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Abstract

Background: While changes in mRNA expression during tumorigenesis have been used widely as molecular
biomarkers for the diagnosis of a number of cancers, the approach has limitations. For example, traditional methods
do not consider the regulatory and positional relationship between mRNA and lncRNA. The latter has been largely
shown to possess tumor suppressive or oncogenic properties. The combined analysis of mRNA and lncRNA is likely
to facilitate the identification of biomarkers with higher confidence.

Results: Therefore, we have developed an lncRNA-related method to identify traditional mRNA biomarkers. First we
identified mRNAs that are differentially expressed in Hepatocellular Carcinoma (HCC) by comparing cancer and
matched adjacent non-tumorous liver tissues. Then, we performed mRNA-lncRNA relationship and coexpression
analysis and obtained 41 lncRNA-related and -coexpressed mRNA biomarkers. Next, we performed network analysis,
gene ontology analysis and pathway analysis to unravel the functional roles and molecular mechanisms of these
lncRNA-related and -coexpressed mRNA biomarkers. Finally, we validated the prediction and performance of the
41 lncRNA-related and -coexpressed mRNA biomarkers using Support Vector Machine model with five-fold
cross-validation in an independent HCC dataset from RNA-seq.

Conclusions: Our results suggested that mRNAs expression profiles coexpressed with positionally related lncRNAs
can provide important insights into early diagnosis and specific targeted gene therapy of HCC.
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Background
Hepatocellular carcinoma (HCC) is a highly prevalent,
treatment-resistant malignancy with a multifaceted
molecular pathogenesis and is also one of the most
common cancers and the third most common cause of
death by cancer worldwide [1]. Geographic areas with
the highest prevalence are located in Africa and Eastern
Asia, likely due to the increasing prevalence of chronic
hepatitis B or C. The incidence of HCC is also rising in
the US. According to the American Cancer Society, an

estimated 39,230 people were diagnosed with HCC in
the United States during 2016 and about 27,170 people
will die of the cancer [2].
Although significant effort has been directed toward

the improvement of surgical and medical treatment, the
prognosis for patients with advanced stages of HCC
remains poor [3]. To improve diagnosis and treatment
efficiency, a further understanding of molecular mecha-
nisms of HCC progression is urgently needed.
Several research strategies, high-throughput genomic

microarray in particular, have been used to investigate
the molecular characteristics of HCC. Many molecular
biomarkers with aberrant expression have been identi-
fied in HCC tissues, including NDRG1, Importin-α1,
FOXP1, and PTPN12. Although these findings have
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greatly improved diagnostic and therapeutic strategies,
some limitations remain. First, because of the large
number of mRNA and proteins in the profiles, specific
targets are difficult to identify. Second, changes at the
mRNA level are not always consistent with those at the
protein level, suggesting that a high level of background
noise may exist. Third, traditional microarray methods
identify mRNAs that are differentially expressed between
normal vs cancer, but don’t consider the relationship
between coding biomarkers and non-coding RNA, which
are likely to be etiologically important.
Long noncoding RNAs (lncRNAs) are a class of non-

coding RNA transcripts longer than 200 nucleotides that
were previously believed to represent transcriptional
noise. However, they have recently been identified as
functional molecules. Emerging studies show that
lncRNA play important roles in basic biology, ranging
from transcriptional and post-transcriptional regulation
to the control of cell cycle distribution, imprinting
control, cell differentiation and tumorigenesis. Several
lncRNAs have been reported to regulate the develop-
ment of HCC and targets include HOXA transcription
at the distal tip (HOTTIP) [4, 5], MEG3 maternally
expressed 3 (MEG3) [6–8], highly upregulated in liver
cancer (HULC) [9, 10], and ZNFX1 Antisense RNA 1
(ZFAS1) [11–13].
We hypothesized that combining mRNA expression

profiles from traditional microarray methods and
lncRNA expression profiles from lncRNA arrays may
help identify a subset of candidate lncRNA-related
and -coexpressed mRNA biomarkers with higher con-
fidence and reliability. We defined lncRNA-related
and -coexpressed mRNA biomarkers as mRNA bio-
markers that are coexpressed with and have positional
relationships with adjacent lncRNAs. We selected
mRNA biomarkers based on two criteria: 1) differen-
tial expression between normal and cancer tissue
samples; 2) a positional relationship to lncRNAs that
are differentially expressed between normal and
cancer samples.
In this paper, we first identify 3543 mRNA biomarkers

differentially expressed between normal and cancer sam-
ples using t statistics and qvalues. Then we overlapped
these transcripts with the results from lncRNA arrays to
identify 41 lncRNA-related and -coexpressed mRNA
biomarkers. Next, we performed network analysis,
functional analysis and pathway analysis for the 41
lncRNA-associated mRNA biomarkers. Finally, we used
an independent dataset and a SVM model to validate the
prediction performance of the 41 identified lncRNA-re-
lated and -coexpressed mRNA biomarkers. Our re-
sults showed that combined microarray and lncRNA
analysis improved biomarker discovery for the treat-
ment of HCC.

Methods
lncRNA and mRNA microarray expression profiling
We downloaded Arraystar human lncRNA and mRNA
microarray data for a cohort of 16 Human HCC samples
and 16 adjacent non-tumor samples from GEO
(GSE58043, GSE89186, GSE64631, and GSE55191,
http://www.ncbi.nlm.nih.gov/geo) [14–16]. The Arrays-
tar human lncRNA and mRNA microarray data included
five positional relationship between lncRNA and mRNA:
1) “exon sense-overlapping”: the lncRNA’s exon is over-
lapping a coding transcript exon on the same genomic
strand; 2) “intron sense-overlapping”: the lncRNA is
overlapping the intron of a coding transcript on the
same genomic strand; 3) “intronic antisense”: the
lncRNA is overlapping the intron of a coding transcript
on the antisense strand; 4) “natural antisense”: the
lncRNA is transcribed from the antisense strand and
overlapping with a coding transcript; and 5) “bidirec-
tional”: the lncRNA is oriented head to head to a coding
transcript within 1000 bp. If the Arraystar human
lncRNA and mRNA microarray data showed no overlap-
ping or bidirectional coding transcripts nearby the
lncRNA, we defined the relationship between mRNA
and lncRNA as “intergenic”.

Statistical analysis
We first performed a Box-Cox Power Transformation
[17] using a powerTransform function (car package in R
3.4.0) to make the distribution of each mRNA and
lncRNA in each sample approximately normal.
We used a two-sample, two-sided t-test [18, 19] to

determine whether there was no difference between the
mean of gene expression in HCC samples and that in
normal samples. The null hypotheses was

H0 : μT ¼ μN ð1Þ
where μT is the mean of gene expression in HCC
samples, and μN is the mean of gene expression in
normal samples. This null hypothesis was tested against
the following alternative hypothesis:

H1 : μT≠μN ð2Þ
P values were determined by Welch’s t-test. Qvalues
were adjusted for false discovery rate control using
qvalue package from Bioconductor.

Pathway analysis
Network analyses were generated through the use of
Ingenuity Pathway Analysis (IPA, Redwood City, CA,
USA). The top scoring network of interactions was
presented for the concurrent under-expressed and the
concurrent over-expressed genes. This software analyzes
molecular signatures in the context of known biological
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Table 1 Forty one mRNA biomarkers with relationship to coexpressed lncRNAs (qvalue< 0.05 for mRNA and qvalue < 0.05 for lncRNA)

mRNA Gene Gene expression mRNA qvalue lncRNA Probe name relationship lncRNA expression lncRNA qvalue

NM_000787 DBH down 0.0153 ASHG19A3A038177 natural antisense down 0.0317

NM_015987 HEBP1 down 0.0153 ASHG19A3A048399 bidirectional down 0.0252

NM_001172440 ENDOU down 0.0161 ASHG19A3A055103 intronic antisense down 0.0285

NM_001130997 FAM58A up 0.0170 ASHG19A3A041726 bidirectional up 0.0331

NM_000075 CDK4 up 0.0216 ASHG19A3A048765 natural antisense up 0.0396

NM_000744 CHRNA4 down 0.0218 ASHG19A3A018571 intronic antisense down 0.0285

NM_003074 SMARCC1 up 0.0231 ASHG19A3A022584 intronic antisense up 0.0285

NM_025139 ARMC9 up 0.0240 ASHG19A3L0001156 sense overlap up 0.0472

NM_014053 FLVCR1 up 0.0270 ASHG19A3A007495 bidirectional up 0.0479

NM_000348 SRD5A2 down 0.0271 ASHG19A3L0001181 exon sense-overlapping down 0.0357

NM_001012321 RPSA up 0.0279 ASHG19A3A020907 natural antisense down 0.0293

NM_001334 CTSO down 0.0284 ASHG19A3A026206 natural antisense down 0.0415

NM_030789 HM13 up 0.0284 ASHG19A3A017537 intronic antisense down 0.0479

NM_000454 SOD1 down 0.0311 ASHG19A3A018779 bidirectional down 0.0468

NM_002394 SLC3A2 up 0.0314 ASHG19A3A000043 bidirectional up 0.0291

NM_144778 MBNL2 down 0.0315 ASHG19A3L0000699 exon sense-overlapping down 0.0439

NM_001146279 SHBG down 0.0315 ASHG19A3A007528 exon sense-overlapping down 0.0380

NM_003631 PARG up 0.0328 ASHG19A3A043936 intronic antisense up 0.0289

NM_000182 HADHA down 0.0330 ASHG19A3A015417 natural antisense up 0.0489

NM_003668 MAPKAPK5 up 0.0333 ASHG19A3A055106 natural antisense up 0.0364

NM_016065 MRPS16 up 0.0338 ASHG19A3A044109 bidirectional up 0.0362

NM_053031 MYLK down 0.0338 ASHG19A3A023105 intronic antisense up 0.0285

NM_001040058 SPP1 up 0.0355 ASHG19A3A024471 natural antisense up 0.0356

NM_145697 NUF2 up 0.0355 ASHG19A3A054586 bidirectional up 0.0412

NM_172250 MMAA down 0.0372 ASHG19A3A024820 natural antisense down 0.0409

NM_001003789 RABL2B down 0.0378 ASHG19A3A020631 bidirectional up 0.0252

NM_001040060 SPP1 up 0.0378 ASHG19A3A024471 natural antisense up 0.0356

NM_207304 MBNL2 down 0.0379 ASHG19A3L0000699 exon sense-overlapping down 0.0439

NM_020791 TAOK1 up 0.0382 ASHG19A3A009329 exon sense-overlapping up 0.0412

NM_016632 ARL17A up 0.0395 ASHG19A3A008470 intron sense-overlapping up 0.0252

NM_014583 LMCD1 up 0.0397 ASHG19A3A020672 bidirectional down 0.0311

NM_003937 KYNU down 0.0405 ASHG19A3A014435 natural antisense down 0.0252

NM_000582 SPP1 up 0.0418 ASHG19A3A024471 natural antisense up 0.0356

NM_014389 PELP1 up 0.0419 ASHG19A3A008987 natural antisense up 0.0437

NM_148921 EPN2 down 0.0433 ASHG19A3A008042 natural antisense up 0.0329

NM_001165031 DTYMK up 0.0442 ASHG19A3A007748 exon sense-overlapping up 0.0285

NM_002482 NASP up 0.0448 ASHG19A3A044925 natural antisense up 0.0489

NM_000128 F11 down 0.0449 ASHG19A3A025095 natural antisense down 0.0252

NM_002022 FMO4 down 0.0468 ASHG19A3A034907 intron sense-overlapping down 0.0446

NM_001127603 NMRK1 down 0.0470 ASHG19A3A037588 exon sense-overlapping down 0.0331

NM_003889 NR1I2 down 0.0471 ASHG19A3A021464 natural antisense down 0.0291
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response and regulatory networks as well as canonical
pathways.
DAVID functional analyses were used to identify bio-

logical functions that were most significantly enriched
with expression changes [20].
Interpretation of biological pathways was conducted

with the database we developed: Integrated Pathway Ana-
lysis Database (IPAD) (http://fzhang.w3.uvm.edu/ipad/)
[21]. The enrichment scores used to select significant
pathways were defined by p-value.

Performance measurement
We used the following five measurements for our
evaluation: (1) Sensitivity (2) Specificity, (3) Precision,
(4) Accuracy, and (5) Area Under the Curve.

Sensitivity ¼ true positive
true positive þ false negative

Specificity ¼ true negative
true positiveþ false positive

Precision ¼ true positive
true positive þ false positive

Accuracy ¼ true positive þ true negative
true positive þ true negativeþ false positive þ false negative

Results
The Arraystar Human lncRNA and mRNA microarray
profiles contained two states (tumor vs. non-tumor) with
16 samples corresponding to each state. We obtained
3543 significantly differentially expressed mRNA bio-
markers (mapped to 1932 genes) with qvalue < 0.05,
among which 2066 (946 genes) were over-expressed and
1477 (986 genes) were under-expressed in HCC tumor.

Forty one mRNA biomarkers (Table 1) met our criteria
of (1) being differentially expressed between 16 normal
and 16 cancer samples with qvalue < 0.05; and 2) being
positionally related to lncRNA which were differentially
expressed between 16 normal and 16 cancer samples
with qvalue < 0.05. The information corresponding to
the positional relationships of mRNA/miRNA and
lncRNAs were identified to predict the role of lncRNAs
in regulating nearby genes. The positional relationship
included exon sense-overlapping (7), natural antisense
(16), bidirectional (9), intronic antisense(6), intron
sense-overlapping (2), and sense overlap (1) (Table 2).
Network analyses were performed with Ingenuity Path-
way Analysis and the top four networks were identified
(Table 3 and Fig. 1). We identified four networks: 1)
Endocrine System Development and Function, Molecular
Transport, Small Molecule Biochemistry; 2) Immuno-
logical Disease, Inflammatory Disease, Inflammatory Re-
sponse; 3) Amino Acid Metabolism, Molecular Transport,
Small Molecule Biochemistry; and 4) Metabolic Disease,
Developmental Disorder, Hereditary Disorder. Gene
ontology analysis with DAVID described the biological
processes of the 41 mRNA biomarkers (Fig. 2a and b).
Pathway analysis were generated using the IPAD [21]
(Table 4). Pathways linked with the 41 mRNA biomarkers
included Metabolism, Hemostasis, Cell Cycle, Signaling,
Disease, Immune system, and Gene Expression, which are
consistent with previous results we found [22–25].
In order to validate the 41 mRNA biomarkers, we built

a five-fold cross-validation Support Vector Machine
(SVM) model based on all the 32 samples using a radius
basis function kernels function. We achieved high pre-
diction performance (AUC = 0.996, precision = 100%, ac-
curacy = 96.9%, sensitivity = 93.8%, specificity = 100%).
Further we randomly divided the 16 HCC samples and
16 Normal samples into two groups: training set and
testing set. Each group contains 8 HCC samples and 8
Normal samples. We used the testing test to assess the
performance of the trained 41 mRNA biomarkers. The
testing set was blind and no data from the testing set
were used for identification of the 41 mRNA
biomarkers and development of the SVM model. We
obtained high performances: for the training set
(AUC = 1.0, precision = 100%, accuracy = 93.8%, sensi-
tivity = 87.5%, specificity = 100%) and for testing set

Table 2 Statistics for relationships

Relationship Counts

Bidirectional 9

Exon sense-overlapping 7

Intron sense-overlapping 2

Intronic antisense 6

Natural antisense 16

Sense overlap 1

Table 3 Top networks involved

Top Diseases and Functions Score Focus Molecules

Endocrine System Development and Function, Molecular Transport, Small Molecule Biochemistry 32 14

Immunological Disease, Inflammatory Disease, Inflammatory Response 32 14

Amino Acid Metabolism, Molecular Transport, Small Molecule Biochemistry 21 10

Metabolic Disease, Developmental Disorder, Hereditary Disorder 3 1
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Fig. 1 The 41 mRNAs biomarkers involved in Endocrine System Development and Function, Molecular Transport, Small Molecule Biochemistry.
Red stands for over-expressed and green for under-expressed
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(AUC = 0.984, precision = 100%, accuracy = 93.8%,
sensitivity = 87.5%, specificity = 100%) (Table 5).
In order to validate the prediction performance of

the 41 mRNA biomarkers for cross-platform dataset,
we downloaded from GEO a RNA-seq dataset
(GSE94660 [26]) which contains 21 HCC samples and
21 Non-neoplastic liver samples. We used the 38
genes as variables. The gene expression data in train-
ing microarray first was averaged by the 38 genes and
then was normalized to 0–1 range by a min-max
transformation function: y = (x-min)/(max-min). After

normalization, a SVM model with five-fold cross-val-
idation was used for learning the training set. The
Reads Per Kilobase Million (RPKM) data in testing
RNA-seq containing the 38 genes was normalized
using the min-max transformation and used as blind
testing set. The SVM model achieved high perfor-
mances (AUC = 0.824, precision = 83.3%, accuracy =
78.6%, sensitivity = 71.4%, specificity = 85.7%). The re-
sults showed that lncRNA-related and -coexpressed
mRNA biomarkers had high prediction accuracy
within the training and testing sets.

a)

b)
Fig. 2 Gene ontology biological processes enrichment analysis for 41 mRNA biomarkers. The GO terms were categorized into (a) biological
processes at level 2 and (b) biological processes at level 3
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Discussion
The top four networks we identified were similar to pre-
viously reported results [27–29]. For example, De et al.
used high-density oligoarrays to identify consistent
differences in gene-expression between HCC and normal
liver tissue. Their network analysis of differentially
expressed genes classified cellular and biological
functions related to regulation of gene expression and
post-translational modification in HCV-related primary
HCC. These included Cellular Growth and Proliferation
and Cell-To-Cell Signaling and Interaction in
HCV-related non HCC samples; Cellular Growth and

Proliferation and Cell Cycle in metastasis [30]. Xu et al.
combined Chromatin immunoprecipitation (ChIP) on
chip along with gene expression microarrays to create a
genome-wide scale map of TFCP2 targets as well as the
molecular function and pathways regulated by TFCP2 in
HCC. They found that TFCP2-ChIP targets in
SK-HEP-1 were functionally associated with cancer, cell
movement, cell cycle, cell-to-cell signaling and inter-
action, cellular growth and proliferation [28]. Das et al.
performed gene expression profiling between two groups
of patients with HCV: one with HCC recurrence and
second without recurrent HCC and revealed 194 differ-
entially regulated genes between the two groups. They
found that under-expressed genes were associated not
only with HCC recurrence, but also with regulation of
the innate immune response, cell-to-cell signaling and
interaction, and the inflammatory response [29].
The Signaling, Disease, Metabolism, Cell Cycle,

Immune system, and Gene Expression pathways linked
with the 41 mRNA biomarkers were also reported in
previous findings [22–25]. For example, two main
pathogenic mechanisms were involved during hepatocar-
cinogenesis: (1) cirrhosis associated with hepatic regen-
eration after tissue damage caused by hepatitis infection,
toxins or metabolic influences, and (2) mutations

Table 4 Pathway analysis for the 41 mRNA biomarkers

Pathway ID Pathway Name Molecule AE

1,430,728 Metabolism DTYMK;DBH;HADHA;KYNU;SRD5A2 5

109,582 Hemostasis F11;SOD1;SLC3A2 3

1,640,170 Cell Cycle CDK4;NUF2;TAOK1 3

69,278 Cell Cycle, Mitotic CDK4;NUF2;TAOK1 3

74,160 Gene Expression NR1I2;RPSA;F11 3

162,582 Signal Transduction HEBP1;SPP1 2

1,643,685 Disease SPP1;RPSA 2

200,050 Calcineurin-regulated NFAT-dependent transcription in lymphocytes CDK4;SLC3A2 2

200,170 Nongenotropic Androgen signaling SHBG;PELP1 2

212,436 Generic Transcription Pathway NR1I2;F11 2

382,551 Transmembrane transport of small molecules FLVCR1;SLC3A2 2

453,277 Mitotic M-M/G1 phases NUF2;TAOK1 2

556,833 Metabolism of lipids and lipoproteins HADHA;SRD5A2 2

68,877 Mitotic Prometaphase NUF2;TAOK1 2

68,886 M Phase NUF2;TAOK1 2

69,306 DNA Replication NUF2;TAOK1 2

71,291 Metabolism of amino acids and derivatives DBH;KYNU 2

hsa00380 Tryptophan metabolism KYNU;HADHA 2

hsa04010 MAPK signaling pathway MAPKAPK5;TAOK1 2

hsa04142 Lysosome CTSO;CTSO 2

hsa04510 Focal adhesion SPP1;MYLK 2

hsa04620 Toll-like receptor signaling pathway SPP1;CTSO 2

Table 5 Validation with SVM for the 41 mRNA biomarkers

Predicted Training set Testing set RNA Testing set

HCC Normal HCC Normal HCC Normal

HCC 7 0 7 0 15 3

normal 1 8 1 8 6 18

Precision 100% 100% 83.3%

Accuracy 93.8% 93.8% 78.6%

Sensitivity 87.5% 87.5% 71.4%

Specificity 100% 100% 85.7%

AUC 1 0.984 0.824
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occurring in single or multiple oncogenes or tumor
suppressor genes. Both mechanisms were linked in sev-
eral important cellular signaling pathways. These signal
pathways are of interest from a therapeutic perspective,
because targeting them might help to reverse, delay or
prevent tumorigenesis [24]. Numerous signaling mod-
ules including some related to growth factor signaling
(e.g., IGF, EGF, PDGF, FGF, HGF), cell differentiation
(WNT, Hedgehog, Notch), and angiogenesis (VEGF)
have become a major source of targets for novel therap-
ies in HCC. Different molecular mechanisms have been
shown to induce aberrant pathway activation, such as
point mutations, chromosomal aberrations, and epige-
netically driven down-regulation [25]. Huang et al. inves-
tigated the role of EGF-EGFR signaling pathway in the
development of human hepatocellular carcinoma (HCC)
inflammatory environment by measuring the gene pro-
files of inflammatory cytokines from HCC. They found
that HCC proliferation, metastasis and production of
inflammatory cytokines were regulated via EGF-EGFR
signaling pathways, which represent potential thera-
peutic targets for HCC [23].
Some biomarkers and their association with HCC

already have been reported. For example, CDK4 (Cyclin
Dependent Kinase 4) has been implicated in a number
of cancer types. Jin et al. demonstrated the activation of
cdk4 triggers and inhibitors of cdk4 for the prevention/
treatment of Non-alcoholic Fatty Liver Disease [31].
Secreted phosphoprotein-1 (SPP1) was found to be over-
expressed in metastatic hepatocellular carcinoma (HCC),
and had potential to act as both a diagnostic marker and
a therapeutic target for HCC [32]. Li et al. found that
downregulation of Superoxide Dismutase 1 (SOD1) was
correlated with histopathological grading and might be a
good candidate gene for HCC [33].
LncRNA/mRNA expression profiling has been widely

used for biomarker discovery of cancers, for example,
liver cancer, gastric cancer, bladder cancer, colon cancer,
pancreatic cancer, laryngeal cancer, and colorectal cancer.
This is because LncRNAs is important in identifying
biomarkers for various human cancers. Unraveling the
co-expression pattern between mRNAs and lncRNAs can
further help researchers better understand the mechanism
of various human cancers. The lncRNA-related and -coex-
pressed method to detect mRNA biomarkers we pre-
sented in the study can work not only for HCC but also
for all other human cancers.
The advantage of the lncRNA-related and -coexpressed

method to detect mRNA biomarkers is that we consider
the co-expression between mRNA and lncRNA, filter out
some unimportant mRNAs and lncRNAs by setting sig-
nificant threshold, and focus on the most important
mRNAs and lncRNAs and their coexpressed networks.
Compared with the original findings from the datasets

(GSE58043, GSE89186, GSE64631, and GSE55191, http://
www.ncbi.nlm.nih.gov/geo) [14–16], it shows that we
found the Endocrine System Development and Function
as top network associated with liver cancer. This finding is
consistent with the fact that liver abnormalities have
strong association with endocrine diseases [34, 35]. It
would be difficult to discover the Endocrine System De-
velopment and Function as top network without using
lncRNAs’ coexpression as one kind of filter. As shown in
the result section, there are 3543 significantly differentially
expressed mRNA biomarkers at first. It is the lncRNA
coexpression filter in our method that shortens the num-
ber of biomarker candidates and unravels the final 41
mRNAs (38 genes) which functionally link to the
Endocrine System Development and Function.
There is a limitation of the study with small sample

size. We have tried our best to collect all the four
available LncRNA/mRNA expression profiling related to
HCC [14–16]. In the future, we will continue to collect
HCC LncRNA/mRNA expression profiling data with our
collaborators.

Conclusion
We developed a lncRNA-related and -coexpressed
method to detect mRNA biomarkers with HCC. Top
networks such as “Endocrine System Development and
Function, Molecular Transport, Small Molecule
Biochemistry” and enriched pathways such as Cell Cycle,
Signaling, Metabolism, and Immune System were also
discovered. Unraveling these intricate networks and
pathways is essential to understanding the biological
mechanisms of HCC development and progression. Our
method has the potential to provide a basis for biomarker
identification in HCC or other diseases.
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