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Abstract

Many native populations in South America have been severely impacted by two relatively

recent historical events, the Inca and the Spanish conquest. However decisive these disrup-

tive events may have been, the populations and their gene pools have been shaped

markedly also by the history prior to the conquests. This study focuses mainly on the Cha-

chapoya peoples that inhabit the montane forests on the eastern slopes of the northern

Peruvian Andes, but also includes three distinct neighboring populations (the Jı́varo, the

Huancas and the Cajamarca). By assessing mitochondrial, Y-chromosomal and autosomal

diversity in the region, we explore questions that have emerged from archaeological and his-

torical studies of the regional culture (s). These studies have shown, among others, that

Chachapoyas was a crossroads for Coast-Andes-Amazon interactions since very early

times. In this study, we examine the following questions: 1) was there pre-Hispanic genetic

population substructure in the Chachapoyas sample? 2) did the Spanish conquest cause a

more severe population decline on Chachapoyan males than on females? 3) can we detect

different patterns of European gene flow in the Chachapoyas region? and, 4) did the demo-

graphic history in the Chachapoyas resemble the one from the Andean area? Despite cul-

tural differences within the Chachapoyas region as shown by archaeological and

ethnohistorical research, genetic markers show no significant evidence for past or current

population substructure, although an Amazonian gene flow dynamic in the northern part of
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this territory is suggested. The data also indicates a bottleneck c. 25 generations ago that

was more severe among males than females, as well as divergent population histories for

populations in the Andean and Amazonian regions. In line with previous studies, we observe

high genetic diversity in the Chachapoyas, despite the documented dramatic population

declines. The diverse topography and great biodiversity of the northeastern Peruvian mon-

tane forests are potential contributing agents in shaping and maintaining the high genetic

diversity in the Chachapoyas region.

Introduction

Chachapoya culture developed in a singular and biodiverse zone between the Andean moun-

tain range and the Amazonian rainforests from northeastern Peru, and fluoresced around 900

CE (Common Era). Populations thrived in the area until conquered by the Incas (around 1475

CE) and Spaniards (first half of 16th Century). Since the Chachapoyas region has been an

important area even before the Late intermediate Period (1000–1475 CE), it has been a target

of various archaeological, ethnohistoric, and genetic studies. Previous genetic assessments

have demonstrated that the Chachapoyas region today harbors, unlike many other regions

inhabited by Native South Americans, high levels of genetic diversity [1, 2], and they also have

succeeded in placing Chachapoya populations on the genetic map of South America. However,

several questions arising from the fields of archaeology and ethnohistory, remain to be

explored with genetic data. These focus on the period of Inca and Spanish conquests in the

15th and 16th century and include a long-standing question regarding population substructure

within Chachapoyas, as well as the sex-specific demographic impacts of the conquests. At a

somewhat broader scale, we consider the issue of Chachapoyan affinities to human groups in

the highland Andes and in lowland Amazonia.

Internal population substructure is of interest as the Chachapoya most likely have not been

a homogeneous culture or single ethnic group. In fact, the name “Chachapoyas” was originally

given by the Incas to denote an administrational province that held an aggregate of ethnic

groups, and the name was later retained by the Spanish [3–5]. Similarly, in archaeology, Cha-

chapoyas is still used as a shorthand to refer collectively to the several culturally diverse groups

that specialists distinguish as inhabitants of this region before the Inca and Spanish conquests

[6]. It is however unclear, whether the cultural differences identified also signify restricted

gene flow and genetic segregation of these subgroups.

As in many other parts of South America, the Incan and European conquests had a pro-

found demographic impact on the human groups in the Chachapoyas region, especially on

males, who were particularly recruited for state-labor as well as warfare [4, 6, 7]. Around the

years 1450–1475 CE, the Chachapoya territory was annexed as a province within the vast Inca

realm, called Tawantinsuyo. Ethnohistorical studies indicate that after the Inca conquest, Cha-

chapoya people were transferred to 18 different locations across Tawantinsuyo [4, 8, 9] and

various groups of migrants were relocated into the Chachapoyas province from areas includ-

ing Cajamarca, the North Coast, and Xauxa [4]. During the Inca civil war thousands of Cha-

chapoya troops were recruited by Huascar to fight against Atahualpa [4]. Later, during the

early colonial period, Chachapoyan males were also conscripted into the Spanish militia to

fight against the Incas [10] and to explore unconquered Amazonian rainforest territories [4,

10]. European settlers also introduced pathogens that caused a series of recurrent epidemics

that decimated the indigenous populations across Peru [11]. In Chachapoyas region, this
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population decline is reported as dramatic and comparable to the ones experienced in coastal

cities, the ports of entry of European migrants [6, 11].

Following the Spanish conquest, the introduction of European genes created an asymmetric

genomic landscape, with male-mediated gene flow [1] but also different regions within Cha-

chapoyas were likely being differently impacted by this process. In light of this history, the

high native genetic diversity in the Chachapoya region reported today [1, 2] is intriguing.

Here we address the demographic impact in view of the population history outlined above,

using autosomal, mitochondrial and Y-chromosomal marker data produced for four north-

eastern Peruvian groups: Chachapoya, Jı́varo, Huancas and Cajamarca. We examine the

following questions: 1) was there pre-Hispanic genetic population substructure in the Chacha-

poyas sample? 2) did the Spanish conquest cause a more severe population decline on Chacha-

poyan males than on females? 3) can we detect different patterns of European gene flow in the

Chachapoyas region? and 4) did the demographic history in the Chachapoyas resemble the

one from the Andean area?

Materials and methods

This study followed ethical guidelines and standards (Helsinki declaration) and was approved

by Helsinki University Hospital Ethical Committee (Decision #329/13/03/00/13) as previously

described in [1]. Local board permits from Peru were previously obtained (Decision letters: N˚

140-2009-GRAMAZONAS-PR and N˚ 04-2010/GRAMAZONAS-PR). Written informed con-

sents were obtained from all participants. Altogether 246 individuals from three regions were

included in this study: 1) the historical area identified as Chachapoyas, including the enclave

population from the town of Huancas, 2) two Jivaroan (Chicham) populations (Awajún and

Wampı́s) from the Amazonian rainforest, and 3) individuals from the neighboring Andean

region of Cajamarca (The location of study populations can be found on Fig 1 of reference #1).

These samples were genotyped by sequencing entire mitochondrial genomes (N = 172), Y-

chromosomal (N = 190) and autosomal markers (N = 246).

For the analyses of substructure within Chachapoyas, the samples were divided into seven

subgroups: Pomacochas, Chillao, Corobamba, Rodrı́guez de Mendoza, Chachapoya, La Jalca

and Leymebamba. The assignment of individuals into a given subgroup was based on the place

of birth up to the grandparents’ generation and followed the strategy outlined in [1]. Briefly,

individuals from nearby towns and villages were pooled into the same subgroup if there was

documented historical affiliation (colonial and/or modern sources) or if they were united by

archaeologically distinct patterns of material culture.

Genotyping

DNA extractions and Y chromosome short tandem repeat (STR) genotyping have been

described in [1]. Full mitochondrial genomes were sequenced following a protocol described

in [12]. The VCF files obtained from the Illumina MiSeq FGx system were converted into hap-

lotypes using MitoSAVE [13]. Mitochondrial variants were curated manually and verified

independently by three authors (EKG, FW and MS) using Integrative Genomic Viewer (IGV)

software [14] Poly-C stretches at positions 303–315 and 16184–16193 were excluded from sub-

sequent analyses. Sequences were aligned to the revised Cambridge Reference Sequence

(rCRS) [15] using CLUSTAL Omega [16, 17].

For the Y single nucleotide polymorphisms (Y-SNPs) analyses eight multiplex assays were

used: MI and MII [18]; SpecE, SpecI and SpecJ [19]; SpecR [20]; and SpecQ-M346 and

SpecQ-M3 (S1 Table)
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Autosomal genotyping was carried out using the ForenSeq™ DNA Signature Prep Kit

(Verogen; San Diego, Ca., USA) as described elsewhere [21]. Output FASTQ files from the

ForenSeq™ Universal Analysis Software (UAS) pipeline were processed with STRait Razor v2s

[22] to obtain the genotypes.

After data curation and filtering, 164 mitochondrial genomes (GenBank: MN857248–

MN857411), 177 Y-chromosome (new Y-SNPs data) and 241 autosomal (27 short tandem

repeats, STRs, and 94 single nucleotide polymorphisms, SNPs) profiles from four Peruvian

populations (Chachapoyas, Huancas, Jı́varo and Cajamarca) were used in downstream

analyses.

Data analysis

Mitochondrial genomes. Haplogroup composition, basic statistics and genetic distances.
For the analyses, the newly produced mitochondrial genomes were merged with data from [2].

Additionally, data from 78 worldwide reference populations were included (S2 Table).

Haplogroup assignments were obtained from HaploGrep v2.2 based on Phylotree 17 [23,

24]. Haplotypes belonging to non-Native American haplogroups H and U were excluded from

the analyses addressing pre-contact population substructure and past effective population size.

The effect of sample sizes on observed haplogroup frequencies was tested by permutations.

Here, the number of each macro haplogroup observed was contrasted against the distribution

obtained by 100,000 draws of N haplotypes, with N corresponding to the sample size in each

Fig 1. Coding region BSPs. (A) Study populations. (B) Macro-regions Andean (N = 72) and Amazonian (N = 52).

https://doi.org/10.1371/journal.pone.0244497.g001
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subpopulation. In the permutations, the success of drawing a certain haplotype was deter-

mined by its frequency in the modern Peruvian reference population (N = 442).

Summary statistics, e.g. haplotype diversity (h), nucleotide diversity (π), mean number of

pairwise differences (MNPD), and pairwise genetic distances (FST) were estimated using Arle-

quin ver. 3.11 [25]. Genetic distances between populations were visualized with multi-dimen-

sional scaling (MDS) plots built in RStudio version 3.5.3 with the package cmdscale.
Bayesian Skyline Plots (BSPs). Maternal demographic histories were explored with BSPs

constructed using mitochondrial coding region data (nucleotides 577–16023) at three levels: 1)

local (Chachapoyan subgroups), 2) regional (Chachapoyas, Huancas, Jivaro, Cajamarca), 3)

subcontinental (Andean and Amazonian macro-regions). The best-fit substitution model for

each population was determined with bModelTest [26]; the substitution model used for each

population are described in S3 Table. BSPs were constructed using BEAST 2 v.2.4.7 [27]

assuming discrete gamma distribution with four categories. As a tree prior, the piecewise-lin-

ear Skyline coalescent model with ten groups was used. The prior normal distribution for

mutation rate was estimated based on six previously published mutation rates for mitochon-

drial coding region [28–33]. The mean mutation rate used was μ = 1.546 x 10−8 ± 3.675 x 10−9

(SD) substitutions/pair/year. For each population, two molecular clocks were tested: strict and

log normal relaxed molecular clock and the best-fit molecular clock was determined with

Akaike information criterion method (AICM) implemented in Tracer [34]. The resulting

clock models used for each population are presented in S3 Table. For each BEAST run, the

Markov chain Monte Carlo (MCMC) length was set to 10,000,000 steps, with the first 10% of

the steps discarded as burn-in and the chain sampled every 1,000 steps. Three independent

runs were performed and combined with LogCombiner (part of BEAST package). Adequate

effective sample sizes (ESS > 200) were checked in Tracer v.1.7.0 [35] for each of the

parameters.

Y-STRs and Y-SNPs. Haplogroup composition, basic statistics and genetic distances. Simi-

lar to the mitochondrial DNA data, our Chachapoya Y-chromosomal dataset was merged with

the data from [2]. In addition, STR data from 88 worldwide (23 STRs) and 79 Native American

(17 STRs) reference populations were included (S2 Table). The Y-haplogroups were deter-

mined based on the Y-SNP data and also estimated based on the Y-STR haplotypes using a

Haplogroup Predictor (http://www.hprg.com/hapest5/). Summary statistics were calculated in

a similar fashion as the mitochondrial data using Arlequin ver.3.11.

Bayesian skyline plots. Demographic histories were assessed by constructing BSPs for the

Chachapoyas pooled, as well as for one Andean and one Amazonian set. The male demo-

graphic history was explored by reconstructing Bayesian skyline plots with BEASTvntr pack-

age [36] implemented in BEAST v2.4.7. The Sainudiin model [37] with computed frequencies

was used, together with the uncorrelated relaxed lognormal clock model. Sample sizes, other

prior distributions and parameters are displayed in S4 Table. Tree calibration was accom-

plished by setting the prior distribution for mutation and the node calibration, and by assum-

ing an evolutionary mutation rate of 8.2 x 10−4 ± 5.7 x 10−4 mutations/locus/generation

calculated based on loci specific estimates presented in [38]. A node calibration approach was

also used. However, as all Peruvian samples included belong to haplogroup Q its node calibra-

tion cannot be used directly. For this reason, an outgroup of six individuals from haplogroup

R (sub-haplogroups R1a1a, R1a2, R1b11, R1b3, R2a and R2; extracted from [39]) were

included in the analysis and the age estimate for a common node P1 was fixed. The P1 nodal

age was set according to the divergence date determined based on the Y-chromosomal

sequence data [39]. We assumed a normal distribution with mean = 1411 generations and

SD = 100. This covered the P1 age obtained in [39] (mean = 35282 years before present (ybp)

and 95% highest posterior density [33662, 36917] ybp), assuming a male generation time of 25
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years. The settings for each BEAST run, the number of runs, and downstream procedures with

LogCombiner and Tracer v.1.7.0, were identical to the ones used for mitochondrial data.

Autosomal STR and SNP data. In case of the autosomal data, the Chachapoyan samples

were allocated to subgroups in a slightly different manner than with the lineage markers. The

Kuelap in Chachapoya, Uchucmarca in Leymebamba and the original Jivaroan sample collec-

tion groups Awajún and Wampı́s were analyzed as separate units. Additionally, 31 reference

populations were used (S2 Table). For five of these populations 121 markers (27 autosomal

STRs and 94 SNPs) were available and for the remaining populations less than 19 autosomal

STRs. Allele frequencies were calculated and tested for statistically significant departures

(p< 0.05) from Hardy-Weinberg Equilibrium (HWE) and Linkage disequilibrium (LD) using

Arlequin ver. 3.11.

Genetic distances and population structure. Pairwise genetic distances (FST) between popula-

tions were calculated in Arlequin ver. 3.11. Genetic substructure and admixture proportions

were calculated at three different hierarchical levels: 1) locally within Chachapoyas, 2) intra-

continentally (Americas) and 3) inter-continentally, using STRUCTURE v 2.3.4 [40–43]. For

the intracontinental analysis, published reference data from 15 populations from the Americas

were incorporated. Due to the limited availability of reference data, the analyses were based on

11 and 15 aSTR loci. For the intercontinental analysis, reference populations from African

Americans (AFA), European descendants in the USA (CAU), Asian Americans (ASN) and

Hispanics (HIS) from [44] were included. Downstream analyses used 27 autosomal STRs and

94 autosomal SNPs.

For the STRUCTURE analyses, the parameter lambda (λ) was estimated for our whole data-

set and the resulting value (λ = 0.5) was fixed in all runs. The parameter alpha (α) was esti-

mated independently for each population with an initial value of one. The admixture model

chosen was correlated alleles and 8–12 iterations were calculated in each run. Convergence in

the hyperparameters such as alpha and F was observed after c. 60,000 steps in both burn-in

and run length. Number of ancestry components, K, was chosen based on two criteria, the esti-

mated log probability of the data (lnP (X|K) [40] and delta K (ΔK) [45]. Cluster permutations

and plotting of successive values of K from 1 to 7 were carried out with CLUMPAK main pipe-

line [46]. An alternative method to explore population substructure was Principal Coordinates

Analyses (PCoA), for which Genalex add-in for Excel [47] and PAST 3.24 [48] were used. In

addition to these methods, Analysis of Molecular Variance (AMOVA) for all marker systems

was also performed in Arlequin ver. 3.11 [25].

Results

Mitochondrial DNA

Haplogroup composition. Among the newly produced data three mitochondrial lineages

previously unreported in Phylotree17 were observed. Roughly 97% of the samples belonged to

Native American haplogroups A2, B2, C1 and D (Table 1). The non-Native American hap-

logroups H and U were only observed in the Chachapoyas set with a frequency of 4.9%. The

most frequent haplogroup is B2 (43.9%), followed by haplogroups C1 (24.4%), D (16.5%) and

A2 (12.2%). In the whole mitochondrial dataset, larger variability of sub-haplogroups is

observed within haplogroups A2 and B2, the former being the most diverse with five different

sub-clades (S5 Table).

Among the seven Chachapoyan subgroups, differences in haplogroup distribution were

apparent, e.g. Chillao lacks haplogroup D, whereas the Rodriguez de Mendoza lacks hap-

logroup A2 (Table 1). In order to assess whether these observations were the result of chance

alone, random sampling procedures were simulated for each study population and in each
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Chachapoyan subgroup. In case of most haplogroups, the number of observations fall inside a

simulated distribution assuming average Peruvian haplogroup frequencies. However, both in

Jı́varo and Pomacochas, haplogroup B2 was significantly more common than expected, as was

haplogroup H in Chillao and Rodriquez de Mendoza. Rodriquez de Mendoza lacked hap-

logroup A2 completely, when one would expect 2–9 observations in a sample of 27 individuals,

and haplogroup D was underrepresented in the Jivaroan sample (S1 Fig).

Summary statistics and genetic distances. Considering the merged datasets (this study

and Barbieri et al. 2017), high levels of genetic diversity (e.g. h, π) were observed in all study

populations (S6 Table) even when the non-Native American haplotypes were excluded from

the analysis. Genetic distances among the Chachapoyan subgroups revealed that Pomacochas

differentiated significantly from all the others (FST� 0.1, p� 0.05; S7 Table) and Rodrı́guez

de Mendoza differentiated from Chachapoya, Chillao and Pomacochas subgroups. The

observed genetic distances increased consistently (by 1–20 percentage points) when haplotypes

belonging to non-Native American haplogroups were excluded. Since the sample sizes of all

Chachapoyan subgroups are relatively small, real affinities cannot be differentiated from the

effects of sampling error. In that sense, only subgroups showing significant differentiation,

such as Pomacochas and Rodrı́guez de Mendoza, were kept independent; while the remaining

were merged into a combined set labeled Chachapoyas (S8 Table).

The Chachapoyas pooled had genetic affinities (non-significant) with the Cajamarca but

remained distant to the Jı́varo and the Huancas. Genetic distances in the context of the Ameri-

cas are summarized in an MDS plot where the clumped Chachapoyas set is positioned near the

centroid. The Pomacochas falls in a group that includes the Amazonian Jı́varo and populations

from Ecuador. The Rodrı́guez de Mendoza set situates instead close to ancient Peruvian popu-

lations (S2 Fig).

Mitochondrial BSPs. The Bayesian Skyline plots based on the mitochondrial coding

region are shown in Fig 1 and S3 Fig. The graphs exhibit a marked population growth in the

distant past, which starts around 500 generations ago and reaches a plateau c. 250 generations

ago. For the pooled Chachapoyas, as well as for all the subgroups, the plots suggest a reduction

of Ne starting at around 125 generations ago (~3 kya) and persisting forward in time. The

observed pattern resembles the one observed for the Andean region, but differs markedly from

Table 1. Absolute and relative (%) mitochondrial haplogroup frequencies for all study populations�.

Population/Haplogroup N Native American European

A2 B2 C1 D H U

Chachapoya 20 5 (25) 6 (30) 3 (15) 5 (25) 1 (5) 0

Chillao 10 3 (30) 3 (30) 3 (30) 0 1(10) 0

Corobamba 9 1 (11.1) 2 (22.2) 4 (44.4) 2 (22.2) 0 0

La Jalca 9 1 (11.1) 5 (55.5) 2 (22.2) 1 (11.1) 0 0

Leymebamba 14 1 (7.1) 4 (28.6) 4 (28.6) 5 (35.7) 0 0

Pomacochas 13 1 (7.7) 10 (76.9) 1 (7.7) 1 (7.7) 0 0

Rodrı́guez de Mendoza 27 0 8 (29.6) 8 (29.6) 8 (29.6) 2 (7.4) 1 (3.7)

Chachapoyas pooled 102 12 (11.8) 38 (37.3) 25 (24.5) 22 (21.6) 4 (3.9) 1 (1)

Jı́varo 42 5 (11.9) 27 (64.3) 9 (21.4) 1 (2.4) 0 0

Huancas 4 1 (25.0) 2 (50) 0 1 (25) 0 0

Cajamarca 16 2 (12.5) 5 (31.3) 6 (37.5) 3 (18.8) 0 0

ALL COMBINED 164 20 (12.2) 72 (43.9) 40 (24.4) 27 (16.5) 4 (2.4) 1 (0.6)

� Figures only from our datasets.

https://doi.org/10.1371/journal.pone.0244497.t001
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the Amazonian one which do not show prominent growth at any stage in the past (Fig 1B).

However, the reduction of Ne around 3 kya appears as a common feature in most study and

reference populations.

Y-STRs and Y-SNPs

Haplogroup composition. Y-STR haplotypes were previously reported in [1]. Consider-

ing FTDNA order and equal priors, the new Y-SNP data revealed 12 differences in the hap-

logroup assignments by the STR haplogroup predictor used (S9 Table). Around 64% of the

haplotypes belonged to Native American haplogroup Q followed by non-Native American

haplogroup R (19.2%). The Chachapoyas pooled set and the Cajamarca have different propor-

tions of non-Native American haplogroups other than R (Table 2). Locally, within Chacha-

poyas, haplogroup Q is found in high frequencies in all subgroups with the exception of

Rodrı́guez de Mendoza where haplogroup R is predominant (41.2%). Overall, haplogroups Q,

J, and R, each with three lineages, are the most diverse in the whole dataset (S10 Table).

Summary statistics and genetic distances. Considering the merged datasets (this study

and Barbieri et al. 2017), all study populations exhibit high levels of diversity (e.g. h, π) when

using Y-STR markers (S11 Table), which is also consistent when excluding the non-Native

American haplotypes. Considering these 23 markers, genetic distances reveal that Pomacochas

differentiated (FST� 0.1, p� 0.05) from most of the other subgroups (S12 Table). After pool-

ing the Chachapoyan subgroups, 17 STRs were used for comparisons in order to include more

populations from the Americas (S12 Table). Here the Chachapoyas had affinities (FST� 0.05,

p<0.05) only with the Huancas and remained distant to both the Jı́varo and the Cajamarca.

The Jivaroan set did not have any affinities with study or reference populations. In the MDS

plot, the Chachapoyas pooled set falls in between Andean and Amazonian clusters very close

to the Huancas. The subgroups Pomacochas and La Jalca are relatively close to each other but

slightly distant to the pooled Chachapoyas. The Jı́varo situates in the periphery of the plot, sim-

ilar to other Amazonian groups, while the Cajamarca falls within an Andean cluster (S4 Fig).

Y-chromosomal BSPs. Considering the full Chachapoyas set and assuming all Y-STRs as

one partition with μ = 8.2 x 10−4 ± 5.7 x 10−4 per generation, a marked population growth is

observed at around the same time as for the mitochondrial data, from 600–200 generations

Table 2. Absolute and relative (%) Y-chromosome haplogroup frequencies for all study populations�.

Population/Haplogroup N Native American Eurasian African

Q G-M201 I-P37.2 J R KL-M9 E-M35

Chachapoyas 24 12 (50.0) 1 (4.2) 1 (4.2) 1 (4.2) 8 (33.3) 0 1 (4.2)

Chillao 14 12 (85.7) 0 0 2 (14.3) 0 0 0

Corobamba 7 6 (85.7) 0 0 1 (14.3) 0 0 0

La Jalca 17 13 (76.5) 0 0 0 4 (23.5) 0 0

Leymebamba 19 8 (42.1) 0 1 (5.3) 5 (26.3) 3 (15.8) 0 2 (10.5)

Pomacochas 22 17 (77.3) 2 (9.1) 0 0 2 (9.1) 0 1 (4.5)

Rodrı́guez de Mendoza 17 2 (11.8) 3 (17.6) 1 (5.9) 3 (17.6) 7 (41.2) 1 (5.9) 0

Chachapoyas pooled 120 70 (58.3) 6 (5.0) 3 (2.5) 12 (10.0) 24 (20.0) 1 (0.8) 4 (3.3)

Jivaro 24 23 (95.8) 0 0 0 1 (4.2) 0 0

Huancas 12 11 (91.7) 0 0 0 1 (8.3) 0 0

Cajamarca 21 9 (43) 2 (9.5) 0 2 (9.5) 8 (38) 0 0

ALL COMBINED 177 113 (63.8) 8 (4.5) 3 (1.7) 14 (7.9) 34 (19.2) 1 (0.6) 4 (2.3)

�Figures only from our datasets.

https://doi.org/10.1371/journal.pone.0244497.t002
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(15–5 kya, assuming a male generation time of 25 years). Population decline for this set starts

at around 200 generations and persists until it reaches its lowest point about 25 generations

ago (c. 625 years ago assuming the mutation rate above) (Fig 2A). This deep Ne contraction of

about 50% since the beginning of the population decline parallels either the time of Inca or

Spanish conquest (22 or 25 years/generation interval, respectively). After this event, there is a

continuous increase of the population size of more than 20% since reaching the lowest point,

which is absent in the BSPs for mitochondrial data. Among the reference sets, the Amazonian

one shows a very modest population increase starting at 800 generations ago (20 kya), which

reaches a maximum height at 585 generations ago (~15 kya). After this, the population size

declines slowly until reaching its lowest point at 110 generations ago (~2.8 kya). Following this

recent population contraction, a rebound inNe similar to the one observed in the Chachapoyas

is detected for the Amazonian set (Fig 2B). The BSP for the Andean region in turn shows two

intervals of population growth. The first one reaching its highest point at 512 generations ago

(12.8 kya) and the second one at 73 generations ago (1.8 kya), after which there is no popula-

tion decline in the recent past.

Autosomal

Summary statistics. All loci were in Hardy-Weinberg equilibrium in all populations with

the exception of locus D1S1656 in the Chachapoyas. Linkage disequilibrium (LD), was

Fig 2. BSP with 21 Y-STRs treated as one partition. (A) For the Chillao, La Jalca and Chachapoyas pooled. (B)

Macro-regions Andean (N = 81) and Amazonian (N = 37).

https://doi.org/10.1371/journal.pone.0244497.g002
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assessed for 27 aSTRs and 94 aSNPs in each study population. After correction for multiple

testing (p< 0.0001), two pairs of loci showed departures from expectations, one in the Cha-

chapoyas (rs13182883–rs338882), and one pair in the Cajamarca (rs6955448–rs917118).

Genetic distances showed affinities (FST < 0.05, p� 0.05) among all study populations and the

Hispanic set (HIS). The Caucasian dataset (CAU) in turn exhibited short genetic distances

(FST� 0.02, p� 0.05) only to the Chachapoyas, the Awajún and the Cajamarca.

Population structure inference. Underlying substructure in the study populations was

investigated hierarchically. At the upper level, ln P (X|K) and ΔK showed four (K = 4) well

defined clusters represented by Africans (AFA), Europeans (CAU), Asians (ASN) and Native

Americans (HIS and study populations) (S5 Fig). When only populations from the Americas

were examined, the clustering showed two major components commonly found among most

admixed populations from the Americas: European and Native American (Fig 3A). Addition-

ally, the analysis showed a third unknown component present in much higher proportion in

three study populations, Chachapoyas, Awajún and Wampı́s; but nearly absent in the reference

Hispanic population (HIS). The 3rd unknown component was consistently observed with

increasing number of K in plots including also other continental datasets (S1 File). Further

examination, only within Chachapoyas (Fig 3B), showed consistently this 3rd component even

when the analyses were restricted to a reduced number of markers (18–27 loci, not shown).

This finding was supported by both ln P (X|K) and ΔK cross validation errors for K = 3 (S6

Fig). Zooming into the Chachapoyan subgroups, this third component found is more frequent

in Kuelap, Pomacochas and Rodrı́guez de Mendoza (Fig 3B). The Native American compo-

nent (light blue) is consistently observed at more than 50% in samples from Chachapoya, Chil-

lao and Pomacochas subgroups. On the other hand, the European component (orange) is

often found at higher frequencies (> 50%) in Leymebamba, Rodrı́guez de Mendoza and

Kuelap.

PCoA and genetic distances. When performing a PCoA including only the reference set

having European ancestry (CAU) and the study populations (S7 Fig), it is possible to identify a

small cluster composed of individuals only from three study populations, Chachapoyas, Awa-

jún and Wampı́s. In this plot, the X-axis separates the European from the Native American

clusters while the Y-axis separates the components within the Americas. The STRUCTURE

output was used to better visualize the individuals that exhibit more than 60% of the third

unidentified component. In order to accomplished this, all samples were binned by the pro-

portion of the third unknown component (purple, in Fig 3), which resulted in three classes:

light grey = 0–20%, grey = 21–59% and, black = 60–100% and then plotted in a new PCoA

Fig 3. Admixture plots. (A) Study populations and the Hispanic reference (HIS) for K = 3. (B) Distribution of the 3rd

unknown component within Chachapoyas. This component exhibits higher frequency in the Chachapoyan subgroups

Kuelap, Pomacochas and Rodrı́guez de Mendoza.

https://doi.org/10.1371/journal.pone.0244497.g003
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(Fig 4). The separation of European and Native American clusters is similar to the one

described for S7 Fig. Individuals that harbor� 60% of the “3rd unknown component” fall

close to each other (black dots) in a cline towards the Native American cluster.

To resolve the origins of the “3rd unknown component”, the genotypes of individuals har-

boring more than 60% of this component were placed in a new synthetic “population” and

compared to other populations worldwide. These comparisons were carried out both with a

larger set of markers 116 loci (S8A Fig) and with 10 aSTR loci (S8B Fig). With the 10 aSTR set,

the “3rd unknown component” only shows affinities (FST� 0.05, p� 0.05) with the Hispanic

reference population from the US (HIS), urban populations from Mexico (Tijuana and

Sonora), Chile (Calchaquı́ Valley) and a Mestizo sample from Nicaragua. On the other hand,

the “3rd unknown component” remained distant (FST� 0.07, p� 0.05) to the reference Euro-

pean populations, CAU from the US and Huelva from Spain. In the MDS plot with the full set

of markers (116 loci), the “3rd unknown component” remains distant to all study and reference

populations. With a reduced set of markers (10 aSTR loci) and more reference populations

from Peru, the “3rd unknown component” falls in the periphery of the plot close to the Amazo-

nian Cashibo (S8B Fig).

AMOVA was also used to investigate the distribution of diversity in a number of alternative

subpopulation grouping schemes, based on the observed genetic distances between subgroups.

As with the clustering analyses (STRUCTURE), AMOVA for autosomal data did not uncover

population substructure within Chachapoyas, both FCT (among groups) and FSC (among pop-

ulations within groups) values were non-significant and rather very small (S13 Table, run:

11_autos.arp). Here, more than 99.5% of the variation resided within subpopulations, regard-

less of the grouping.

In case of mitochondrial and Y-chromosomal data, the clusterings maximizing FCT and

minimizing FSC values mirrored the patterns suggested byFST values (haplotypic AMOVA).

The mtDNA distances indicate a grouping placing the Jı́varo and the Pomacochas together

and the remaining Chachapoya subsets in a different group, with the exception of Rodrı́guez

de Mendoza which remains separate like the Huancas and the Cajamarca. For this scheme,

7.21% of the total variation resides between groups (p< 0.001) and 1.68% among populations

within groups (p< 0.05) (S13 Table, run: 13_mito.arp). Similarly, for Y-chromosome data, the

genetic distances suggested grouping only the Chachapoya subsets, Chillao, Chachapoya,

Fig 4. PCoA plot when samples are binned by their proportion of the 3rd unknown component. Individuals

harboring more than 60% of this “3rd unknown component” in black.

https://doi.org/10.1371/journal.pone.0244497.g004
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Rodrı́guez de Mendoza and Leymebamba but keeping the rest of the datasets separate. Follow-

ing this, the AMOVA run 13_Y.arp, gave the best results for FCT (0.104, p< 0.003) and FSC
(0.016, p> 0.05) values (S13 Table).

Discussion

The Chachapoya peoples flourished in the northeastern Peruvian montane forests until their

encounter with the Inca and Spanish led gradually to the dissolution of the culture. Here we

have assessed past population signals of the Chachapoyas persisting in the modern Peruvian

genetic diversity. Despite cultural diversity among the Chachapoyas, we could not find clear

signs of genetic substructure in this region. However, the high native genetic diversity

observed sheds light on the complex, gender and region-specific population history of the Cha-

chapoyas. Obviously, these inferences are to some extent limited by the contemporary data

used, as the modern diversity has been shaped by the entire history of the target populations.

Ancient DNA data could provide additional information, but only if sample sets representative

in space and time could be obtained. Furthermore, one could also argue that the autosomal

markers used in the ForenSeq kit, geared for forensic purposes, are not ideal for detecting sub-

structure. This could stem from the relatively limited number of loci as well as from ascertain-

ment bias, selective inclusion of loci in the forensics-aimed kits that maximize the diversity

and power for identification of individuals (globally). Larger, genome-wide data sets would

obviously offer better resolution for substructure detection, but the impact of the latter, ascer-

tainment bias, is difficult to quantify for our data. Previous studies [49] have shown that 13

STR loci can detect substructure at population level, but due to the ascertainment bias, the

distances are deflated, i.e. that the forensic markers are indeed less sensitive in detecting the

population substructure. Similarly, as among the Chachapoyan subgroups no significant sub-

structure was observed for more sensitive Y-chromosomal and mitochondrial data, the impact

of the ascertainment bias is most likely of quantitative nature.

Lack of genetic substructure within Chachapoyas

It is becoming increasingly clear through recent ethnohistorical and archaeological research

that the Chachapoyas region has hosted considerable social, political, and cultural diversity

before the Late Horizon or Inca period (1475–1532 CE) [6, 50]. Within Chachapoyas, places

separated by few dozens of kilometers like Luya, Chilchos, and Rodrı́guez de Mendoza, have

held major cultural differences e.g. in mortuary practices, pottery styles and agricultural sys-

tems [51–56].

Despite these cultural clues from the past, signs of genetic subdivision in the region are

weak. Although genetic distances and allele (haplotype) frequencies point to genetic differenti-

ation of some Chachapoya subgroups, Y-chromosomal, mitochondrial and autosomal markers

all convey conflicting pictures, thus evincing for rather insubstantial substructure (HWE,

genetic distances, cluster analyses and AMOVA).

Only one of the seven subgroups, Pomacochas, differed significantly from most others in

both mitochondrial and Y-chromosome data (FST > 0.070). On the other hand, admixture

analyses based on autosomal markers showed again no detectable population substructure

within Chachapoyas. Here, regardless of the hierarchical setting (intercontinental, intraconti-

nental and local), the Chachapoya samples clustered together (Fig 3 and S5 Fig). However,

despite the lack of significant substructure within the Chachapoyas region, a few statistically

significant differences of mitochondrial haplogroup distributions were observed, e.g. lack of

haplogroup A2 in Rodriguez de Mendoza. All these observations suggest that there are true

differences in the frequencies of some haplogroups and certain degree of differentiation at
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some localities which echoes in the cultural diversity discussed above. Recent gene flow obvi-

ously may have obscured the past differentiation. Yet, ancient substructure is known to leave

persistent demographic signals especially in the haploid markers, as shown e.g. in Finland

[57].

DNA suggests Pomacochas—Jı́varo connections. Instead of substructure and disconnec-

tion, mitochondrial and autosomal data shows that the northern section of the Chachapoyas

region, the Pomacochas area, share genetic affinity with Jivaroan populations.

There is lack of archaeological research on whether the territory around Pomacochas and

further north (Jumbilla and Yambrasbamba) was part of the Chachapoyas realm but potential

historical connections between these two areas cannot be completely ruled out. It has been

suggested that the historical Jı́varo and the ancient Chachapoya peoples shared some cultural

features [55, 58], however, the available archaeological evidence is yet insufficient to sustain

this assumption. Despite this, the Chachapoyas region has been identified as a crossroads, at

the center of interregional exchange networks throughout millennia [59]. Indeed, even early

lithic assemblages found in the Chachapoyas region resemble lithic industries from as far as

the north Peruvian coast (Paiján) and highland Ecuador (El Inga) [59] which account for the

uniqueness of this region. From the genetics point of view, two recent independent studies

[60, 61] have identified east-west gene flow linking the north Peruvian coast and highlands

with Amazonian groups to the east of the northern Andes. Interestingly, one of these studies

has found gene flow between the Chachapoyas and populations from the Jivaroan ethnolin-

guistic stock such as the Awajún and Candoshi [61]. This evidence gives further support to our

finding despite the lack of published historical works on ancient or recent migrations from

Jivaroan populations towards the Chachapoya territory or vice versa. As such, this finding pro-

vides new ground for archaeological and ethnohistorical research investigating cultural inter-

actions between these areas.

Chachapoyas harbour an autosomal variation component of undetermined origin.

Among the Chachapoyas and the Jı́varo, admixture analyses revealed- in addition to Native

American and Caucasian components—a third autosomal component that could not be read-

ily associated to any modern source population. Within Chachapoyas, inter-subgroup differ-

ences in the commonness of this component was observed especially in Rodrı́guez de

Mendoza, but nearly absent in e.g. Chillao, La Jalca and Uchucmarca. On the regional level,

the component was only present among the Chachapoyas and the Jivaroan Awajún and Wam-

pı́s. In order to understand the origin of this variation, individuals harboring� 60% of this

third component were regrouped and genetic distances between this group and reference pop-

ulations from the Americas were estimated. These comparisons, however, were unable to shed

light on the origin: the synthetic “3rd component group” showed no obvious affinity to refer-

ence datasets of African, European or Asian origin, nor to the populations included from the

Americas. In analyses with more reference populations but less data (10 aSTRs), the group

remained distant to all the other populations except the Amazonian Cashibo from Peru. The

exact origin of this variation component remains thus elusive; it could derive from a yet

unsampled ancient or modern population, for example representing assemblages that have

developed locally in semi-isolated populations with no distinctive cultural features. On this

note, a recent study [62] of South American populations has shown the existence of two auto-

somal components of alleged Amazonian origin: 1) The first one, distributed along the eastern

slopes of the Northern Andes in Ecuador and Colombia, and 2) the second one, observed

mostly in populations from the Peruvian rainforest. Due to geographic proximity and the

commonness of the 3rd unknown component among the Amazonian Jı́varo, we could suggest

ties to the second component, although this cannot be tested with our current resolution.
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Asymmetrical European gene flow in the Chachapoyas region

As in several previous studies on South American populations [63, 64], we observed gender-

biased European gene flow into Chachapoyas: 5% of the mitochondrial and 42% of the Y-chro-

mosomal haplotypes belonged to haplogroups typical for Europeans (such as H and U in mito-

chondrial; R and I in Y-chromosome). A substantial proportion of non-Native American Y-

chromosomal lineages were also observed in Cajamarca, but this was not the case in Jı́varo and

Huancas.

During the conquest, the Spanish formed close alliances with the Chachapoyas against the

Inca, and established the city of Chachapoyas as capital of the region. As the center of Spanish

rule, and currently the largest town in the region, the Chachapoya subgroup (which includes

also samples from Levanto) would be expected to host a higher proportion of European alleles

but the highest European contribution (autosomes > 50%) was found instead in Kuelap, Ley-

mebamba, and Rodrı́guez de Mendoza. In fact, the proportion of non-Native American haplo-

types peaked in Leymebamba and Rodrı́quez de Mendoza (� 58%). Of these three areas, high

European contribution in Leymebamba could be linked to its role as a gatekeeper to the Cha-

chapoyas region, since it is one of the most important settlements on the eastern side of the

mountains along the only road in the region that crosses the Andes and the Marañon River.

This road system connected the Chachapoya and the Cajamarca regions, as well as Uchumarca

in the south, already before the Spanish conquest [4], which may also have facilitated non-

Native American gene flow during the Early Colonial Period. In the area around Rodrı́guez de

Mendoza, Spanish settlements were already observed during a visit of archbishop Mogrovejo

to the area in 1593 [65]. Thus, this area became a preferred destination for the permanence of

European settlers echoing also in the genetic makeup of local residents. This was probably the

result of a combination of factors, such as warmer climate, fertile soil and large rivers. In addi-

tion, its location, closer to the lush Amazonian rainforests, may have been of interest for Span-

ish conquistadors when pursuing expeditions in search of El Dorado [4, 10] which may have

prompted the settlement of more Spanish people in the area. The high European genetic con-

tribution observed in the Kuelap group is, in turn, slightly puzzling as the Inca and Spanish

cultural presence on the left bank of the Utcubamba river, where this sample set comes from,

seems to have been less significant than on the other side [4, 51, 59, 66]. Interestingly, the Chil-

laos subgroup harbors less European admixture, complying somehow with this pattern

described by archaeology and ethnohistory. Although Kuelap was abandoned shortly after the

Spanish incursions in this area, the site is recognized as one of the most important archeologi-

cal settlements within the Chachapoyas region and its significance as a center of religious and

political power for the local populations [67, 68] may have transcended far beyond the Inca

times. However, the site is seldom cited in early documents and was rediscovered late during

the 19th century [6, 67]. The mismatches observed between the genetic and cultural evidence

point to increasingly complex patterns of European interaction with the local populations at

even smaller scales.

Demographic trajectories

For mitochondrial DNA, coalescent-based BSPs are extensively used methods to make infer-

ences of the changes in the past female population size [69]. However, since for Y-STRs data

similar approaches are not equally well established, past male population dynamics are not

routinely assessed in population genetic studies. A comprehensive estimation of the male effec-

tive population sizes would require Y-chromosomal sequence data which is seldom produced.

Nevertheless, to be able to compare the signals in the male and female population histories, we

assumed an experimental approach to construct BSPs with Y-STR markers. The temporal
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congruence in the Y-chromosome and mtDNA-based BSP patterns gives credence for the

validity of the Y-chromosomal results obtained.

Thus, demographic histories in northeast Peru were explored with BSPs, using both mito-

chondrial sequences and Y-chromosomal STR haplotypes among the study populations.

While the effective population sizes reconstructed by the BSPs are largely conjectural, the over-

all trends are revealing. The BSP patterns obtained from our data differed both, between sexes

(markers), and regions (Andean/Amazonian).

In general, all BSP plots showed an ancient population expansion period that began at 625–

500 generations ago i.e. 15.6–12.5 kya (a 25-year generation interval is assumed for all datings,

unless indicated otherwise), a range that encompasses the earliest evidence of human presence

in the continent [70, 71]. The connection of this early expansion to any real population events

other than the entry in the Americas is nebulous, but the later developments are intriguing: the

graphs show no signs for a mid-Holocene demographic crisis evident in South American

archaeological radiocarbon data and palaeoclimatic evidence [72]. Instead, the Y-chromo-

somal and mitochondrial data demonstrate consistent patterns of population decline later in

time, starting at around 125 generations ago i.e. 3.1 kya. This decline appears to temporally

roughly coincide with a period of decreased solar irradiation (“The Homeric minimum”)

which has been associated to global climatic change, including heightened El Niño oscillation

[73, 74], and to major cultural shifts in Europe [75]. Interestingly, pollen and charcoal records

from sediments of Lake Pomacochas in the Chachapoyas region demonstrate substantial

changes in landscape around 3 kya, pointing somewhat paradoxically to heightened human

activity. Increase on charcoal and Poaceae pollen, decrease of arboreal pollen and appearance

of maize in the sedimentary record around this time all point to the clearing of forests for

maize cultivation [76].

Sex-specific differences. The effective population size trajectories differ between sexes for

the last 125 generations i.e. 3 kya. In the recent past, BSPs based on mitochondrial sequences

show a steep but a relatively continuous decline which becomes severe over time but does not

show a clear low point of population contraction. In contrast, the Y-chromosome BSP for the

Chachapoyas sample set registers a steep population decline that reaches the lowest point c. 25

generations ago. This bottleneck would match the Inca or the Spanish conquest if a generation

interval of 23 or 20 years, respectively, is assumed, which seem at least marginally realistic.

These generation interval estimates would date the start of the general decline at 125 genera-

tions ago (above) to c. 2 850 and 2 500 BP.

The BSPs also suggest that the Chachapoya male population was nearly halved sometime

between the 15th-17th centuries. It is tempting to associate demographic events as drastic as

this with the Inca and Spanish conquests. During the Late Horizon (1475–1532 CE), the relo-

cation policies applied by the Incas are recognized as important contributing factors to the

depopulation in the Chachapoya region but these are not described as severe as the demo-

graphic collapse during and after European contact (multiple infectious diseases and pandem-

ics over a prolonged time, war, selective relocation policies and forced labor) [11, 77].

However, all these events should have affected both males and females with equal acuteness,

which is in contrast with the results. In addition to the above-mentioned evidence for general

demographic collapse, males especially were affected by the Inca and Spanish military con-

scriptions. For instance, Chachapoyan males were recruited to fight the Inca as well as to par-

ticipate in the early colonial El Dorado expeditions. Several of these expeditions to the tropical

Amazonian rainforests started in towns within the Chachapoya region [10]. This would sug-

gest that the severe male-biased population contraction may be associated with post-European

contact events.
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Regional patterns. In addition to the sex-specific differences, there are notable dissimilar-

ities in the shape of BSPs between Andean and Amazonian reference populations. In general,

the Andean male and female populations show higher effective population sizes for the last

250 generations, and clear signs of population growth in the past. The Amazonian populations

exhibit a starkly contrasting pattern with smaller overall sizes and very moderate or non-exis-

tent population growth. This contrasting Andes/Amazon demographic pattern could reflect

different levels of isolation and resource availability. This kind of regional dynamics has earlier

been suggested for South America, based on Y-chromosomal data [78], and has also been pro-

posed to explain global linguistic diversity [79]. Within Chachapoyas, most of the subgroups

show Andean-type demographic trajectories, except Pomacochas and Corobamba, with pat-

terns resembling those of the Amazonian populations. This adds to the earlier evidence of

Amazonian (Jivaroan) affinity of the Pomacochas subgroup.

The growing effective population sizes in the Andean populations and in the Chachapoyas,

as well as the overall high diversity in the Chachapoyas region, differ markedly from other

South American Native populations. Interestingly, in silico analyses of species richness in

South America from Late Quaternary until present have identified this region in northeastern

Peru and southwestern Ecuador as one of the hotspots of biodiversity, also confirmed by

empirical observations [80]. Here, birth and persistence of biological diversity in this region is

most likely driven by topography and climate [80]. These rich ecosystems then provide more

resources for the local human communities and could have contributed to the observed

genetic diversity by allowing larger and more stable population sizes through time [81–83].

This area between the Amazonian rainforest and Andean mountains hosts different kind of

ecosystems over a relatively short geographic distance, which may have buffered the local pop-

ulations—human and non-human—in times of environmental change [84].

Concluding remarks

To the extent of our statistical resolution, we did not detect population substructure in the

Chachapoyas sample, which accounts for the notion that genetic subdivision does not neces-

sarily accompany cultural differentiation. In other regions of South America, population sub-

structure has also been found to be negligible in groups from the same and different language

stock [85–87] In line with previous research [1, 2], we found exceptionally high levels of local

genetic diversity in the Chachapoyas for both lineage markers that together with the large

effective population sizes indicate particular demographic processes in this region driven most

likely by topography and climate. This is also consistent with previous studies suggesting simi-

lar areas, at the junction of montane and tropical rainforests along the eastern slopes of the

northern Andes, are as well identified as hotspots of human genetic diversity [86, 88–91]. In

addition to these findings, we detected gene flow between the Amazonian Jı́varo and an area

situated at the north of the Chachapoyas territory here represented by the Pomacochas sub-

group (which included also the localities of Jumbilla and Yambrasbamba). Gene flow events

between neighboring territories such as these are not surprising as long-distance genetic

exchanges of varying magnitude at this latitude have been observed between the Andean and

Amazonian domains [91–93], and even with the Pacific Coast [60, 94]. Additionally, an

unknown autosomal component has been identified among the Chachapoyas and the Awajún

and Wampı́s. Although the origin of this component could not be clarified, we speculate it

may be of Native American origin as it remains distant to African, European and Asian

populations.

European admixture impacted the indigenous genetic variation at various scales, from

macro-regions (e.g. Amazon, Andes) to populations [95, 96]. In this study, both lineage and
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autosomal markers point to asymmetrical (mtDNA and Y-chromosome) European gene

flow in the Chachapoya territory. For autosomal data these signatures of European admix-

ture were heightened in the subgroups Kuelap, Leymebamba and Rodrı́guez de Mendoza.

The geographic position and cultural importance of these areas are highlighted as explana-

tions to these patterns, showing that differences can be detected even at smaller spatial

scales. As the dates of admixture between the European and Native American components

cannot be estimated from the current data, we should consider also the possibility that more

recent admixture events may have concealed the patterns established during the Early Colo-

nial Period.

The female demographic signature of the Chachapoyas as a whole and the Jivaroan set

resemble the one from the Andean area whereas the male population history in the Chacha-

poyas is more similar to the Amazonian one. Larger long-term effective population sizes have

been previously characterized for the populations from the Andean area which contrasts with

other regions of South America [78, 97]. Moreover, comparisons of both male and female

demographic histories also indicate a more severe population decline on males which finds

support in the historical portrait of the northeast Peruvian Andes as an area that experienced a

dramatic population decline, particularly among males [4]. Even within the Amazonian

region, genome wide studies in South America have shown that population sizes have been

shaped by different demographic processes throughout their history [62, 92]. In that sense, in

addition to the detection of genetic drift by means of autosomal data, it is also vital to examine

demographic histories based on lineage markers, as different processes affecting the male and

female population sizes can result in divergent patterns like the ones observed in this and

other studies e.g. [98]. We acknowledge that although various inferences about the population

structure and population history in the Chachapoyas have been provided here, other questions

such as the origin of the Chachapoya ancestry can ultimately be addressed with higher resolu-

tion and/or ancient DNA data.
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S1 Fig. Permutated haplogroup distributions and actual observations showing the devia-

tions (p< 0.05) with arrows in Chillao, Pomacochas and Jı́varo.

(TIF)

S2 Fig. Mitochondrial MDS plot with populations from the Americas showing the Poma-
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(TIF)
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(TIF)
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(TIF)

S8 Fig. MDS plots of autosomal genetic distances showing the individuals in the “3rd

unknown component”. Study populations and Chachapoyan subgroups in black, m: mestizo.

(A) 116 loci. (B) 10 loci.

(TIF)
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S6 Table. Diversity indices for mitochondrial DNA data. (A) Non-Native American haplo-

types are included in the study populations. (B) Non-Native American haplotypes are excluded
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(XLSX)

S1 File. STRUCTURE plots including study populations and datasets from different conti-

nental origins (K = 2–6).

(PDF)

Acknowledgments

We are grateful to all sample donors from the administrative region of Amazonas in Peru. We

thank Xiangpei Zeng for his guidance during laboratory procedures. We thank Jouni Kärkkäi-
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