
cancers

Review

The Enigmatic Protein Kinase C-eta

Alakananda Basu

Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center,
Fort Worth, TX 76107, USA; Alakananda.basu@unthsc.edu; Tel.: +1-817-735-2487

Received: 17 January 2019; Accepted: 10 February 2019; Published: 13 February 2019
����������
�������

Abstract: Protein kinase C (PKC), a multi-gene family, plays critical roles in signal transduction and
cell regulation. Protein kinase C-eta (PKCη) is a unique member of the PKC family since its regulation
is distinct from other PKC isozymes. PKCηwas shown to regulate cell proliferation, differentiation
and cell death. It was also shown to contribute to chemoresistance in several cancers. PKCη has been
associated with several cancers, including renal cell carcinoma, glioblastoma, breast cancer, non-small
cell lung cancer, and acute myeloid leukemia. However, mice lacking PKCηwere more susceptible
to tumor formation in a two-stage carcinogenesis model, and it is downregulated in hepatocellular
carcinoma. Thus, the role of PKCη in cancer remains controversial. The purpose of this review article
is to discuss how PKCη regulates various cellular processes that may contribute to its contrasting
roles in cancer.

Keywords: protein kinase C; PKCη; cell proliferation; differentiation; senescence; apoptosis;
drug resistance; tumor promotion; tumor suppression

1. Introduction

Intricate regulation of cellular signaling systems is critical for the proper functioning of cells.
Consequently, a deregulation in signal transduction pathways can lead to many human diseases.
Protein kinase C (PKC), a family of serine/threonine protein kinases, plays critical roles in signal
transduction and cell regulation [1]. The identification of PKC as a receptor for tumor-promoting
phorbol esters, which are potent activators of PKC and can substitute for the physiologic stimulator
diacylglycerol (DAG) established a link between PKC and cancer [2].

PKC constitutes a multi-gene family that could be categorized into three groups based on their
structural variations and biochemical properties [3]. The classical or conventional (c) PKCs (α, βI,
βII, γ) require Ca2+ and DAG/phorbol esters for their activities. The novel (n) (δ, ε, η, θ) PKCs are
insensitive to Ca2+ but respond to DAG/phorbol esters. The atypical (a) PKCs (ξ, ι) are insensitive
to both Ca2+ and DAG/phorbol esters. While the physiological stimulator DAG causes transient
activation of conventional and novel PKCs, the tumor-promoting phorbol esters cause persistent
activation [3]. Activation of PKCs induces their translocation to the membrane followed by their
degradation or downregulation [4].

The regulation of PKCη, a member of the novel PKC family, is unique [3]. Although PKCη is
most closely related to PKCε [5,6], there are variations in the lipid-binding site [7]. It is the only
PKC that is activated by cholesterol sulfate and sulfatide [8]. It is also resistant to translocation and
downregulation when stimulated with phorbol esters or cholesterol sulfate [9,10]. In fact, we and
others have shown that PKCη is upregulated by the tumor-promoting phorbol esters [11–14] as well as
several structurally and functionally distinct PKC activators [13].

The expression of PKCη is also unique compared to other PKC isozymes [15,16]. It was isolated
from cDNA libraries of mouse epidermis [5] and human keratinocytes [15]. PKCηmRNA was most
abundant in lung tissues and was also detected in skin and heart tissues [15]. Contrary to other PKC
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isozymes, the expression of PKCη in the brain was low [15,16]. It was shown to be predominantly
expressed in the epidermis of mouse skin and epithelia of the digestive and respiratory tracts, including
the tongue, esophagus, forestomach, glandular stomach, intestine, colon, trachea and, bronchus [16].

PKCη plays critical roles in cell proliferation, differentiation and cell death, as seen in
Figure 1 [3,8,17]. There are, however, controversies regarding its role in tumor promotion versus
tumor suppression. The present review article summarizes how PKCη regulates various cellular
processes that may impact on its contrasting roles in cancer.

Cancers 2019, 11, x 2 of 12 

 

expressed in the epidermis of mouse skin and epithelia of the digestive and respiratory tracts, 
including the tongue, esophagus, forestomach, glandular stomach, intestine, colon, trachea and, 
bronchus [16]. 

PKCη plays critical roles in cell proliferation, differentiation and cell death, as seen in Figure 1 
[3,8,17]. There are, however, controversies regarding its role in tumor promotion versus tumor 
suppression. The present review article summarizes how PKCη regulates various cellular processes 
that may impact on its contrasting roles in cancer. 

 
Figure 1. Various functions of protein kinase C-eta (PKCη). 

2. Regulation of Cell Proliferation 

The most consistent function of PKCη is its ability to regulate cell cycle progression. The cell 
cycle is regulated primarily by the tumor suppressor protein Rb and cyclin-dependent kinases (CDK). 
While phosphorylation and inactivation of Rb by CDKs is needed to allow cell cycle progression, the 
inhibition of Rb phosphorylation by CDK inhibitors, such as p16, p21 and p27 causes cell cycle arrest 
[18]. 

Interestingly, both activation and inhibition of PKCη have been reported to cause cell cycle arrest 
(Table 1). Livneh et al. first reported that ectopic expression of PKCη in NIH3T3 cells inhibits Rb 
phosphorylation and induces CDK inhibitors p21 and p27, causing cell cycle arrest [19]. 
Overexpression of PKCη also inhibited cell growth in keratinocytes but in this study, PKCη 
overexpression had no effect on cell growth in either human or mouse fibroblasts [20]. On the other 
hand, Nomoto et al. showed that overexpression of PKCη in NIH3T3 cells induced anchorage-
independent growth [21]. The reason for the distinct effects of PKCη overexpression on cell growth 
in NIH3T3 fibroblasts is not clear except different methods were used to monitor fibroblast cell 
growth. For example, while Livneh et al. [19] examined how PKCη affects cell cycle progression by 
analyzing different phases of the cell cycle by flow cytometric analysis, Ohba et al. [20] monitored 
cell growth by MTT assay, and Nomoto et al. [21] compared the colony forming ability of NIH3T3 
cells transfected with either PKCη or a control vector in soft agar. 

Kashiwagi et al. provided a mechanistic explanation that association of PKCη with cyclin 
E/Cdk2/p21 complex causes phosphorylation of p21 at Ser146 site and dephosphorylation of Thr160 
of Cdk2 resulting in inhibition of Cdk2 activity and G1 arrest in keratinocytes [8,22]. Subsequently, 
Livneh and co-workers confirmed that PKCη also forms complexes with cyclin E/Cdk2 in NIH3T3 
and MCF-7 cells, and this complex formation was most prominent in serum-starved cells and could 
be visualized in the perinuclear region [23]. However, PKCη overexpression had opposite effects on 
cell growth in NIH3T3 versus MCF-7 cells. In contrast to NIH3T3 cells where PKCη overexpression 
was shown to inhibit cell growth [19], induced expression of PKCη in MCF-7 cells promoted cell 
growth [24]. Overexpression of PKCη caused an increase in both p21 and p27 in NIH3T3 cells [19] 
but p27 was not altered in MCF-7 cells [24]. Thus, an increase in p27 may be required for cell growth 
inhibition in MCF-7 cells. Consistent with this notion, we recently observed that knockdown of PKCη 
decreased clonogenic survival of breast cancer MCF-7 and T47D cells and this was associated with 
an increase in p27 [25]. Hara et al. showed that p27 mRNA was downregulated in PKCη-null 
keratinocytes grown in 3D organotypic culture [26]. While an increase in p27 was associated with cell 
growth inhibition in both keratinocytes [26] and breast cancer cells [25], depletion of PKCη caused a 
decrease in p27 in keratinocytes [26] but an increase in p27 in breast cancer cells [25]. It is not clear 

Senescence

PKCηTumor suppression Tumor promotion

Cell cycle arrest

Differentiation

Cell proliferation

Drug resistance

Figure 1. Various functions of protein kinase C-eta (PKCη).

2. Regulation of Cell Proliferation

The most consistent function of PKCη is its ability to regulate cell cycle progression. The cell
cycle is regulated primarily by the tumor suppressor protein Rb and cyclin-dependent kinases (CDK).
While phosphorylation and inactivation of Rb by CDKs is needed to allow cell cycle progression,
the inhibition of Rb phosphorylation by CDK inhibitors, such as p16, p21 and p27 causes cell cycle
arrest [18].

Interestingly, both activation and inhibition of PKCη have been reported to cause cell cycle arrest
(Table 1). Livneh et al. first reported that ectopic expression of PKCη in NIH3T3 cells inhibits Rb
phosphorylation and induces CDK inhibitors p21 and p27, causing cell cycle arrest [19]. Overexpression
of PKCη also inhibited cell growth in keratinocytes but in this study, PKCη overexpression had no effect
on cell growth in either human or mouse fibroblasts [20]. On the other hand, Nomoto et al. showed
that overexpression of PKCη in NIH3T3 cells induced anchorage-independent growth [21]. The reason
for the distinct effects of PKCη overexpression on cell growth in NIH3T3 fibroblasts is not clear except
different methods were used to monitor fibroblast cell growth. For example, while Livneh et al. [19]
examined how PKCη affects cell cycle progression by analyzing different phases of the cell cycle by
flow cytometric analysis, Ohba et al. [20] monitored cell growth by MTT assay, and Nomoto et al. [21]
compared the colony forming ability of NIH3T3 cells transfected with either PKCη or a control vector
in soft agar.

Kashiwagi et al. provided a mechanistic explanation that association of PKCη with cyclin
E/Cdk2/p21 complex causes phosphorylation of p21 at Ser146 site and dephosphorylation of Thr160
of Cdk2 resulting in inhibition of Cdk2 activity and G1 arrest in keratinocytes [8,22]. Subsequently,
Livneh and co-workers confirmed that PKCη also forms complexes with cyclin E/Cdk2 in NIH3T3
and MCF-7 cells, and this complex formation was most prominent in serum-starved cells and could
be visualized in the perinuclear region [23]. However, PKCη overexpression had opposite effects on
cell growth in NIH3T3 versus MCF-7 cells. In contrast to NIH3T3 cells where PKCη overexpression
was shown to inhibit cell growth [19], induced expression of PKCη in MCF-7 cells promoted cell
growth [24]. Overexpression of PKCη caused an increase in both p21 and p27 in NIH3T3 cells [19]
but p27 was not altered in MCF-7 cells [24]. Thus, an increase in p27 may be required for cell growth
inhibition in MCF-7 cells. Consistent with this notion, we recently observed that knockdown of
PKCη decreased clonogenic survival of breast cancer MCF-7 and T47D cells and this was associated
with an increase in p27 [25]. Hara et al. showed that p27 mRNA was downregulated in PKCη-null
keratinocytes grown in 3D organotypic culture [26]. While an increase in p27 was associated with cell
growth inhibition in both keratinocytes [26] and breast cancer cells [25], depletion of PKCη caused a
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decrease in p27 in keratinocytes [26] but an increase in p27 in breast cancer cells [25]. It is not clear why
PKCη had opposite effects on p27 in keratinocytes versus breast cancer cells, however, it reinforces the
notion that PKCη functions in a context-dependent manner.

An increase in PKCη was shown to be responsible for the anti-leukemic effects of IFNα in
chronic myeloid leukemia cells [27]. PKCη overexpression caused cell cycle arrest in normal and
leukemic human myeloid cells but had no effect on erythroid progenitor cells [27]. PKCη was shown
to promote cell proliferation in glioblastoma cells by acting upstream of Akt and mTOR signaling
pathways [28]. Knockdown of PKCη inhibited cell cycle progression in B lymphoma cells, suggesting
a growth-promoting effect of PKCη [29]. Thus, the function of PKCη on cell proliferation varies
significantly with cell types (Table 1).
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Table 1. Function of PKCη in different cell/tumor types.

Tissue/Tumor Type Cell Line Expression Phenotype Potential Mechanism Reference

Fibroblasts NIH3T3 WT-PKCη Cell cycle arrest, adipogenesis ↑ p21, 27 & cyclin E; ↓ Rb phosphorylation [19]

NIH3T3 WT-PKCη Anchorage-independent growth [21]

NIH3T3 & NHF WT-PKCη No effect on cell growth [20]

Keratinocytes NHK WT-PKCη Growth arrest, terminal differentiation ↑ p21 Phosphorylation; ↓ Cdk2, ↑ TGase 1 [20,22]

NHK WT-PKCη Differentiation ↑ Loricrin [30]

NHEK WT-PKCη Differentiation Bidning and activation of RalA [31]

Mouse keratinocytes WT-PKCη Growth arrest, differentiation ↓ EGFR, ↑Fyn activity [32]

PKCη-null Delayed growth arrest & terminal differentiation ↑ JNK/cJun, ↓ p27 [26]

NHK DN-PKCη Inrease in UVB-induced apoptosis ↓ UV-induced p38 MAPK activity [33]

Adenoid cystic carcinoma ACC-2 & ACC-M WT-PKCη Suppressed cisplatin-induced apoptosis ↓ p53/p21 [34]

Breast cancer MCF-7 WT-PKCη Increase in cell growth ↑ cyclin D, -E and p21 [24]

MCF-7, T47D PKCη siRNA Decreased clonogenic survival, induced senescence ↑ p27 [25]

MCF-7 PKCη shRNA Decreased H2O2 and etoposide-induced senescence ↓ p21, p27 & IL-6; ↑ IL-8 [35]

MCF-7 WT-PKCη Protects against TNF-induced apoptosis [36]

MCF-7 WT-PKCη Protects against UVC- and CPT-induced apoptosis ↓ JNK activity [37]

MCF-7 WT-PKCη Protects against CPT-induced apoptosis ↑ NF-κB activity [38]

Glioblastoma U-251 GBM PKCη-KR Decreased cell proliferation ↓ Akt, mTOR activity [28]

U-1242 MG WT-PKCη Icreased cell proliferation ↑ ERK/Elk-1 activity [39]

U-1242 MG WT-PKCη Decrease in UV- and Υ irradiation-induced apoptosis [40]

U-251 MG PKCη-antisense Sensitized to UV- and Υ irradiation-induced apoptosis [40]

Leukemia CML-derived KT1 Peptide inhibitor Suppression of IFN-dependent cell cycle arrest [27]

CD34+ progenitor PKCη siRNA Increase in clonogenic survival [27]

CD34+ progenitor CA-PKCη Inhibition of cell growth, no effect on apoptosis [27]

CML K562 WT-PKCη IM resistance ↑ Raf/MEK/ERK signaling and CRAF [41]

CML stem cells PKCη shRNA Sensitized to IM [41]

Lymphoma IM-9, EBV+ B cells PKCη siRNA Cell cycle arrest ↑ TAp73, p21, p38 MAPK; ↓ Cdks [29]

IM9 PKCη siRNA Sensitized to BTZ and SRF [29]

L428 PKCη shRNA Sensitized to doxorubicin- and CPT-induced apoptosis [42]

Lung cancer A549 PKCη-antisense Increased vincristine and paclitaxel-induced apoptosis [43]

Prostate cancer PC3 PKCη-antisense Increased TRAIL-induced apoptosis [44]

Mesenchymal stem cells hMSC PKCη-C2 chondrogenic differentiation Increase in collagen type II [45]
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3. Regulation of Differentiation

Most of the earlier studies associated growth inhibitory effects of PKCη with its ability to trigger
differentiation partly because PKCη was most abundant in epithelial tissues [46], was expressed
during epidermal differentiation [47] and was shown to be localized in differentiating or differentiated
epithelial cells [16]. Moreover, cholesterol sulfate, a metabolite of cholesterol generated during
squamous differentiation caused marked stimulation of PKCη activity [48]. PKCη levels were increased
both at the soluble and particulate fractions of primary mouse keratinocytes during calcium-induced
differentiation [49].

Several studies investigated potential mechanisms by which PKCη triggers keratinocyte
differentiation. Ohba et al. [20] demonstrated that overexpression of PKCη in human and mouse
keratinocytes but not in fibroblasts enhanced the expression and activity of transglutaminase 1, a key
enzyme involved in squamous cell differentiation. PKCη was shown to associate with and activate
the Src kinase family member Fyn, which is required for normal keratinocyte differentiation [32].
Overexpression of Fyn enhanced the expression of CDK inhibitors p21 and p27, induced the
differentiation marker transglutaminase, and suppressed the growth of keratinocytes but had no effect
in dermal fibroblasts [32]. These results provided an explanation why PKCη induced differentiation
in keratinocytes but not in fibroblasts. PKCη also increased JunD-mediated transcription of loricrin,
which is expressed at the late stage of keratinocyte differentiation [30]. The small G protein RalA was
shown to interact with PKCη resulting in the activation of RalA and the induction of keratinocyte
differentiation [31]. Hara et al. [26] demonstrated that growth arrest and terminal differentiation were
delayed in PKCη-null keratinocytes and this was associated with downregulation of p27 mRNA via
c-Jun N-terminal kinase (JNK) signaling. Re-expression of PKCη or suppression of JNK/c-Jun signaling
caused upregulation of p27 mRNA resulting in cell cycle arrest and terminal differentiation [26].
Overexpression of the C2 domain of PKCη increased the expression of collagen type II, and led to
chondrogenic differentiation in mesenchymal stem cells [45]. Thus, an association between inhibition
of cell proliferation and differentiation was established.

4. Regulation of Apoptosis

Apoptosis is a physiologic form of cell death required to maintain tissue homeostasis. Lack of
cell death by apoptosis can lead to cancer. In addition, since many cancer chemotherapeutic drugs
kill cancer cells by inducing apoptosis, a defect in apoptotic signaling pathways can contribute to
chemoresistance. There are two major pathways of cell death: the extrinsic or receptor-initiated
pathway and the intrinsic or mitochondrial pathway. The extrinsic pathway is triggered by binding of
ligands to the tumor necrosis factor-α (TNF) receptor superfamily, whereas cytotoxic chemotherapeutic
drugs primarily utilize the intrinsic pathway. While activation of caspases induces apoptosis, pro- and
anti-apoptotic Bcl-2 family members regulate apoptosis.

We observed that several different PKC activators protected against TNF-induced apoptosis
whereas the PKC-specific inhibitor bisindolylmaleimide II enhanced apoptosis in breast cancer MCF-7
cells [11]. Since PKCη is the only PKC isozyme upregulated by PKC activators and downregulated
by the PKC inhibitor bisindolylmaleimide II, this study implicated PKCη in protecting against
TNF-induced apoptosis [4]. Beck et al. showed that there was a correlation between the upregulation of
multiple drug resistance-associated genes and PKCη expression in specimens derived from sixty-four
primary breast cancer patients, implicating PKCη in anticancer drug resistance [50]. While these
results are correlative, we showed that ectopic expression of PKCη in MCF-7 cells protected against
TNF-induced apoptosis [36]. Subsequently, it was shown that PKCη protects against apoptosis induced
by UV and gamma irradiation in glioblastoma cell lines [40]. Downregulation of PKCη by anti-sense
oligonucleotides (ODN) enhanced vincristine- and paclitaxel-induced apoptosis in A549 lung cancer
cells [43] and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in prostate cancer PC3
cells [44]. PKCη levels were higher in Hodgkin’s lymphoma (HL)-derived L428 cells that are resistant
to doxorubicin and camptothecin (CPT) compared to drug-sensitive KMH2 cells, and knockdown
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of PKCη by siRNA in L428 cells sensitized them to these drugs [42]. In addition, PKCη suppressed
and shR-PKCη promoted cisplatin-induced apoptosis in adenoid cystic carcinoma (ACC) cells [34].
These results suggest that PKCηmay confer resistance to anticancer therapy.

Several studies explored the mechanisms by which PKCη regulates apoptosis. Overexpression of
wild-type PKCη inhibited and dominant-negative PKCη enhanced UVB-induced apoptosis in normal
human keratinocytes (NHK) [33]. UV-induced activation of p38 MAP kinase suppressed caspase-3
activity in NHK, and this was blocked by dominant-negative PKCη, suggesting that PKCη negatively
regulates UV-induced apoptosis in NHK cells via the p38 MAP kinase pathway [33]. In MCF-7 breast
cancer cells, PKCη was shown to protect against DNA damaging agents, such as UVC irradiation and
anticancer drug CPT by suppressing JNK activity [37]. PKCη also protected against CPT via activation
of NF-κB, leading to the induction of anti-apoptotic Bcl-2 in MCF-7 cells [38].

Akt, mTOR and mitogen-activated protein kinase (MAPK) pathways are known to promote cell
survival. There are, however, controversies regarding how PKCη regulates the Akt signaling pathway.
While Aeder et al. reported that PKCη activates both Akt and mTOR pathways in glioblastoma
cells [28], Shahaf et al. reported that PKCη negatively regulates Akt in MCF-7 cells [51]. In the latter
study, Akt activation was monitored in response to IGF-1 or insulin stimulation [51].

Development of resistance to the BCR-ABL inhibitor imatinib mesylate (IM) is a significant
problem in the treatment of chronic myelogenous leukemia (CML). Upregulation of PRKCH, the gene
encoding PKCη, was identified as one mechanism contributing to IM resistance independent of
any mutation in BCR-ABL [41]. PRKCH was elevated in IM-resistant CML patient samples and
CML stem cells [41]. The mechanism by which PKCη contributed to IM resistance involved
activation of the RAF/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated
kinase (ERK) signaling via phosphorylation/activation of CRAF [41]. We have recently shown that
knockdown of PKCη in breast cancer cells led to the downregulation of the anti-apoptotic Bcl-2
family protein Mcl-1 via the ubiquitin proteasome-mediated pathway [52]. Knockdown of PKCη
inhibited ERK1/2 phosphorylation but knockdown of ERK1, but not ERK2, decreased Mcl-1 levels
in MCF-7 cells. Moreover, overexpression of ERK1 rescued the effect of PKCη knockdown on Mcl-1
downregulation [52]. These results suggest that PKCη functions upstream of ERK1 in MCF-7 breast
cancer cells.

5. Regulation of Senescence

Cellular senescence is defined as a permanent arrest of proliferative cells that are metabolically
active [53]. The consequences of senescence could be beneficial or detrimental depending on the
cellular context, the nature of the stimulus and the state of senescence [54–56]. Senescence can cause
tumor suppression by inducing permanent cell cycle arrest and by recruiting immune systems to clear
senescent cells [57,58]. However, senescent cells can also contribute to tumor progression and relapse.
Senescence-associated secretory phenotype (SASP), which is associated with the secretion of growth
factors, pro-inflammatory cytokines, chemokines, and matrix remodeling enzymes, could facilitate
tumor growth under certain cellular contexts [57,59].

Zurgil et al. reported that PKCη promotes senescence in MCF-7 breast cancer cells in response
to oxidative stress and etoposide-induced DNA damage [35]. In contrast, we found that knockdown
of PKCη induced senescence in breast cancer MCF-7 and T47D cells [25]. The apparent discordant
results could be partly explained by the differences in experimental design. In the study by Zurgil
et al., high concentrations of H2O2 (150 µM) or etoposide (400 µM) caused a substantial increase in
senescence, which was attenuated by PKCη knockdown [35]. In fact, knockdown of PKCη by itself
caused a modest but significant increase in cellular senescence [35], and this was consistent with our
results [25]. shRNA-mediated knockdown of PKCη had little effect on p27 and p21 but attenuated the
increase in p21 and p27 by etoposide [35]. In addition, PKCη knockdown increased IL-6 secretion but
suppressed IL-8 secretion [35]. It is not clear why PKCη had opposite effects on these pro-inflammatory
cytokines both of which are associated with SASP. We found that silencing of PKCη by siRNA caused
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a substantial increase in p27 in both MCF-7 and T47D cells [25]. Moreover, silencing of p27 attenuated
senescence induced by PKCη knockdown [25], suggesting upregulation of p27 as one mechanism
contributing to the induction of senescence caused by PKCη deficiency.

6. Tumor Suppression by PKCη

Canzian et al. first reported that PKCη is decreased by 5- to 10-fold in murine lung tumors
compared to normal murine lung [60], suggesting that a decrease in PKCη may be associated with
lung carcinogenesis. A clue to the tumor suppressive role of PKCη came from the observation that
cholesterol sulfate, which acts as a second messenger of PKCη and induced squamous differentiation,
inhibited skin carcinogenesis when applied prior to tumor-promoting phorbol ester TPA. This suggests
that PKCη inhibits the promotional phase of skin carcinogenesis [61]. Further evidence regarding
the tumor suppressive role of PKCη came from the observation that PKCη-knockout mice were more
sensitive to tumor formation in a two-stage carcinogenesis model compared to wild-type mice [62].
The ability of PKCη to inhibit tumor promotion was associated with its ability to induce differentiation
in keratinocytes [8].

The possible tumor suppressive role of PKCηwas also investigated by analyzing human tissue
samples. PKCη mRNA was significantly lower in colon tumors compared to normal mucosa
samples [63]. PKCη expression was decreased in locally invasive breast tumor tissues compared
to the surrounding normal epithelium, suggesting that PKCη is decreased during later stages of
transformation [64]. Overexpression of PKCη was shown to exert anti-leukemic responses in chronic
myeloid leukemia cells by inhibiting cell cycle progression of myeloid progenitor growth via type 1
interferon receptor [27]. PKCη expression was decreased in 82% of hepatocellular carcinoma (HCC)
tissues compared to adjacent normal tissues and was associated with poorer long-term survival of
HCC patients [65].

7. Tumor Promotion by PKCη

Overexpression of PKCη in NIH3T3 cells was shown to induce anchorage-independent
growth [21], suggesting that PKCηmay also contribute to tumor progression. A correlation between
PKCη expression and tumor progression was noted in renal cell carcinoma (RCC) [66]. PKCη was
shown to promote proliferation of malignant astrocytoma and glioblastoma but not non-malignant
astrocytes [28,39]. PKCη levels were high in EBV-transformed B cells and EBV-positive B cells, such as
Raji, Daudi and IM-9 cells but not in normal B cells [29]. We have shown that PKCη levels were
increased with the aggressiveness of breast cancer in the progressive MCF-10A series, and knockdown
of PKCη attenuated breast cancer cell growth [25,67]. Increased PKCη expression was associated with
poor prognosis in non-small cell lung cancer patients [68]. It has been reported that the microRNA
(miRNA) miR-24-3p functions as a tumor suppressor in human lacrimal adenoid cystic carcinoma
(LACC) via the p53/p21 pathway by downregulating PKCη, and overexpression of PKCη rescued the
tumor suppressive function of miR-24-3p by downregulating p53 [34]. PKCη levels were higher in
LACC tissues compared to adjacent non-tumor tissues and overexpression of miR-24-3p decreased
PKCηmRNA and protein levels [34]. PKCη contributed to the malignant phenotype of ACC cells by
enhancing cell proliferation, migration and invasion and by inhibiting apoptosis [34]. The PRKCH
gene was highly expressed in hematopoietic stem cells (HSC) and leukemia stem cells (LSC) [69].
PKCη expression was also associated with poor prognosis in acute myeloid leukemia (AML) patients,
although it was not required for the development of AML [69].

8. Conclusions

The function of PKCη varies significantly with cell types (Table 1). Several laboratories showed
that PKCη induced terminal differentiation in keratinocytes [8,20,26,31,32] and PKCη-null mice were
more susceptible to tumor formation [61,62]. In contrast, there were controversies regarding the
role of PKCη in NIH3T3 fibroblasts [19–21]. The transcriptional regulation of PKCη [70] as well
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as the regulation of downstream signaling of PKCη [32] appear to be distinct in keratinocytes
versus fibroblasts.

Caution should be exercised in interpreting the function of PKCη in various systems. Some of the
studies that implicated PKCη in tumor promotion versus tumor suppression are correlative, and the
number of tumor samples analyzed to definitively assess the function of PKCηmay not be adequate.
In studies involving genetic manipulation of PKCη, it is important to consider the methods used to
manipulate PKCη, the selection pressure and the extent of PKCη knockdown/overexpression, all of
which may affect the outcome of the results. The specificity of the antibodies used to detect total and
phosphorylated PKCη should also be carefully determined.

It is also important to recognize the complexity of the cellular signaling systems. For example,
a decrease in cell proliferation may also promote epithelial-to-mesenchymal transition and is associated
with increased malignancy [71]. This may explain why overexpression of PKCη inhibited cell
growth [19] but enhanced anchorage-independent growth [21] in NIH3T3 cells. Similarly, a decrease
in cell growth is often associated with an increase in cell death by apoptosis. However, inhibition
of cell proliferation may also restrict the ability of conventional chemotherapeutic drugs that target
actively proliferating cells to kill cancer cells. This is consistent with our observation that the induction
of senescence caused by PKCη knockdown was associated with a decrease in doxorubicin-induced
apoptosis [25]. In addition, while overexpression of PKCη inhibited cell growth in NHK [8,20,26,31,32],
PKCη overexpression inhibited UVB-induced apoptosis in these cells [33].

PKCη interacts with several signaling pathways and the status of these pathways will influence
the function of PKCη. The ability of PKCη to regulate cellular senescence may also contribute to its
contrasting roles in cancer since depending on the cellular context, cellular senescence may promote or
suppress cancer. Thus, a thorough understanding of how PKCη regulates various cellular processes is
essential prior to exploiting this enigmatic PKC family member for cancer therapy.
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Abbreviations

Abbrev. Definition
ACC adenoid cystic carcinoma
AML acute myelocytic leukemia
Bcl-2 B-cell lymphoma 2
Btz bortezomib
CDK cyclin-dependent kinase
CML chronic myelogenous leukemia
CPT camptothecin
DAG diacylglycerol
DN dominant-negative
EGFR epidermal growth factor receptor
ERK extracellular signal-regulated kinase
GBM glioblastoma multiforme
HSC hematopoietic stem cells
IFN Interferon-α
IM imatinib mesylate
JNK c-Jun N-terminal kinase
LSC leukemia stem cells
MAPK mitogen-activated protein kinase
Mcl-1 myeloid cell leukemia 1
mTOR mechanistic target of rapamycin
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
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NF-κB nuclear factor-κB
NHEK normal human epidermal keratinocytes
NHF normal human fibroblasts
NHK normal human keratinocytes
ODN oligonucleotide
PKC protein kinase C
SASP senescence-associated secretory phenotype
SRF Sorafenib
TNF tumor necrosis factor-α
TGase 1 transglutaminase 1
TPA 12-O-tetradecanoylphorbol-13-acetate
TRAIL TNF-related apoptosis-inducing ligand
WT wild-type
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