methylated supernatant. In 

comparison to lane 1, lane 4 indicates that a miniscule amount of methylated DNA escapes the 
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capture process. Table 4 (Appendix, Pg 111) lists the amount of DNA that was input into the 

MBD capture reaction for each sample, the amount of DNA captured within the methylated 

fraction for each sample, and the amount of DNA present post MBD-capture. The Qubit™ failed 

to quantify the amount of DNA that was present, possibly due to the amount present being below 

the range of quantification of the Qubit™ instrument. A decision was made to proceed with the 

library preparation process. 
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Figure 8: PCR products generated from 

control DNAs electrophoresed to verify 

kit integrity. Lane M contains a ladder, 

where the last three markers are 75bp, 50bp, 

and 25bp. Lane 1 contains the primers for 

the control methylated dsDNA. Presence of 

a band indicates successful enrichment of 

the methylated control DNA present within 

the captured methylated fraction. Lane 2 

contains primers for the non-methylated 

control DNA, present within the supernatant ; 

presence of a band confirms the presence of 

non-methylated control DNA within the non-methylated supernatant. Lane 3 contains primers for 

the non-methylated control dsDNA, within the methylated capture solution; absence of a band 

indicates the absence of non-methylated control DNA within the methylated captured fraction. 

Lane 4 contains primers for control methylated dsDNA. The presence of a barely visible band 

indicates that there is very little product; this indicates that there were minuscule amounts of 

methylated control dsDNA product present within the unmethylated supernatant. In comparison 

Lane 1, it demonstrates negligible amounts.  
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DNA library preparation, pooling and sequencing  

Post methylated DNA enrichment, library preparation was performed using the KAPA 

Hyper Prep Kit from KAPABiosystems (Catalog Number: KK8502). The library preparation 

process consists of End Repair & dA-Tailing, Adapter Ligation, Post-Ligation Cleanup, Library 

Amplification, and Post-Amplification Cleanup. The protocol was followed according to 

manufacturer recommendations with one exception. The total amount of time for the ligation of 

adapters was extended from 15 minutes to 2 hours. After post-amplification cleanup, samples 

were quantified using the Qubit™ dsDNA High Sensitivity kit (Table 4, Pg 111), and samples 

were pooled together based on stoichiometric calculations. A calculation was made in order to 

ensure equimolar concentrations are pooled together of each sample, The calculation involved 

using the fragment size present within each sample, and its quantity in ng/µL. Each pool was 

calculated to have a final concentration of about 10 picoMolar. Samples were then sequenced in 

a paired-end manner, 2 x 100bp on the Illumina® HiSeq 2500 instrument, over 3 lanes.  
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Methylated DNA Capture Data Analysis 

Data Analysis of methylated DNA Capture was performed on a computing cluster located 

at Renaissance Computing Institute, Chapel Hill, NC.  

MBD capture data was analyzed using MEDIPS156,157, a R package available within 

Bioconductor. MEDIPS provides functions for quality control and analysis of data derived from 

MBD-seq experiments. Bowtie2158 was first used to align all paired-end reads to the 

HG19_UCSC genome annotation.  The following parameters were used: Paired-end alignment, 

minimum insert size for valid paired-end alignment: 0, maximum insert size for valid paired-end 

alignment: 250, HG19_UCSC indexed reference genome, end to end alignment, preset: Very 

Sensitive. The alignment produced BAM files that are used by MEDIPS for further analysis.  

Alignment files were imported within the MEDIPS working environment and differential 

coverage analysis was performed to detect regions with differential coverage between Control 

and AD individuals. Within MEDIPS, multiple settings were adjusted before performing the 

analysis. The settings include window size, correction for PCR duplicates, and extension of reads. 

Window size is an adjustment that breaks the entire hg19 into segments of the specified window 

size (in bp), and maps reads to windows based on that size. The window size was adjusted from 

100bp to 14000bp. Increments of 25bp were used when the window size ranged from 100bp – 

1000bp, and increments of 250bp from 1000bp to 14000bp. The extend factor, a factor that 

extends each read within the dataset, was also adjusted at 0bp, 50bp, 100bp, and 300bp. A 

minimum coverage depth of 10X and a p- value (FDR adjusted) of <0.05 was used for all 

analysis. In order to adjust for variability that arises from technical and biological variation the 

edgeR159 method was used. edgeR is an R package for examining differential expression of 

replicated count data. It uses an over dispersed Poisson model is used to account for variability. 
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An Empirical Bayes method is used to moderate the degree of over dispersion across transcripts, 

improving the reliability of inference. A sample MEDIPS R script is given within the Appendix 

(Pg 118).  
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Table 5: MBD-seq read depth. Read Counts for each sample, and their sequence quality scores. 

The average number of reads across samples was above 22 million, with an average quality score 

above 34.  

Number	of	Reads %GC Quality	at	70bp Quality	at	100bp
D1 8627699 44 38 34
D2 8238267 44 38 34
D3 59873273 50 36 34
D4 15205638 55 38 36
D5 21376259 49 38 34
D6 8663381 48 38 34
D7 14630252 47 38 36
D8 9348623 48 36 34
D9 7366002 50 38 36
D10 90066332 50 38 36
D11 13712897 52 36 34
D12 64798263 49 38 34
D13 12634176 52 36 34
D14 8249772 49 38 34
D15 15481084 50 38 36
D16 17593376 56 36 34
D17 8243723 51 38 36
D18 7672207 50 38 36
D19 8195794 48 38 36
D20 17087516 47 38 36
D21 7784921 48 36 34
D22 8724928 46 38 34
D23 75851113 49 36 34
Average 22148934.61 49.2173913 37.39130435 34.7826087
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Use of BEDOPS for DNA 450k methlation array data  

BEDOPS160 was utilized to retrieve the closest gene transcriptional unit to the 

differentially methylated CpG sites found within the 450k DNA methylation dataset. BEDOPS is 

an open-source command-line toolkit that performs multiple operations. Specifically, the 

‘closest-features’ program was utilized that associates nearest features between two sorted 

inputs, based upon genomic distance measures. Differentially methylated CpG sites to sorted and 

converted to .bed files as required for BEDOPS use. A reference genome was created, as a 

reference genome file is required to align the differentially methylated CpG sites. The reference 

dataset was created by downloading a file from the UCSC table browser webpage 

<https://genome.ucsc.edu/cgi-

bin/hgTables?hgsid=487608909_PM0A6FrnmTWkotyIau5vM6biGX9x>.  

The settings used to download the reference file were: Clade: Human, Genome: Human, 

Assembly: feb2009grch37/hg19, Group: Genes and Gene Predictions, Track: RefSeq Genes, 

Table: refGene, Region: genome, Output format: all fields from selected table.  BEDOPS was 

utilized to retrieve gene names for all differentially methylated CpG sites. Outputs from 

BEDOPS tools were compared to the DEGs found within the RNA-seq Dataset. 
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Chapter III 

RESULTS 

RNA 

Alignment with TopHat144 demonstrated that over 98% of all reads within each sample 

aligned to the reference sequence, which was the refseq UCSC hg19 annotation. Table 6 lists the 

number of reads each sample, the percentage of all reads aligned to the refseq annotation, and the 

percent of unaligned reads.  

Table 6: TopHat Alignment statistics for each sample. Demonstrates that over 98% of 

sequence generated aligned to the known refseq annotation. 

Sample Number of Reads % Total Aligned % Unaligned 
24381 19,650,528 98.37% 1.63%
24385 6,676,658 98.26% 1.74%
24430 19,137,674 98.48% 1.52%
24509 14,946,369 98.32% 1.68%
25666 16,804,810 98.48% 1.52%
25667 21,154,738 98.54% 1.46%
35289 14,127,867 98.31% 1.69%
36082 16,906,897 98.61% 1.39%
36359 13,604,921 98.32% 1.68%
40482 20,184,336 98.42% 1.58%
41176 13,769,215 98.23% 1.77%
41639 7,885,964 98.69% 1.31%
41969 20,963,791 98.50% 1.50%
42133 17,875,940 98.47% 1.53%
42990 16,206,976 98.41% 1.59%
43045 12,747,830 98.52% 1.48%
43172 12,196,791 98.44% 1.56%
43192 14,556,330 98.45% 1.55%
43509 13,830,603 98.52% 1.48%
44624 14,599,133 98.61% 1.39%
45116 18,400,851 98.51% 1.49%
45392 22,096,478 98.55% 1.45%
46202 10,581,086 98.41% 1.59%  
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A total of 23,710 genes were identified within our dataset. Completion of the DESeq2 

pipeline resulted in an Excel output result listing all genes identified within the dataset, and the 

following measures for each gene (Table 7). The first column, baseMean, is a just the average of 

the normalized count values, dividing by size factors, taken over all samples. The column 

log2FoldChange is the effect size estimate. It tells one how much the gene’s expression changed 

within treatment in comparison to control. This value is reported on a logarithmic scale to base 2: 

Ex: a log2 fold change of 1.5 means that the gene’s expression is increased by a multiplicative 

factor of  21.5 = 2.82. Of course, this estimate has an uncertainty associated with it, which is 

available in the column lfcSE, the standard error estimate for the log2 fold change estimate. It 

also expresses the uncertainty of a particular effect size estimate as the result of a statistical test. 

The purpose of a test for differential expression is to test whether the data provides sufficient 

evidence to conclude that this value is really different from zero. DSEQ2 performs, for each 

gene, a hypothesis test to see whether evidence is sufficient to decide against the null hypothesis 

that there is no effect of the treatment on the gene and that the observed difference between 

treatment and control was merely caused by experimental variability (i. e., the type of variability 

that you can just as well expect between different samples in the same treatment group). The 

result of this test is reported as a p-value, and it is found in the column p-value. The p-value 

indicates the probability that a fold change as strong as the observed one, or even stronger, would 

be seen under the situation described by the null hypothesis.  
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Table 7: Example of a result table output from DESeq2. The result table includes a list of 

genes, and measures as defined above. This is an excerpt from our RNA-seq dataset. 

Gene	ID baseMean log2FoldChange lfcSE stat pvalue padj
KRT5 24.6058865 -1.969163299 0.31006352 -6.3508383 2.1414E-10 3.9905E-07
NPY2R 24.3731004 -1.605254856 0.33570623 -4.781725 1.738E-06 0.00011849
SST 62.4830052 -1.52961745 0.25793948 -5.9301408 3.0268E-09 1.8604E-06  

Genes were identified as differentially expressed if they were observed at ± 0.6 

logarithmic fold change (lfc) and significance expressed as q-value (FDR-adjusted p value < 

0.001) as determined by DeSEQ2. 386 total genes were found to be differentially regulated (151 

up-regulated and 235 down-regulated). To ensure that the changes observed weren’t due to large 

variation in cell populations among our case and control group, changes in genes that serve as 

markers, as done by Magistri et al. 161 within their RNA-seq dataset were investigated. Since 

cases of AD could be characterized by extensive neuronal cell death and presence of gliosis in 

the brain; where this could affect DEGs obtained based solely on changes in of cell-type 

proportions. The expression of known neuronal, astroglial and microglial markers in 

Control(CTL) and AD from our RNA-seq data. No changes in the expression of neuronal, 

astroglial, and microglial markers: DCX, MAP2, NFH, NEFM, RBFOX3, APQ4, ALDH1L1, 

SLC1A3, PTPRC, and AIF1 were observed. The results suggests that, although AD samples 

analyzed have high Braak score, they were not depleted of neurons or enriched of astroglia and 

microglia cells and that the differentially expressed genes from our analysis are not the result of 

an imbalance between the cellular populations between AD and CTL. 
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Principal component analysis (PCA), performed using DeSEQ2, identifies that the main 

source of variation, across our whole dataset, is due to mainly differences between AD and CTL 

samples (Figure 9). 
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Figure 9: Principal Component Analysis of RNA-seq Dataset.  Principal component analysis 

identifies that the main source of variation, across our whole dataset, is due to differences 

between AD and CTL samples. 
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A Mean expression plot was produced using DeSEQ2 (Figure 10). The expression plot 

displays the log2 fold changes attributable to a given variable over the mean of normalized 

counts. Points are by default colored red if the adjusted padj value < 0.001. The blue lines at 0.6 

and -0.6 indicate the fold change threshold used to identify DEGs. Therefore, genes above and 

below the blue line and in red indicate genes identified as differentially expressed within our 

RNA-seq dataset.  

 

Figure 10: Mean expression plot. Points above and below the blue lines and in red indicate 

genes identified as differentially expressed within the RNA-seq dataset. 
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Figure 11: Symmetrical Clustering of Samples. A heatmap displays the Euclidean distances 

between samples as it is calculated from the regularized log transformation. This clustering of 

samples gives an overview over similarities and dissimilarities between samples. It also 

identifies that our samples clustered together closely based on treatment.  

 

 

The Gene Ontology enRIchment anaLysis and visualization tool (GORILLA)162, was 

used to identify common functions associated to the deregulated genes and provide an insight to 

better help understand the etiology of AD. This method identifies, independently for each GO 

term, the threshold at which the most significant enrichment is obtained. The significance score 
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is corrected for multiple testing. Consequentially, GORILLA performs the enrichment analysis 

on thousands of genes and thousands of GO terms. GORILLA was used to generate the best hits 

(datasets with largest number of matched genes) to get an overview of biological processes, 

molecular functions, and cellular components that were down-regulated (Figures 12, 13, and 14) 

within the RNA-seq dataset. These figures display GO terms arranged in a direct acyclic graph 

(DAG) with a highly intertwined structure, where the color of entities corresponds to a P-value 

color scale: white = > 10-3, light yellow: 10-3 to 10-5, light orange: 10-5 to 10-7, orange: 10-7 to 10-

9, Red: < 10-9.  A table with the top ten Gene Ontology (GO) terms, description, P-value, FDR q-

value, and an enrichment score is also included (Tables 8, 9, and 10, Pgs  112-113) that represent 

the data from figures accordingly. Enrichment score (N, B, n, b) is defined as follows: N is the 

total number of genes, B is the total number of genes associated with a specific GO term, n is the 

number of genes in the top of the user's input list or in the target set when appropriate, b is the 

number of genes in the intersection; where the calculation is Enrichment = (b/n) / (B/N).  

The most statistically significant (p<10-13) entities to be found within Gene Ontology 

analysis, in terms of effected biological processes altered within our data set, cluster around 

regulation of synaptic transmission, synaptic transmission, cell – cell signaling, cell 

communication, neurotransmitter transport, and regulation of neurotransmitter transport & 

secretion. It’s important to note that these analysis were derived from the down-regulated DEGs 

within the dataset. Submission of up-regulated and down-regulated DEGs to GORILLA had to 

pass the p-value <10-6 threshold. Submission of up-regulated DEGs failed to report any findings.  
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Figure 12: Overview of biological processes to be impacted by down-regulated genes as 

determined by GO analysis. The most statistically significant (P <10-13) entities cluster around 

synaptic transmission, cell – cell signaling, cell communication, neurotransmitter transport, and 

regulation of neurotransmitter transport & secretion. 
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Figure 13: Overview of molecular functions to be impacted by down-regulated genes as 

determined by GO analysis. The most statistically significant (P <10-6) entities cluster around 

syntaxin-1 binding, myosin V binding, SNARE binding, myosin binding, and transmembrane 

transporter activity. 
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Figure 14: Overview of cellular components to be impacted by down-regulated genes as 

determined by GO analysis. The most statistically significant (P <10-13) entities cluster around 

neuron part, synapse part, synaptic vesicles, cell projection part, axon part, and synaptic vesicle 

membrane. 
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Core Analysis was performed with Ingenuity Pathway Analysis (IPA®, Qiagen), using 

the following settings: 35 molecules per network, 25 networks per analysis, casual networks 

were not included, only direct interaction networks, genes that were experimentally observed 

only within the human species only, and all tissues and cell lines was not selected. The same 

parameters were used to define DEGs in IPA®, as was used to define DEGs within the RNA-seq 

dataset. The analysis showed that the number one disease category that incorporated our DEGs 

was Neurological Disease, where 176 molecules of the 384 tested fell within the Neurological 

Disease category. The top four molecular and cellular functions that are affected are Cellular 

Function and Maintenance, Molecular Transport, Cellular Movement, and Cell-to-Cell Signaling 

and interaction. 28 specific DEGs within our dataset were specifically linked to AD as 

determined by IPA®. Table 11 lists these 28 genes as provided by IPA®.   Figure 15 displays the 

DEGs within our dataset that map to a network as determined by IPA®. Down-regulated genes 

are displayed in green and upregulated genes are displayed in red. This network had the highest 

score, with the inclusion of 27 focus molecules. Table 12.A (Pg 114) lists genes shown within 

Figure 15, with a description of each gene.  
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Table 11: List of specific DEGs linked to AD. DEGs within the RNA-seq dataset that linked to 

AD as determined by IPA®. 

Gene	ID	 Summary	

GFAP	
Upregulation	of	human	GFAP	protein	in	temporal	lobe	is	associated	with	
Alzheimer's	disease	in	human	

PHYHD1	
Upregulation	of	human	PHYHD1	protein	in	cortical	tissue	from	brain	is	associated	
with	Alzheimer's	disease	in	human.	

LRP4	
Upregulation	of	human	LRP4	mRNA	in	hippocampus	is	associated	with	
Alzheimer's	disease	in	human.	

TLR4	 Human	TLR4	protein	is	involved	in	Alzheimer's	disease	in	human.	

PPARA	
Docosahexaenoic	acid,	an	agonist	of	human	PPARA	protein,	in	clinical	trial	for	the	
treatment	of	Alzheimer's	disease	in	human.	

MEGF10	
Upregulation	of	human	MEGF10	protein	in	cerebrospinal	fluid	is	associated	with	
Alzheimer's	disease	in	human.	

SOX2	
Downregulation	of	human	SOX2	protein	in	hippocampal	dentate	gyrus	is	
associated	with	severe	disease	stage	Alzheimer's	disease	in	human.	

ABCA1	
Upregulation	of	human	ABCA1	mRNA	in	hippocampus	is	associated	with	
Alzheimer's	disease	in	human	

PRKCE	
Downregulation	of	human	PKC	EPSILON	[PRKCE]	protein	in	a	membrane	fraction	
from	brain	is	associated	with	Alzheimer's	disease	in	human.	

SNCA	
Upregulation	of	soluble	human	SNCA	protein	in	brain	is	associated	with	
Alzheimer's	disease	in	human.	

SYNJ1	
Upregulation	of	human	SYNJ1	protein	in	cortical	tissue	from	brain	is	associated	
with	Alzheimer's	disease	in	human.	

GABBR2	
Upregulation	of	human	GPR51	[GABBR2]	mRNA	in	synaptoneurosomes	from	
prefrontal	cortex	is	associated	with	incipient	Alzheimer's	disease	in	human.	

CDK5	
Downregulation	of	human	CDK5	mRNA	in	hippocampal	CA1	region	is	associated	
with	Alzheimer's	disease	in	human.	

WASF1	
Upregulation	of	human	WAVE	[WASF1]	protein	in	neurofibrillary	tangles	from	
brain	frontal	cortex	is	associated	with	Alzheimer's	disease	in	human.	

UCHL1	
Downregulation	of	human	UCHL1	mRNA	in	hippocampus	is	associated	with	
Alzheimer's	disease	in	human.	

STAR	
Upregulation	of	human	STAR	protein	in	cytoplasm	from	brain	hippocampus	
pyramidal	neurons	is	associated	with	Alzheimer's	disease	in	human.	

ATP6V1G2	
Downregulation	of	human	ATP6V1G2	mRNA	in	hippocampal	CA1	region	is	
associated	with	Alzheimer's	disease	in	human.	

GAP43	
Downregulation	of	human	GAP43	protein	in	frontal	cortex	is	associated	with	
Alzheimer's	disease	in	human.	

SV2A	
Upregulation	of	human	SV2A	mRNA	in	synaptoneurosomes	from	prefrontal	
cortex	is	associated	with	incipient	Alzheimer's	disease	in	human.	
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SYP	
Downregulation	of	human	SYNAPTOPHYSIN	[SYP]	protein	in	frontal	cortex	is	
associated	with	Alzheimer's	disease	in	human.	

GABRA1	
Olanzapine,	an	antagonist	of	human	GABRA6	protein,	is	in	Phase	IV	clinical	trial	
for	the	treatment	of	Alzheimer's	disease	in	human.	

SLC30A3	
Downregulation	of	human	ZNT3	[SLC30A3]	protein	in	Brodmann's	area	8/9	is	
associated	with	Alzheimer's	disease	in	human.	

PAK1	
Downregulation	of	human	PAK1	protein	in	cytosolic	fraction	from	human	
temporal	cortex	is	associated	with	Alzheimer's	disease	in	human.	

GAD2	
Valproic	acid,	an	inhibitor	of	human	GAD2	protein,	is	in	Phase	III	clinical	trial	for	
the	treatment	of	Alzheimer	disease	in	human.	

GABRA6	
olanzapine,	an	antagonist	of	human	GABRA6	protein,	is	in	Phase	IV	clinical	trial	
for	the	treatment	of	Alzheimer's	disease	in	human.	

IL1B	
Upregulation	of	human	IL1B	protein	in	brain	is	associated	with	Alzheimer's	
disease	in	human.	
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Figure 15: IPA® Network Analysis. DEGs within our dataset that map to a network as 

determined by IPA®. Down-regulated genes are displayed in green and upregulated genes are 

displayed in red. This network had the highest score, with the inclusion of 27 focus molecules. 
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Illumina® 450k Methylation Bead Array Results  

Completion of the RnBeads pipeline allowed for the identification of differentially 

methylated Genes, CpG Islands, Promoters, and individual CpG Sites between the two sample 

groups, AD and CTL. Differential methylation on the site level was computed based on a variety 

of metrics. The following quantities were considered for each site: a) the difference in mean 

methylation levels of the two groups being compared, b) the quotient in mean methylation and c) 

a statistical test (t-test) assessing whether the methylation values in the two groups originate from 

distinct distributions. Additionally, each site was assigned a rank based on each of these three 

criteria. A combined rank is computed as the maximum (i.e. worst) rank among the three ranks. 

The smaller the combined rank for a site, the more evidence for differential methylation it 

exhibits.  

Control probes for hybridization efficiency, positive & negative controls for bisulfite 

conversion were analyzed before normalization of data, and SNP & Sex related probes were 

filtered.  In total, 14,376 out of 480,388 probes were removed, and all samples passed quality 

control standards and therefore included for analysis (Figure 16-A). Background noise & the 

signal intensity were adjusted for163, and normalization on the  β-values was performed164. Figure 

16-B demonstrates the distribution of β-values before and after normalization. 
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Figure 16-A: Final outcome of filtering procedures. The percentage of probes removed, and 

the number of samples removed after RnBeads performed quality control of the dataset.  

 

 

  

Figure 16-B: Effect of Correction. The influence of the applied normalization procedure on 

CpG methylation values is displayed. The following figure compares the distributions of the β 

values before and after performing normalization. 
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Differential methylation on the region level, for Genes, 5kb Tiles, CpG Islands, and 

Promoters were also calculated based on a variety of metrics. Using this combined rank as a 

cutoff within the dataset, 1284 specific CpG Sites, 4 Genes, and 6 Promoters, were considered to 

be differentially method. The genes identified to be differentially methylated were: CLUHP4, 

COX6A2, TP53TG3D, and OSBL10-AS1. The promoters identified to be differentially 

methylated corresponded to the TP53TG3D, HOXA_AS4, GRM2, EEF1A1, and LINC00316 

genes. Figure 17 displays the Euclidean distance between samples based on methylation values 

at the 1000 most variable probes. The sample groups, in orange and green, suggests there is some 

clustering of samples, however it isn’t as uniform as observed within the RNA-seq dataset. It 

should be noted that the Euclidean distance here is mapped based on the variance for 1000 most 

variable probes across samples. Figures 18 and 20 depict the differentially methylated sites, and 

genes, respectively, as calculated by RnBeads, in red. The density scatter plots depict 

differentially methylated probes between Controls and AD in red, as calculated, by RnBeads 

using the combined rank score.  
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Figure 17: Euclidean distance between samples based on methylation values at the 1000 

most variable probes. The sample groups, in orange and green, indicates there is some 

clustering of samples together when examining the 1000 most variable probes.  
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Figure 18: Differentially methylated Probes. Density scatterplot indicating point density and 

probes differentially methylated between Control and AD are represented in red. 
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Figure 19: Differentially methylated Genes. Density scatterplot indicating point density and 

genes determined to be differentially methylated between Control and AD are represented in red. 
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Methylation levels of differentially expressed genes  

Within both our datasets, the only gene identified to be differentially expressed and 

methylated is HMP19.  This gene previously has been shown in GWAS analysis to be associated 

with obsessive-compulsive disorder165. Table 12 lists DEGs, their associated differentially 

methylated CpG Sites, percent change in methylation, and the p-value. Using BEDOPS on 

genomic Tile regions within 450k methylation array dataset, it was found that the genomic 

region chr4:139135001-139140000 (Gene SLC7A11) was found to be 5.7% hypomethylated 

within the AD group (pval 0.006). 
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Table 12: List of CpG sites and the associated DEG. The direction of DEG deregulation 

within the RNA-seq dataset, percent change in methylation and the p-value is given.  

CpG	Site	ID Gene_ID RNA_seq	Expression	in	AD Percent	Change	Methylation	in	AD P-value
cg07142667 SALL1 ↑ -4% 0.002
cg02455820 SOX13	 ↑ -8% 0.003
cg14170545 ABCA1	 ↑ -4% 0.001
cg08598483 HLA-J	 ↑ -3% 0.003
cg24956452 MYO10	 ↑ 7% 0.004
cg13852822 PHF19	 ↑ -3% 0.004
cg20225999 TNS1	 ↑ -5% 0.002
cg09324113 TEX14	 ↑ -3% 0.003
cg05406923 POU3F2	 ↑ 4% 0.002
cg27152890 PPP1R13L	 ↑ -5% 5.17E-05
cg03856949 METTL7A	 ↑ 4% 0.003
cg22595230 CENPB	 ↑ -7% 0.0004
cg16851221 PARD3B	 ↑ 14% 9.80E-05
cg13799302 CYP2J2 ↑ -3% 0.0004
cg09668344 PAK1 ↓ -4% 0.001
cg10607455 PCSK1 ↓ -3% 0.005
cg08072101 RBFOX1 ↓ -15% 0.002
cg20414935 ACOT7 ↓ -3% 8.70E-05
cg02071463 SNAP25 ↓ -3% 0.001
cg17192247 MAPRE3 ↓ -3% 0.001
cg13624988 HMP19 ↓ -6% 0.001
cg00825252 SMYD2 ↓ -5% 0.002
cg01657574 NRN1 ↓ 5% 0.0006
cg20314918 SCN2A ↓ -5% 0.002
cg13571460 LHX6 ↓ -3% 0.003
cg21521518 RASL11B ↓ -5% 0.00008
cg16304656 PRKAR1B ↓ -6% 0.0002
cg00680551 NCALD ↓ -3% 0.003
cg01343363 NDRG4 ↓ -8% 0.003
cg18078491 NRXN3 ↓ -10% 0.005
cg05841929 FAM81A ↓ -5% 2.25E-05

DEG	and	DMPs
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Methylated DNA capture Results 

After analyzing the captured DNA dataset, only one genomic window showed difference 

in methylation between Controls and AD. The genomic window of 59,5001 to 59,9250 ,was 

determined to be deferentially methylated (padj 1.85E-02), at  -7.64 log fold change as determined 

by edgeR. This genomic window was found to be hypermethylated in controls, and is directly 

within the region corresponding to the mRNA transcription of the ERICH1 gene (RefSeq: 

NM_001303100). This is a glutamate rich protein, and currently, there is no knowledge of 

pathways or curated interactions for ERICH1. GWAS analysis suggested ERICH1 mutations to 

be associated with adenoma risk166 within colorectal cancers.  

The dataset generated by using the MBD capture approach was excluded from further 

analysis. PICARD167, an open source tool available at GitHub, was utilized to examine coverage 

depth across hg19. On average, less than 0.3% of the genome was covered at a sequencing depth 

of 30X or above. This was most likely due to the large amount of sample loss observed when 

performing the size selection step. The use of 15 cycles of PCR to amplify the adapter ligated 

product, most likely caused the over representation of a small amount of the genome as 

demonstrated by PICARD analysis. Future strategy must involve an alternative size selection 

approach, such as a column based or dual size selection using magnetic beads to avoid the 90% 

sample loss observed prior to the MBD capture process. 
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Chapter IV 

DISCUSSION 

Insights from RNA-seq 

Overall, 386 total genes were found to be differentially regulated (151 up-regulated and 

235 down-regulated) within the RNA-seq dataset. It’s imperative to keep in mind the method of 

library preparation used prior to RNA-seq. The capture based approach allowed over 98% of the 

sequences generated to be successfully aligned to the refseq Hg19 annotation, even when the 

sample RIN was as low as 3.6. In this project, more than 10 biological replicates per group were 

sequenced, and frozen postmortem brain tissue was used, which is considered the gold standard 

for analysis. The number of replicates used is important, as within the RNA community it has 

been suggested that the number of replicates per group improves detection power more than 

simply increasing sequence depth136,168. Although only an average of 15.6 million reads were 

achieved per sample, using the RNA-Access library preparation approach allowed for over 98% 

of the reads to be aligned to known RefSeq annotations, where over 75% of the coverage was 

within coding regions. This is a drastic increase, when compared to traditional RNA-seq 

approaches where less than 20% of reads typically align to coding regions169.  

Gene Ontology analysis provided an overview of biological processes, molecular 

functions, and cellular components that were down regulated within the frontal cortex of subjects 

with AD. The most statistically significant (p<10-9) entities under biological processes effected 

cluster around regulation of synaptic transmission, regulation of synaptic vesicle transport and 

regulation of neurotransmitter transport & secretion (Table 8, Pgs 112-113). The most 

statistically significant (p<10-9) cellular components effected are synaptic vesicles, neuron 
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projection, membrane-bound vesicles, synaptic vesicle membrane, axon, and neuron & synapse 

components (Table 9 Pg 112).  The most statistically significant (p<10-6) molecular functions 

impacted by the down-regulated DEGs were SNARE binding, syntaxin binding, myosin biding 

and transporter activity (Table 10 Pg 113). This again demonstrates that many of the DEGs 

collectively overlap into a connected biochemical and cellular network.  

 The genes that were most significant in deregulation of biological processes were 

clustered around myosin V binding, SNARE (Soluble NSF (N-ethylmaleimide-sensitive fusion 

protein)-Attachment protein Receptor) binding, transporter activity, and syntaxin-1 binding. The 

cellular processes impacted by the DEGs also were cell-cell signaling, synaptic dysfunction, and 

vesicular transport.  

Myosins are a family of actin-based cytoskeletal motors that are required for neuronal 

shape, polarized cargo transport, support synaptic plasticity, and proper synapse function175. 

Nervous system dysfunction is characterized by abnormal myosin V function, and irregular 

function of myosin motors at neuronal synapses binding has been linked to neurological 

impairment and severe nervous system dysfunction175. Biological functions impacted included 

syntaxin-1 binding, syntaxin binding, and SNARE binding. This was reported due to the down 

regulation of the SXTBP1, SNAP25, SYT1, STX1A, SYN1, SYN2, SYP, STBXP1, STX1B, and 

VAMP2 genes. Syntaxin-1 is a protein that is implicated in docking of synaptic vesicles within 

the presynaptic plasma membrane. Syntaxin also contains a SNARE domain and binds 

synaptotagin to interact with voltage gated ion channels176. Lastly, SNAREs regulate 

intracellular trafficking, protein sorting and docking of synaptic vesicles to the plasma membrane 

during neurotransmitter release177. Recently, it was found that in knockout mice of the cysteine-

string protein-α (CSPα), a co-chaperone for the SNARE protein SNAP-25, causes 
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neurodegeneration178. Both CSPa and SNAP-25 genes were found to be down-regulated in the 

AD subjects. 

In addition to regulating trafficking, and docking of synaptic vesicles, SNAREs also 

regulate neuronal Aβ release at pre synaptic terminals179. A correctly functioning secretion 

system for Aβ is critical for maintaining synaptic homeostatic plasticity and any dysregulation of 

this system could potentially trigger AD pathophysiology. An improperly functioning system 

could cause an increase in neuronal secretion of Aβ, which itself may have effects on synaptic 

transmission. Cirrito et al.180 also describe a feedback loop, where an increase in synaptic 

activity increases Aβ generation, again referring to the point where a proper system is critical and 

malfunction could be a mechanism that triggers AD pathology. It is estimated that around 70% 

of extracellular Aβ is derived from the endocytic-exocytic pathway, where APP is endocytosed, 

processed by β and γ secretases to form Aβ, and then secreted from the cell. SNAP, and SNARE 

proteins are thought to be essential for this process, where SNARE proteins allow for the fusion 

of Aβ -containing exocytosed vesicles, and cause Aβ release. Del Prete D et al.181 have shown 

APP is cleaved by BACE1 in pre-synaptic vesicles. Additionally, Mukaetova-Ladinska et al.182 

showed a decrease in SNAP-25 levels within post mortem brain tissue of individuals that had a 

lewy body variant of AD.  Cell-cell signaling, neurotransmitter transport, modulation of synaptic 

transmission, and cellular communication were all molecular processes that were shown to be 

impacted as determined by GO analysis. Terms observed within this category, deregulation of 

proper synaptic vesicular transport, vesicle docking involved in exocytosis, regulation of cellular 

localization, synaptic vesicle transport, glutamate secretion, in conjunction with SNARE 

complex deregulation can all collectively alter secretion of neurotransmitters, permeability of 
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intercellular junctions, gap junction intercellular communications, formation of focal complexes, 

and altered morphology of synapses. 

Core analysis using IPA® showed the top four molecular and cellular functions that are 

effected, echoed the same theme as GO analysis, which were Cellular Function and 

Maintenance, Molecular Transport, Cellular Movement, and Cell-to-Cell Signaling. Figure 15, 

generated by IPA®, displays correlation between DEGs that had the highest score with the 

highest number of DEGs mapped within this network. This network correlates our dataset with 

the inclusion of a network involving NFκB, Creb, Ap1, Cg, and Vegf. NFκB has been known as 

a ubiquitous transcription factor that controls a wide range of biological functions, including 

inflammatory and immune functions in both the central and peripheral nervous systems, where 

inflammation in the central nervous system has been though to play a role in AD183. NFκB 

regulation has also been shown impact long-term changes to adult neuronal function caused by 

synaptic stimulation184. IkB kinase(IKK) is phosphorylated and activates NFkB, where it goes on 

to translocate into the nucleus and acting as a transcription factor185. Although inflammation is a 

physiological defense mechanism that protects tissues from infection, sustained activation of 

brain macrophages and glial cells can lead to excess production of various factors that contribute 

to neuronal injury, including upregulation of proinflammatory chemokines & cytokines and 

reactive oxidative species; this prolonged inflammatory signaling contributes to cell damage and 

is observed in progressive degenerative conditions, including AD186. Activated microglia 

accumulate around Aβ plaques in brains of individuals with AD, and have been implicated in 

neurodegeneration, with GWAS studies identifying risk variants for AD to be implicated in 

inflammatory response. The inclusion of the transcription factor cAMP-response element 

binding protein (CREB), hints at synaptic dysregulation as CREB signaling plays a crucial role 
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for long-lasting changes in synaptic plasticity that mediates the conversion of short-term memory 

to long-term memory187. Also, synaptic efficacy mediating memory storage requires the 

activation of specific gene expression programs regulated, among others, by the transcription 

CREB. CREB signaling has been recently involved in several brain pathological conditions 

including cognitive and neurodegenerative disorders. The Aβ peptide, alters hippocampal-

dependent synaptic plasticity and memory and mediates synapse loss through the CREB 

signaling pathway187. AP1 has recently been shown to regulate miRNA-144 that decreases 

ADAM10, the α - secretase that protects the brain from Aβ build up188.  

IPA® also identified the transcriptional regulator RE1-silencing transcription factor 

(REST) as predicted to be activated (P 1.67 -7, Z-score 2.62). REST was up-regulated in our 

RNA-seq dataset, and was tied to the down-regulation of 7 genes (UCHL1, TUBB3, TAC1, SYP, 

SYN1, SNAP25, GAP43).  Figure 15 displays REST activation in relation with these genes. 

REST is a gene silencing transcription factor that is widely expressed during embryogenesis, and 

is a master regulator of neuronal gene expression189. REST actively represses a large array of 

coding and noncoding neuron-specific genes important to synaptic plasticity and structural 

remodeling, including synaptic vesicle proteins, neuroreceptors and channels, and microRNAs 

that regulate networks of non-neuronal genes190. Proper expression of REST is important as 

disruption of expression during embryogenesis can result in lethality. REST degradation during 

terminal neuronal differentiation is essential and is what leads to a neural phenotype of a cell. In 

mature neurons, REST can be activated in vulnerable hippocampal neurons by ischemic insults.  

Expression of REST has been shown to be elevated in aged brains191.  Lu et al.192, 

examined REST levels in the pre-frontal cortex of humans and found that REST levels correlate 

positively with cognitive function. In Alzheimer’s disease, REST has been found to be lost from 
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nuclei of cells and appear in autophagosomes with pathological misfolded proteins. These 

authors claim that activation state of REST can help distinguish between neuroprotection from 

neurodegeneration within the brain. Lu et al. 192, also found that nuclear REST suppresses 

several pro-apoptotic genes that encode enzymes involved in the pathology of AD. After 

treatment of human neurons with hydrogen peroxide, a clear increase in REST levels was 

observed. They also found that extracts of cortex from AD individuals reduced REST inducing 

activity compared with age-matched controls. Lu and colleagues went on to show that loss of 

nuclear REST is associated with a substantial increase in the expression of genes implicated in 

apoptosis and Alzheimer’s pathology in both the least severe and most severe forms of the 

disease. This somewhat contradicts our findings. Since REST was shown to be up-regulated 

within our dataset, it could still indicate the loss of nuclear REST, as demonstrated by Lu et al., 

and the simple explanation is the accumulation of REST in autophagosomes is what is observed 

within our dataset. It is also important to note that Lu. et al.193 also observed the same trend; they 

observed that another set of genes targeted by REST — those involved in synaptic transmission 

and other functions of neural junctions — initially show increased expression in AD, and then 

again reduced levels in a more severe form of AD. It is plausible that the increased expression of 

these genes in the beginning may be some form of a  compensatory mechanism to maintain 

neuronal homeostasis191.  
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DNA methylation 

The differentially methylated CpGs from our study were compared with the top 

100DMPs reported by Lunnon et al.  194, who examined methylomic profiles using the Illumina® 

450k methylation array in Controls and AD patients within the MRC London Brainbank for 

Neurodegenerative Disease Cohort(n=122), and the Mount Sinai Alzhiemer’s Disease 

Schizophrenia Brain Bank (n=144). When comparing our 450k dataset, only the CpG 

cg00510320 was found to overlap within our cohort and Lunnon et al.194. This CpG 

corresponded with the gene RLTPR, as determined using BEDOPS. When comparing to the 

cohort examined by De Jager et al.195, and their top 72 differentially methylated CpGs, only the 

CpG cg21806242 overlapped between both datasets. This specific CpG, was associated with 

gene ATG16L2, as determined by BEDOPS. The gene RLTPR has a functional domain similar to 

a protein that binds myosin196, and ATG16L2 is an autophagy related gene associated to serve as 

a potential biomarker in multiple sclerosis197.  

In comparison to the differentially methylated CpGs within the PreFrontal Cortex tissue 

examined by Lunnon et al.194, the genes RNF175(cg07859799, 1.2), PPARA (cg06635946, 2.66), 

MYO10(cg07719172, 2.93), and SOX2(cg17917241, 2.76) were found to overlap between our 

RNA-seq dataset and their 450k methylation dataset. All four of these CpGs were more 

methylated within the AD group, and all three except RNF175 were up-regulated within our 

RNA-seq dataset. Next, the DEGs within our dataset were compared to their top 100 cross cortex 

DMPs, and the genes associated with their DMPs. The down-regulated gene PCDHAC2, and up-

regulated gene ITGB5 were found to be more methylated within the London cohort and Mount 

Sinai cohort.  
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De Jager et al.195 investigated methylation status in prefrontal cortex of 708 subjects and 

found Differential methylation at 72 CpG sites using the same Illumina® 450k methylation 

array. Their subjects were derived from the Religious Order Study cohort, and the Memory and 

Aging Project cohort. Among their 72 CpG sites that were differentially methylated, only one 

differentially methylated CpG, MYO10 (cg06742628) overlapped, between our dataset, and 

MYO10 was also an DEG within our RNA-seq dataset. 
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DNA methylation and differentially expressed genes 

Comparison of DEGs and DMPs showed there were 32 genes that overlapped between 

our two datasets (Table 12). To be more stringent, we looked for genes whose percent change in 

methylation was 5% or greater. Its important to note that SNAP25 was found to have a CpG that 

was differentially methylated, but the percent change of methylation was only 3%.  

 MYO10, found to be up-regulated within our RNA-seq dataset, 7% hyper methylated in 

AD within our 450k methylation dataset, and also overlapped between both the Lunnon et al.194 

and De Jager et al.195 dataset. This gene codes for the molecular motor myosin-X, and its 

expression increases the number of Tunneling nanotubes (TNTs)198. TNTs are a type of long-

distance intercellular connections that allow for the selective transport of membrane vesicles 

between cells that contain various signals, and cytosolic materials198. Overexpression of MYO10 

results in formation of functional TNTs, and increases the number of vesicles transferred 

between connected cells. Neuronal cells are able to induce TNT formation in response to 

external signals such as oxidative stress, and MYO10 is up-regulated during nerve regeneration 

or following peripheral nerve injury199. Interestingly it has been hypothesized that the up-

regulation of MYO10 can lead to the use of TNTs for intercellular spread of misfolded infectious 

prion proteins, as shown by Gousset et al.200 and Langevin et al.201. This allows for the 

hypothesis that it would be easier for intracellular Aβ -fusion proteins to take advantage of TNTs 

for intercellular spread. This provides for speculation that up-regulation of MYO10 can 

contribute towards AD pathogenesis.  

 The gene NDRG4 was down-regulated in our RNA-seq dataset, and hypomethylated by 

8% within the AD group of our methylation dataset. Down-regulation of this gene has been 

associated in impaired spatial learning and memory function202. NDRG4 deficient mice contain 
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decrease levels of brain-derived neurotrophic factor (BDNF), where BDNF has been shown to 

play a role in neuroprotection and spatial learning and memory203.  

 NRXN3 was down-regulated within our RNA-seq dataset and 10 hypomethylated within 

AD individuals of our methylation dataset. Neurexins(NRXNS) are a type 1 transmembrane 

neuronal adhesion receptor that exit and function predominantly at presynaptic terminals. In 

mammals NRXNs are coded by NRXN1, NRXN2 and NRXN3204. The interaction between 

neurexins and neuroligins promote the formation of functional synaptic structures. GWAS 

analysis has shown NRXN3 to be associated with AD individuals205.  

Alternative pre-mRNA splicing is an important event that generates several transcripts 

from one single gene, therefore promoting diversity. RNA-binding protein, fox-1 homolog 

(RBFOX1), is a neuro-specific splicing factor predicted to regulate neuronal splicing networks 

clinically implicated in neurodevelopmental disease, and a large network of genes involved in 

neuronal differentiation and maintenance206. RBFOX1 can regulate alternative splicing of APP, 

and has been shown to exclude exon 7 within APP processing207. The APP714 isoform (termed 

Exon 6-8-9 isoform) was induced in HEK293 and HeLa cells by RBFOX1 overexpression, and 

this overexpression led to a 10 fold increase in APP714. Alam et al.207 reported that RBFOX 

proteins promote APP exon 7 skipping via two GCAUG recognition sequences. This suggests 

RBFOX1 to be involved in exon 7 exclusion. APP isoforms containing exon 7 are increased in 

brains of AD patients207,208. Previous studies suggest that Aβ is preferentially produced from 

APP770, an isoform containing exon 7, and this isoform was preferentially processed by α and β 

secretase cleavage in human brain endothelial cells. This leads to the conclusion that deficiency 

of RBFOX proteins, as observed within our RNA-seq dataset, may contribute to increased 
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expression of APP770 and therefore an increased production of Aβ. RBFOX1 was found to be 

down-regulated, and 15% hypomethylated within the AD dataset.  

Currently, the LOAD process remains incompletely understood due to the heterogeneity 

and complexity of the disease. Although there is ample genetic and cellular biology evidence to 

support the amyloid hypothesis, the recent body of literature points to Aβ not being the sole 

initiating factor in pathogenesis. It is clear that AD etiology is complex and that Aβ alone is 

unable to account for all aspects of AD13,170,171. The results of this study support the hypothesis 

that Aβ, alone, does not account for all aspects of AD , and provide novel insights into the 

pathogenesis of AD. More recent literature expresses an  interest in the mechanisms that govern 

the intracellular traffic in the pathology of AD. There is some experimental data supporting the 

idea that alterations in vesicle maturation, intracellular trafficking, transport, and secretion are 

altered in early stages of AD pathology109,122,123,172–174.  
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Chapter V 
 

CONCLUSIONS 
 

Conclusions 

The DEGs found within our RNA-seq dataset all elucidate the importance of some 

previously suspected pathways involved in the pathogenesis of AD. Deregulated genes 

collectively impact myosin binding, intracellular trafficking, proper docking of synaptic vesicles 

to the plasma membrane, regulation of synaptic transmission, and neurotransmitter transport. 

Genes deregulated that regulate neuronal Aβ release, along with genes that have been previously 

implicated with inflammation, and APP processing were differentially expressed. Synapse loss is 

a pathological correlate of cognitive dysfunction in AD, suggesting that synaptic changes are 

crucial for AD pathogenesis35. Performing GO analysis and submission of differentially 

methylated genes as a ranked list, based on the combined rank sum score, in GORILLA also 

indicated deregulation of synaptic transmission ( Figure A.2 Pg 110) This suggests a direct link 

between methylation and differential gene expression. The overlap of multiple DEGs within our 

RNA-seq dataset and DMPs within the methylation dataset suggest a link between differential 

methylation and differential gene expression. Genes overlapping both datasets have been shown 

to be important and play a role in APP expression, formation of tunneling nanotubes, and 

multiple genes that are important in synaptic transmission & neuroprotection.  

Gene Set Enrichment Analysis (GSEA)209,210was performed on our DEGs dataset. 

Overlaps between our up-regulated and down-regulated genes were compared with hallmark, 

curated and GO gene sets. Out of the 151 up-regulated genes identified within the RNA-seq data 

set, 52 genes were identified within a gene set that is shown to be up-regulated in brain of 

patients with AD(FDR q-value 3.59e-33). Eighty-nine genes that were down-regulated within the 
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RNA-seq dataset also overlapped with down-regulated genes within the Blalock et al.128 dataset 

(FDR q-value 3.57e -74) that was generated by microarray analysis of hippocampal tissue from 9 

controls and 22 AD patients. Given the overlap observed within a curated gene set, we 

demonstrate a cost effective approach to be able to confidently detect transcriptional changes at a 

much lower level of sequencing depth than current ENCODE recommendations.  

Of the numerous genes examined with a GWAS approach and associated with AD57–

59,211, only the gene MEF2C was listed to be down-regulated within the RNA-seq dataset. The 

MEF2C protein limits excessive synapse formation during activity-dependent refinement of 

synaptic connectivity and therefore may facilitate hippocampal dependent learning and memory; 

mutations in this gene has also been linked to synaptic plasticity59,212,213.   

In conclusion, we show overlap between multiple DEGs and their respective 

differentially methylated CpG sites, suggesting a link between differential methylation and 

differential gene expression, since these genes impact processes shown to contribute to AD 

pathogenesis. Our experiment is a final point experiment, and cannot implicitly state whether 

transcriptional changes are a direct result of differential methylation, and if these changes occur 

within an early stage of Alzheimer’s disease. Understanding the mechanisms of DEGs bring new 

insight in the development of new therapeutic strategies for preventing the onset of most 

deleterious symptoms in AD. 
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Addressing Limitations:  
 

The first RNA-seq analysis of postmortem human brain tissue of age matched controls 

and AD patients with over 10 biological replicates per group is reported. To combat degraded 

RNA, a novel probe capture approach to target exonic regions of RNA was used. It is important 

to note that acidosis in human postmortem brain tissue can be caused by agonal factors such as 

coma, hypoxia, pyrexia, seizures, dehydration, hypoglycemia, multiple organ failure, head 

injury, and ingestion of neurotoxic substances, which can affect RNA integrity214. Different 

parameters have been used to assess tissue quality, notably brain pH, gross neuropathological 

examination, postmortem interval (PMI), and freezer time. Brain pH, has been shown to be 

related to agonal state and RNA integrity. The acceptable maximum PMI for human studies was 

reported as 36–48 hours, and it should be noted that our samples are well below this time frame( 

average PMI = 12.33 hours) 214.  RNA-Seq sample preparation includes multiple procedures 

(RNA extraction, fragmentation, reverse transcription and amplification), that may be susceptible 

to experimental bias121. We believe the amount of sequence coverage obtained, along with the 

number of replicates included for each group overall minimize such batch effects that could be 

observed when only using a low number of replicates.  

Although an overlap between the cohort used within our dataset and previously reported 

studies was observed, its important to note that the method of data analysis varies from one 

cohort to the other. A relatively new pipeline (RnBeads) was used, and also adjusted for sex, age, 

and cell type proportions within our data set. This is important to adjust for, as age itself has been 

shown to impact DNA methylation82,215,216. One would expect the amount of differentially 

methylated CpGs that overlap between multiple cohorts to increase when the same pipeline, and 

method of analysis is applied uniformly across all datasets. Deviations and non-concordance 
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within multiple cohorts may arise solely due to variation in data analysis pipelines. Another 

limitation using the use of Illumina® Infinium HumanMethylation450 BeadChip limits CpG 

methylation investigation to specific sites. Although these limitations exist, investigation of 

whole-genome methylation status is not a viable approach for large cohorts, given the current 

costs.  
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Future directions:  

 Unlike the genome of an organism, the epigenome is largely malleable and reactive to 

environmental factors72. The dynamic profile of 5mC and 5hemi-methlyC(5hmC) demonstrate 

this point clearly. Epigenetic regulation of gene regulation is a complex network that involves 

histone modifications, lncRNAs, miRNAs, along with 5hmC and 5mC217–220. High levels of 5mC 

and 5hmC in the CNS further highlight the functional importance of these epigenetic marks72. 

Understanding the epigenetics of Alzheimer's disease and age-related dementia to give a 

complete understanding of the disease etiology requires the proper investigation of all factors 

involved in gene regulation. 

  Future directions would involve transitioning away from microarray-based approaches to 

investigate cytosine methylation. A microarray-based approach is biased towards sites limited to 

the hybridization array, and fails to interrogate whole genome methylation. Methylation across 

the genome can have effects that are not limited too the vicinity of promoter and gene bodies. As 

RNA-seq has been demonstrated to be more effective than microarray based methods, whole 

genome bisulfite sequencing will allow for an unbiased approach to survey the entire methylome. 

The validation of DEGs across different cohorts is important to understand the contribution to 

AD pathogenesis, but current sequencing costs limit the amount of samples that can be analyzed 

in a cost effective manner. However, our library preparation method demonstrates that DEGs can 

be identified, at a fraction of the sequencing depth recommended by ENCODE137. This opens up 

the possibility towards large-scale RNA-sequencing studies.  In tandem, it would also be 

beneficial to investigate miRNA and lncRNAs by sequencing. However, this may be difficult to 

do in postmortem human tissue, as these species of oligonucleotides are very small, which 

becomes an issue when looking at PMI and RNA degradation.   
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Translational impact 

Overall understanding of this dynamic relationship between epigenomics, genetics, and 

the environment will certainly enhance our understanding of AD pathogenesis and possibly lead 

towards the development of novel therapeutic targets. Epigenetic modifications are reversible, 

can effect life span of an individual, and can be targeted by pharmacological interventions and 

change in diet63. Information on pharmacoepigenetic drugs is currently limited, however there 

are compounds currently approved by the Food and Drug Administration for the treatment of 

neoplastic processes221. Interventions targeting epigenetic regulation may be effective in treating 

neurodegenerative disorders, effect the hippocampal transcriptome, and reverse age-related 

cognitive dysfunction63,221–224 .  Drugs that impact epigenetics are often clustered in 6 categories: 

DNA Methyltransferase inhibitors, Histone deacetylase inhibitors, histone acetyltransferase 

modulators, histone methyltransferase inhibitors, histone demethylase inhibitors, and drugs that 

impact non-coding RNAs. AD-related genes do show DNA methylation changes, histone 

acetylation reduction, and deregulation of several lncRNAs & miRNAs.  Pharmacoepigenetics 

doesn’t predict all phenotypic variations in drug response, as individual differences in drug 

response are associated with genetic and epigenetic variability, along with disease 

determinants63. Currently, the information available on most drugs used for epigenetic alterations 

is limited, and proper evaluation of efficacy and safety of drugs has to still be evaluated in drug 

development and clinical trials63.   

 

Another avenue for a potential therapeutic approach would be the use of RNA 

interference (RNAi), to improve AD treatment. RNAi can be highly specific for mRNAs, is easy 

to synthesize and manufacture, but is very difficult to deliver. Over 21 RNAi therapeutics have 
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been developed for diseases such as cancers, viruses, and multiple genetic disorders. In mouse 

models, RNAi has been used to knock down BACE1 expression within mouse brain225, which 

has a direct role in Aβ production. Greater understanding of AD pathogenesis could lead to 

specific RNAi therapeutics as an efficient method for clinical applications.  
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Appendix A 
 

FigureA.1 

 

 

 

 

 

 

 

 

 

 

Figure A.1: Electropherogram of DNA after sonication on the Covaris E220. Sonication 

Target of 200bp was applied, and one can observe the distribution of DNA was between 168bp 

to 450bp as it is shown using the BioRad Experion DNA 1000 assay. The following settings 

were used: Time 200 seconds, Duty 10.0, Peak Incident Power 175, Cycles per Burst 200, 

Amplitude 0, Velocity 0, and Dwell 0.
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gure A.2 

 

Figure A.2: Biological Processes effected as determined by GO analysis. A ranked list of differentially methylated genes, sorted by 

p-value was submitted for analysis. Inclusion of synaptic transmission in both, GO analysis of RNA dataset and DNA methylation 

dataset indicate a link between methylation and differential gene expression.
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Table 4 

Table 4: MBD-Seq DNA characteristics. Listing the Total nanograms (ng) of DNA going into 

MBD-Capture, and final available for pooling after 15 cycles of PCR.  

 

Sample ID Total ng of human DNA going into MBD-Cap Total ng availalble for pool after Amplification
24381 160 27.4
24385 175 26
36082 110.8 23.616
42990 121.56 2.44
41176 118.2 9.38
45116 156.6 15.9
25666 162.1 6.96
42113 132.8 32
24430 158.4 10.1
24509 156 30.4
36359 108 8.1
46202 205 31.1
25667 159.2 12.1
40482 207.2 21.6
35289 200.8 9.34
41639 202 3.9
41969 210 22.2
43045 190 11.2
43172 195.2 18
43192 145.2 6.86
43509 159.2 11.4
44624 170.4 27.6
45392 202 35

Average: 210.2782609 167.9191304  

 

  



 125 

Table 8 

Table 8: List of top ten biological functions entities impacted by down-regulated genes as 

determined by GO analysis. Description, P-value, FDR q-value, and an enrichment score is 

given. 

Description P-value FDR	q-value Enrichment
syntaxin-1	binding 1.53E-06 6.53E-03 23.74
myosin	V	binding 1.53E-06 3.26E-03 23.74
SNARE	binding 2.12E-06 3.01E-03 6.84
transporter	activity 3.35E-06 3.57E-03 2.3
myosin	binding 8.06E-06 6.87E-03 9.58
calcium-dependent	protein	binding 8.06E-06 5.73E-03 9.58
syntaxin	binding 8.70E-06 5.31E-03 7.78
transmembrane	transporter	activity 2.12E-05 1.13E-02 2.36
small	molecule	binding 2.51E-05 1.19E-02 1.73
channel	regulator	activity 3.32E-05 1.42E-02 5.63  

Table 9 

Table 9: List of top ten molecular processes impacted by down-regulated genes as 

determined by GO analysis. Gene Ontology (GO) terms, description, P-value, FDR q-value, 

and an enrichment score is given. 

GO	Term Description P-value FDR	q-value Enrichment
GO:0007268 synaptic	transmission 1.84E-21 2.56E-17 6.77
GO:0050804 modulation	of	synaptic	transmission 9.96E-18 6.92E-14 8.61
GO:0044700 single	organism	signaling 7.20E-17 3.33E-13 4.5
GO:0023052 signaling 8.29E-17 2.88E-13 4.48
GO:0007267 cell-cell	signaling 4.83E-16 1.34E-12 4.48
GO:0007154 cell	communication 2.24E-15 5.18E-12 3.91
GO:0006836 neurotransmitter	transport 2.43E-15 4.82E-12 12.97
GO:0006810 transport 6.94E-14 1.21E-10 2.11
GO:1902803 regulation	of	synaptic	vesicle	transport 1.94E-13 2.99E-10 32.29
GO:0051179 localization 2.52E-13 3.51E-10 1.99  
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Table 10 

Table 10: List of top ten cellular components impacted by down-regulated genes as 

determined by GO analysis. Gene Ontology (GO) terms, description, P-value, FDR q-value, 

and an enrichment score is given. 

GO	Term Description P-value FDR	q-value Enrichment
GO:0097458 neuron	part 4.76E-30 7.95E-27 4.88
GO:0044456 synapse	part 9.75E-29 8.14E-26 7.41
GO:0008021 synaptic	vesicle 1.33E-16 7.39E-14 16.94
GO:0044463 cell	projection	part 3.58E-16 1.49E-13 4.11
GO:0033267 axon	part 3.55E-14 1.19E-11 9.44
GO:0030672 synaptic	vesicle	membrane 8.11E-14 2.26E-11 19.43
GO:0043005 neuron	projection 1.02E-13 2.43E-11 4.33
GO:0016023 cytoplasmic	membrane-bounded	vesicle 1.85E-12 3.87E-10 4.03
GO:0031982 vesicle 5.32E-12 9.86E-10 2.05
GO:0031410 cytoplasmic	vesicle 6.00E-12 1.00E-09 3.68  
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Table 12.A: List of genes mapped to an interaction network. The following list of genes 

mapped to the number one interaction network as determined by IPA®. This is the same network 

displayed in Figure 15.  

Symbol Description 

Ap1 
Transcription Factor AP-1, involved in Cellular proiferation, transformation, and 
death 

CALM1 
(includes 
others) 

EF-Hand calcium binding protein 

CAMKK2 Calcium/calmodulin-dependent protein kinase kinase2 
Cg Computed gene 

CPNE4 
Calcium-dependent, phospholipid-binding protein, which may be involved in 
membrane trafficking, mitogenesis and development. 

Creb Cyclic AMP responsive element binding protein 

GAP43 
Growth Associated Protein 43 - presynaptic protein playing a key role in axonal 
growth, and modulating synapse information. 

HOMER3 Family of postsynaptic density scaffolding proteins 
IKK 
(complex) 

IkB kinase-phosphorylated and activates NFkB 

IL1R2 

Interleukin 1 Receptor type 2 - This protein binds interleukin alpha (IL1A), 
interleukin beta (IL1B), and interleukin 1 receptor, type I(IL1R1/IL1RA), and 
acts as a decoy receptor that inhibits the activity of its ligands. 

ITGB5 

Integrin Beta 5: integrin complexes mediate cell-cell and cell-extracellular 
matrix interactions and this complex plays a role in human airway epithelial 
proliferation. 

ITGB8 

Integrin Beta 8: integrin complexes mediate cell-cell and cell-extracellular 
matrix interactions and this complex plays a role in human airway epithelial 
proliferation. 

KAT2B 
Lysine Acetyltransferase 2B - associates with p300/CBP. Contains Histone 
acetyl transferase activity, plays a direct role in transcriptional regulation 

MT2A Metallothionein 2A 
NFkB 
(complex) 

NFKB1 (Nuclear Factor Of Kappa Light Polypeptide Gene Enhancer In B-Cells 
1) 

NME1 

Diseases associated with NME1 include anal canal carcinoma and laryngeal 
carcinoma. Among its related pathways are Integrated Pancreatic Cancer 
Pathway and Metabolism. This gene (NM 

PELI2 

Pellino E3 Ubiquitin Protein Ligase Family Member 2, is a Protein Coding gene. 
Among its related pathways are Immune System and Interleukin receptor SHC 
signaling. 

Pkc(s)  Protein Kinase 
PPARA Peroxisome proliferator-activated receptor alpha is a member of the nuclear 
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receptor family of ligand-activated transcription factors that heterodimerize with 
the retinoic X receptor (RXR) to regulate gene expression. 

PRKCE 

PRKCE (Protein Kinase C, Epsilon) is a Protein Coding gene. Among its related 
pathways are Immune System and DAG and IP3 signaling. This kinase has been 
shown to be involved in many different cellular functions, such as neuron 
channel activation, apoptosi 

REST REST RE1-Silencing Transcription Factor 

RGS4 
Regulator Of G-Protein Signaling 4. Among its related pathways are Signaling 
by GPCR and Activation of cAMP-Dependent PKA. Regulator of G protein s 

SLC7A11 

SLC7A11 Solute Carrier Family 7. Among its related pathways are Hemostasis 
and Transport 

SNAP25 Synaptosomal-Associated Protein. 

SNCA 
Synuclein, Alpha. Diseases associated with SNCA include snca-related 
parkinson disease and parkinson disease. 

SNCG 

Synuclein, Gamma. Diseases associated with SNCG include synucleinopathy 
and multiple system atrophy. GO annotations related to this gene include beta-
tubulin binding and alpha-tubulin binding. 

STAR 

Steroidogenic Acute Regulatory Protein. Diseases associated with STAR include 
lipoid adrenal hyperplasia and classic congenital lipoid adrenal hyperplasia due 
to star deficiency. 

SYN1 

SYN1 (Synapsin I) is a Protein Coding gene. Diseases associated with SYN1 
include epilepsy, x-linked, with variable learning disabilities and behavior 
disorders and x-linked epilepsy - learning disabilities - behavior disorders. 
Among its related pathways 

SYP Synaptophysin. 

TAC1 
Tachykinin, Precursor 1. Diseases associated with TAC1 include neurotrophic 
keratopathy and neuroschistosomiasis. 

Tgf beta 

This gene encodes a member of the transforming growth factor beta family of 
cytokines, which are multifunctional peptides that regulate proliferation, 
differentiation, adhesion, migration, and other functions in many cell types. 

TLR4 Toll-Like Receptor 4. 

TUBB3 

This gene encodes a class III member of the beta tubulin protein family. Beta 
tubulins are one of two core protein families (alpha and beta tubulins) that 
heterodimerize and assemble to form microtubules. 

UCHL1 
Ubiquitin Carboxyl-Terminal Esterase L1. This gene is specifically expressed in 
the neurons and in cells of the diffuse neuroendocrine system. 

USP11 
Ubiquitin Specific Peptidase 11. Among its related pathways are Transport to the 
Golgi and subsequent modification and Protein folding. 

Vegf 
This gene is a member of the PDGF/VEGF growth factor family. 
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ZBED6 

Zinc Finger, BED-Type Containing 6. 

Table 13 

Table 13: List of top ten biological processes impacted by GO analysis. A ranked gene list 

was submitted, sorted based on combined ranked score, generated from the 450k methylation 

array dataset. Gene Ontology (GO) terms, description, P-value, FDR q-value, and an enrichment 

score is given. 

Description P-value FDR	q-value Enrichment
cell-cell	signaling 4.82E-10 6.83E-06 2.09
signaling 8.03E-10 5.69E-06 1.87
single	organism	signaling 1.69E-09 7.98E-06 1.99
keratinization 6.56E-09 2.32E-05 9.58
cell	communication 1.13E-08 3.20E-05 1.87
peptide	cross-linking 4.62E-08 1.09E-04 13.22
keratinocyte	differentiation 6.38E-08 1.29E-04 8.36
epidermal	cell	differentiation 7.70E-07 1.36E-03 6.86
epithelial	cell	differentiation 7.96E-07 1.25E-03 2.75
calcium-dependent	cell-cell	adhesion	via	plasma	membrane	cell	adhesion	molecules 8.71E-07 1.23E-03 8.6
regulation	of	homotypic	cell-cell	adhesion 1.85E-06 2.38E-03 2.91
regulation	of	T	cell	activation 4.78E-06 5.64E-03 2.9
synaptic	signaling 6.37E-06 6.94E-03 2.03
trans-synaptic	signaling 6.37E-06 6.45E-03 2.03
synaptic	transmission 6.37E-06 6.02E-03 2.03
developmental	process 9.97E-06 8.83E-03 1.18  
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Organic Extraction Protocol 

Preparation of Solution Extraction Buffer(SEB)  

1 Liter of stock SEB solution was made with the following compounds: 

10ml Tris (pH8.0)  

20 mL of 5M NaC1 

20 mL of 0.5M EDTA 

200 m1 of 10% SDS  

600 mL of diH2O 

This was then titrated to pH8.0 with concentrated HCl. A 50mL of working solution was 

made by adding 300mg of 1,4-Dithiothreitol to 50 mL of SEB stock solution.  DNA extraction 

was performed for all samples following the UNTHSC organic extraction protocol149.    
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MEDIPS R Script 

This script was utilized to perform MEDIPS analysis within the MBD-seq dataset. 

#! /projects/sequence_analysis/vol3/tools/R-3.1.3/bin/Rscript --save 

library(MEDIPS) 

library(MEDIPSData) 

library(BSgenome.Hsapiens.UCSC.hg19) 

# Get commandline arguments 

args <- commandArgs(trailingOnly = TRUE) 

# arg 1 = project name 

# arg 2 = BAM file list file full path (must in this format *.merged.rg.deduped.bam) 

# arg 4 = output dir 

pjname <- args[1] 

bamFile1 <- args[2] 

bamFile2 <- args[3] 

outdir <- args[4] 

winSize <- as.numeric(args[5]) 

test_type <- args[6] 

adj_type <- args[7] 

 

if(winSize <= 0) 

{ 

 winSize <- 500 

} 
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if(test_type == '') 

{ 

 test_type <- 'edgeR' 

} 

 

if(adj_type == '') 

{ 

 adj_type <- 'bonferroni' 

} 

# Use chr22 for testing for now 

chr.select <- "chr22" 

# Assuming the hg19 genome used for alignment has no difference with the one used by 

BSgenome.Hsapiens.UCSC.hg19 

BSgenome <- "BSgenome.Hsapiens.UCSC.hg19" 

#uniq <- 1e-3 

#uniq <- 0 

extend <- 50 

shift <- 0 

sig_p <- 0.1 

 

projectname <- file.path(outdir,pjname) 

# Get the bam file names 
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bam_files1 <- read.delim(bamFile1, header = FALSE, sep = "\n") 

bam_files2 <- read.delim(bamFile2, header = FALSE, sep = "\n") 

MeDIP_Set1 <- c() 

MeDIP_Set2 <- c() 

# Setup bam file name list and datasets 

bam1_lst <- NULL 

for (n in 1:nrow(bam_files1)) 

{ 

 bam1_lst[n] <- toString(bam_files1[n,1]) 

 MeDIP_Set1 <- c(MeDIP_Set1, MEDIPS.createSet(file = bam1_lst[n], BSgenome = 

BSgenome, extend = extend, shift = shift, window_size = winSize, paired=TRUE)) 

 #MeDIP_Set1 <- c(MeDIP_Set1, MEDIPS.createSet(file = bam1_lst[n], BSgenome = 

BSgenome, extend = extend, shift = shift, window_size = winSize, chr.select = chr.select, 

paired=TRUE)) 

} 

bam2_lst <- NULL 

for (n in 1:nrow(bam_files2)) 

{ 

 bam2_lst[n] <- toString(bam_files2[n,1]) 

 MeDIP_Set2 <- c(MeDIP_Set2, MEDIPS.createSet(file = bam2_lst[n], BSgenome = 

BSgenome, extend = extend, shift = shift, window_size = winSize, paired=TRUE)) 

 #MeDIP_Set2 <- c(MeDIP_Set2, MEDIPS.createSet(file = bam2_lst[n], BSgenome = 

BSgenome, extend = extend, shift = shift, window_size = winSize, chr.select = chr.select, 
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paired=TRUE)) 

} 

# Creating coupling vector 

CS <- MEDIPS.couplingVector(pattern = "CG", refObj = MeDIP_Set1[[1]]) 

# Run analysis 

#mr.edgeR2 = MEDIPS.meth(MSet1 = MeDIP_Set1, MSet2 = MeDIP_Set2, CSet = CS, p.adj = 

"bonferroni", diff.method = "edgeR", MeDIP = T, CNV = F, minRowSum = 10) 

mr.edgeR <- MEDIPS.meth(MSet1 = MeDIP_Set1, MSet2 = MeDIP_Set2, CSet = CS, p.adj = 

adj_type, diff.method = test_type, MeDIP = T, CNV = F, minRowSum = 10) 

# Save total result 

output.file <- paste0(projectname, '_MEDIPS_All.txt') 

write.table(mr.edgeR,file=output.file, sep='\t', quote=FALSE, row.names=FALSE) 

# Filter by adjusted P value 

mr.edgeR.s <- MEDIPS.selectSig(results = mr.edgeR, p.value = sig_p, adj = T, ratio = NULL, 

bg.counts = NULL, CNV = F) 

if(nrow(mr.edgeR.s) > 0) 

{ 

 output.file <- paste0(projectname, '_MEDIPS_Sig.txt') 

 write.table(mr.edgeR.s,file=output.file, sep='\t', quote=FALSE, row.names=FALSE) 

 

 # Find the rows with edgeR.logFC value > 0 which means Set1 gain 

 mr.edgeR.s.gain <- mr.edgeR.s[which(mr.edgeR.s[, grep("logFC", colnames(mr.edgeR.s))] > 

0), ] 
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 if(nrow(mr.edgeR.s.gain) > 0) 

 { 

  # Save total result 

  output.file <- paste0(projectname, '_MEDIPS_Sig_Gain.txt') 

  write.table(mr.edgeR.s.gain,file=output.file, sep='\t', quote=FALSE, row.names=FALSE) 

  # Merge adjacent windows 

  mr.edgeR.s.gain.m <- MEDIPS.mergeFrames(frames = mr.edgeR.s.gain, distance = 1) 

  if(nrow(mr.edgeR.s.gain.m) > 0) 

  { 

   # Save total result 

   output.file <- paste0(projectname, '_MEDIPS_Sig_Gain_Mrg.txt') 

   write.table(mr.edgeR.s.gain.m,file=output.file, sep='\t', quote=FALSE, 

row.names=FALSE) 

  } 

 } 

 # Find the rows with edgeR.logFC value < 0 which means Set1 lost 

 mr.edgeR.s.lost <- mr.edgeR.s[which(mr.edgeR.s[, grep("logFC", colnames(mr.edgeR.s))] < 0), 

] 

 if(nrow(mr.edgeR.s.lost) > 0) 

 { 

  output.file <- paste0(projectname, '_MEDIPS_Sig_Lost.txt') 

  write.table(mr.edgeR.s.lost,file=output.file, sep='\t', quote=FALSE, row.names=FALSE) 

  # Merge adjacent windows 
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  mr.edgeR.s.lost.m <- MEDIPS.mergeFrames(frames = mr.edgeR.s.lost, distance = 1) 

  if(nrow(mr.edgeR.s.gain.m) > 0) 

  { 

   output.file <- paste0(projectname, '_MEDIPS_Sig_Lost_Mrg.txt') 

   write.table(mr.edgeR.s.lost.m,file=output.file, sep='\t', quote=FALSE, 

row.names=FALSE) 

  } 

 } 

} 

writeLines("Done") 
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DeSEQ2 Analysis  R Script  

This script was utilized to perform DeSEQ2 analysis within the RNA-seq dataset.  

#First load the proper tools 

library("Rsamtools") 

library(DESeq2) 

library("GenomicFeatures") 

library(GenomicAlignments) 

library("org.Hs.eg.db") 

setwd("~/Desktop/RNA_BAM") 

##Read the sampletable. Using 23 samples.  

sampleTable <- read.csv("sampleTableAD_23.csv") 

##View the loaded table  

sampleTable 

## Build the path to the tophat produced BAM files. 

bamFiles <- file.path("~/Desktop/RNA_BAM/", sampleTable$dirName, 

sampleTable$bamName) 

##View to make sure bamFiles is loaded 

bamFiles 

seqinfo(BamFile(bamFiles[1]))  

##Need to have the hg19_genes.gtf file in our working directory 

hse <-makeTxDbFromGFF("hg19_genes.gtf", format="gtf") 

exonsByGene <- exonsBy(hse, by="gene") 

## Use the function summarizeOverlaps to count reads within the gene 
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## This uses library("GenomicAlignments"); 

se <- summarizeOverlaps(exonsByGene, BamFileList(bamFiles), mode="Union", 

singleEnd=FALSE, ignore.strand=FALSE, fragments=TRUE); 

## The "se" object (summarize experiment) have different component parts. The assay slot 

containts all the counts. 

## You may see  the se object with the command: head(assay(se)).  

head(assay(se)) 

## Now the comand: colData(se) returns: DataFrame with 23 rows and 0 columns 

## Assign sampleTable (containing metadata info) to this object called se 

colData(se) <- DataFrame(sampleTable); 

## The colData slot contains pertinent sample/phenotypic information for the experiment  

## Now Print colData to view. 

colData(se) 

# DataFrame with 23 rows and 7 columns 

# colData(se) 

colnames(se) <- sampleTable$dirName; 

colData(se) 

head(assay(se)) 

#Generating THE DESeqDataSet (dds), column metadata and design formula for differentil gene 

expression 

ddsFull <- DESeqDataSet(se, design= ~treatment); 

## Note: In order to benet from the default settings of the package, you should put the variable of 

interest at the end of the formula and make sure the control level is the first level. 
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ddsFull$treatment 

# [1] CTL CTL CTL CTL CTL CTL CTL CTL CTL CTL CTL CTL AD  AD  AD  AD  AD  AD  

AD  AD  AD  AD  

# Levels: AD CTL 

#As shown above the control level (CTL) it is not the first level, WE NEED TO RELEVEL 

ddsFull$treatment <- relevel(ddsFull$treatment, "CTL"); 

ddsFull$treatment 

# [1] CTL CTL CTL CTL CTL CTL CTL CTL CTL CTL CTL CTL AD  AD  AD  AD  AD  AD  

AD  AD  AD  AD  

# Levels: CTL AD 

## Now we can see that control is the first level 

colData(ddsFull); 

#Running the analysis 

ddsFull <- DESeq(ddsFull); 

## The last command returned a DESeqDataSet object with all the fitted information within it. 

Now we start to 

## generate/extract results and tables 

res 

##Write a results table. "res"  

write.table(res, file= "DGE_ADvsCTL_23_treatment", sep="\t", col.names=TRUE, 

row.names=TRUE); 

#write.table(res, file= "DGE_ADvsCTL_22_rownamesTrue", sep="\t", col.names=TRUE, 

row.names=TRUE) 
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## This rewrote our file, but the column names are one cell off.  

## Rather than adjusting the script, just shift the first row over one column. 

##End of analysis 
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R Script utilized to perform RnBeads Analysis 

This script was utilized to perform RnBeads analysis within the Illumina® 450K Infinium 

BeadChip dataset. 

 

### idat files,the annoation table "sample_annotation_AD23.cvs" and R script file 

"Finalpaperscript.R" are stored on the Kure Cluster. Login was after a succesful VPN 

connection, using my UNC Credentials. The directory where the data is stored is 

/proj/kirklab/users/SJS/RnB/SJS_idat 

#Time to start analysis 

library(RnBeads); 

logger.start(fname=NA); 

num.cores <- 8; 

parallel.isEnabled(); 

parallel.setup(num.cores); 

parallel.isEnabled(); 

## First you have to set up the analysis environment.  

### Define the idat.dir; is the directory where my data is located 

idat.dir <- "/proj/kirklab/users/SJS/RnB/SJS_idat" 

sample.annotation <-"/proj/kirklab/users/SJS/RnB/SJS_idat/1217_EWAS_23.csv" 

###Directory to write output 

analysis.dir <- "/proj/kirklab/users/SJS/RnB/SJS_idat/12171000prbs_EWAS_23"; 

###Directory to write reports 

report.dir <- file.path(analysis.dir, "12171000prbs_EWAS_23"); 
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### running RnBeads 

rnb.options(filtering.sex.chromosomes.removal=TRUE, identifiers.column="Sample_ID", 

differential.comparison.columns = "Sample_Group", exploratory.clustering.top.sites=1000, 

differential.site.test.method="refFreeEWAS", export.to.ewasher=TRUE, 

covariate.adjustment.columns = c("Age", "Sex")); 

rnb.run.analysis(dir.reports=report.dir, sample.sheet=sample.annotation, data.dir=idat.dir, 

data.type="infinium.idat.dir") 

 

#### In the server, and using AD23_idat as the working directory I ran: 

#### bsub -q week -n 4 -R"span[hosts=1]" -o 1217_1000prbs_ewas_23.lsfout Rscript 

1217_1000prbs_EWAS_23.R 

##End of analysis script  
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