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Abstract 

Hispanic populations are highly heterogeneous despite being grouped together as 

a conglomerate population; this makes an accurate panel of ancestry informative markers 

(AIMs) especially important for human identification.   

In Chapter 2, the Genomic Origins and Admixture in Latinos (GOAL) dataset 

containing 494,886 SNPs was used for SNP ascertainment.  Utilizing a country 

attributable variant of Wright’s FST, 234 SNPs were selected for biogeographic ancestry 

(BGA) determination by tailoring each SNP to genetic differentiation of specific 

populations.  Accuracy of BGA prediction was tested using multinomial logistic 

regression (MLR) and as few as 55 SNPs were robust to 90% for all populations studied.  

The panel of 234 SNPs was compressed by 65.8% to 80 SNPs by decreasing the 

influence of Honduras and the Dominican Republic SNPs with high country attributable 

mean FST values in favor of additional SNPs for Colombia, Cuba, and Puerto Rico; this 

balanced small panel size with classification accuracy.  



 

In Chapter 3, the Setser80 Hispanic AIMs panel was tested against the panels of 

128 SNPs developed by the Seldin group and 55 SNPs developed by the Kidd group 

using STRUCTURE, PCA, a naïve Bayesian classifier and MLR.  In STRUCTURE, the 

Setser80 was able to distinguish Honduras, the Dominican Republic, and Colombia at 

K=4, where the Seldin and Kidd panels were optimized at K=3 and distinguished only 

Honduras and the Dominican Republic; similar results were obtained by PCA.  The 

GOAL dataset was combined with the Admixed American super-population from the 

1000 Genomes Project to test the panel on an expanded dataset of seven populations.  

Overall, the Setser80 had superior results to the Seldin and Kidd panels with 91.5% 

accuracy by naïve Bayesian classifier and 93.2% by MLR.  As an indication of its 

portability, the Setser80 had accuracies of  >98% for Peru and >80% for Mexicans living 

in Los Angeles, which were not involved in SNP ascertainment.  Given its accuracy and 

lack of overlap, the Setser80 may supplement existing panels for more granular Hispanic 

BGA determination. 

In Chapter 4, the application of allele frequencies to forensic genetics, genealogy, 

and clinical genetics are discussed as well as future directions and ethical considerations. 
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 Where are you from?  This seemingly innocuous question is deceptively complex with 

varied levels of meaning.  One small question can mean “where do you live?”, “where have you 

lived?”, “where does your family live?”, “where were you born?”, etc..  With modern geographic 

mobility, it often means “where are your ancestors from?”  The answer to this question may also 

be different, depending on how far back in time you consider.  This is especially true of 

individuals of Hispanic descent, where the mixing of ancestors from different regions of the 

world was relatively recent.  

 Colombian Contact began in 1492 with the arrival of Christopher Colombus in the New 

World.  In combination with the beginning of the Trans-Atlantic Slave Trade in 15251, the New 

World was populated with Europeans, Africans, and Indigenous Peoples of Asian ancestry 

already living there.  It is this intermixing of populations of very different origins and subsequent 

interbreeding that gives rise to a phenomenon called admixture.  The reintroduction of 

populations that have been isolated from each other over time is responsible for the creation of 

admixture such as that seen in Hispanic populations.  In fact, all people could be considered 

admixed at some point in history2, 3.  The most extreme case is the ~3% admixture with a 

separate species, Homo neanderthalensis, that remains in modern Homo sapiens4. 

Genetic differentiation is a function of the length of time a population has been isolated 

and the rate at which mutations accumulate and are passed to the next generation as substitutions.  

Genetic differentiation between global populations is based on the migration of different groups 

of people out of Africa and across the world.   
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1.1  Migration and Admixture 

1.1.2  From East Asians to Indigenous Peoples 

For instance, East Asians and Siberians migrated across the Bering Strait at least 15,000 

years ago5-7, and, with a single nucleotide polymorphism (SNP) mutation rate of 10-8 mutations 

per generation8, numerous changes to the genetic code likely occurred during that time.  

Subsequently, genetic drift and founder effects differentiated the Asian ancestral populations 

[often genetically represented by Han Chinese, Beijing (CHB) and Japan, Tokyo (JPT)] from the 

Indigenous Peoples who settled North and South America.  In combination with the 60 mutations 

per generation de novo mutation rate9 and 28 years per generation2, an estimated 32,000 SNPs 

may have arisen in Native American and Amerindian populations relative to East Asians and 

Siberians.  Since the migration from the Bering Strait to the southern tip of South America took 

place over time (Figure 1), the SNPs that arose during that time can highlight differences 

between indigenous populations and, when coupled with their geography, can further refine the 

likely nationalities of Hispanic individuals by combining genetics with geographic mapping.   
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1.1.3 Hispanic Admixture Complexity 

Hispanic biogeographic ancestry (BGA) is particularly problematic due to the difficulty 

of parsing out its three-way admixture that often has a limited degree of differentiation between 

closely related populations13, 14.  Admixture has traditionally been studied where there are two 

continental contributing populations, as in African Americans (~70% African Niger-

Kordofanian, ~30% European)15, which serves as a simpler model for admixture analysis16, 17.  

There are many panels to determine ancestry, though most of the earlier panels are continental in 

nature, including: Seldin12818, Galanter et al.’s 44619, Kidd5520, Genetic Atlas2, and the 

Genographic Project21.  They employ a technique called admixture mapping (MALD = mapping 

by admixture linkage disequilibrium) whereby they determine percent ancestry for contributing 

populations (most often by continent) based on origins of segments of chromosomes in linkage 

disequilibrium22.  My study focuses on determining biogeographic ancestry (de facto country of 

origin) within the Caribbean, Central and South America directly rather than the percentages of 

African, Caucasian, and Indigenous contributions as seen in Figure 2. 

 

Figure 1: Migration Paths Through the Americas  
Potential migration routes used as Beringia/Amerindian populations settled in the Americas.  
This figure depicts evidence from mtDNA which was not tested in my study but still relevant 
when considering source populations to modern Hispanic populations.  Left borrowed from10 
and right borrowed from11. 
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As the Hispanic population in the United States grows, it has become increasingly 

important to identify the BGA of heterogeneous Hispanic populations to a similar degree as 

European populations.  European populations have been researched extensively23 and their 

relative homogeneity has made these populations easier to study (Figure 3).  In the first attempts 

to capture human genetic variation, HapMap Phase I began with 210 individuals approximately 

evenly distributed across 3-4 populations: one European population from Utah (CEU), one 

African population from Ibadan, Nigeria (YRI), and Asian populations represented by Han 

Chinese, Beijing (CHB) and Tokyo, Japan (JPT)8; and no representation of Hispanic populations.  

The 1000 Genomes Project Phase I also began with 60 of 179 (33.51%) samples from CEU 

alone (and those may include some of the same individuals)24.  Of the 2,504 individuals in the 

current Phase III 1000G super-populations, the European super-population has 503 (20.09%) 

individuals, while the Admixed American super-population is still under-represented with only 

347 (13.86%) individuals25.  The strategy in documenting human genetic diversity has been to 

explore the European populations prior to more diverse populations such as Hispanics.  Genetic 

Figure 2: Patterns of Sex-Biased Admixture in Cuba   
Map of mtDNA contributing population on the left and Y chromosome contributing 
population on the right.  Both images borrowed from12. 
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diversity studies are shifting towards Hispanic populations as more data is available to capture 

increasingly diverse genetic information and better represent real human populations. 

 

 

However, SNPs specific to Hispanic populations have not been widely studied, and when 

they are, they are aimed at a conglomerate population of Hispanics with disparate backgrounds. 

Lack of appropriate Hispanic reference samples during SNP ascertainment leaves the possibility 

that loci that are monomorphic in more traditionally studied populations are actually 

polymorphic in Hispanic populations.  Data from Illumina’s Infinium Multi-Ethnic AMR/AFR 

BeadChip26, may identify some of these SNPs as it includes populations from Barbados, Brazil, 

Figure 3: Percentage of GWAS Studies of Various Populations   
The overwhelmingly lopsided study of Europeans in comparison to any other population.  
Image borrowed from23. 
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Colombia, Cuba, Dominican Republic, Honduras, Jamaica, Puerto Rico, etc.27.  When evaluating 

differences in populations, treatment plans, etc., more homogeneous samples are easier to 

separate/distinguish.  In general, the effect of variance on statistical significance follows the 

general biostatistics concept of the bias-variance tradeoff: the higher the variance between 

compared samples, the lower the probability that those samples will be statistically significant28.   

1.2 Project Design & Chapter Summary 

Many of the smaller countries in Mesoamerica and the Caribbean should be relatively 

homogenous and, aside from large cities, should have limited admixture originating within the 

last 4-5 generations.  I hypothesize that it is possible to accurately predict ancestry within 

heterogeneous Hispanic populations using a small panel of ancestry informative SNPs.  

Summary level allelic frequencies from this panel can be used to classify specific BGA in the 

future (see Appendix). 

In order to test this, I conducted a series of experiments to determine whether there was 

sufficient support for my hypothesis.  For Specific Aim 1, I curated a set of SNPs that can 

differentiate Hispanic populations.  I accomplished this by trimming my dataset for high quality 

alleles, independent assortment of loci, and genetic differentiation.  To increase the efficiency of 

the panel I selected more SNPs for the low differentiating populations to counteract the ease of 

separation of the others, as seen in Chapter 2.  In Specific Aim 2, I compared and contrasted my 

Hispanic BGA ancestry informative marker (AIMs) panel to pre-existing AIMs panels for 

efficacy in the differentiation of Hispanic populations, as described in Chapter 3.   

I discuss how I created the Setser80 Hispanic AIMs panel in Chapter 2.  I used LD and a 

variant of Wright’s FST
29 to create a candidate list of 1509 SNPs which showed great genetic 

differentiation30 focused on a particular population.  Using STRUCTURE31 and principal 
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components analysis (PCA), I tested the SNP panel on the SNP ascertainment population, the 

Genomic Origins and Admixture in Latinos (GOAL)32, and 1000 Genomes Admixed American 

publically available neutral dataset25.  Based on those results, I refined the panel by allocating 

more SNPs to the low differentiating populations during panel compression to gain further 

resolution.  I continued forward with the Setser80 as a minimal panel that achieved K = 4 

populations in STRUCTURE31 and retained clustering in PCA. 

In Chapter 3, I compared the Setser80, to two highly cited AIMs panels in the literature: 

the Seldin12818 and the Kidd5520 using STRUCTURE analysis, PCA, and micro-simulation.  

STRUCTURE analysis31 optimized the Setser80 at K=4, while the Seldin128 and the Kidd55 

achieved K=3.  Comparing PCA among the three panels, the Setser80 performed better than the 

Kidd55 which did not show any discernable pattern or clustering.  Micro-simulations based on 

allele frequencies for populations in the GOAL and 1000 Genomes Phase III studies were used 

to create simulated datasets for all three panels.  Some loci from the comparison panels had more 

than 10% of the individuals missing a genotype and thus that locus was excluded from our 

micro-simulations, consistent with the QC threshold used in the SNP ascertainment of the 

Setser80 Hispanic AIMs panel.  Using Snipper 2.5 app suite13 on the micro-simulations, I was 

able to accurately predict BGA, both by a naïve Bayesian classifier and multinomial logistic 

regression (MLR) for each panel.  The Setser80 demonstrated superior results to the comparison 

panels for BGA prediction.  Additionally, the Setser80 was able to accurately predict BGA on 

two populations not included in the SNP ascertainment, Peru from Lima (PEL) and Mexicans 

living in Los Angeles (MXL).   
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1.3 Instruments of Ancestry Determination 

For my analysis of Hispanic BGA, I used various instruments of ancestry determination 

to select ancestry informative markers.  I utilized linkage disequilibrium, which is based on the 

length of chromosome segments originating from a common ancestor2; and FST, which is used to 

determine how different two populations are from each other compared to their internal 

diversity31.  I also used two clustering methods: STRUCTURE, which is a commonly used18, 20, 

34, 35 clustering algorithm that decides how many populations are in a dataset and membership of 

each individual (or portion thereof) in those populations; and PCA which is the gold standard in 

ancestry analysis18, 20, 34-37 clustering individuals that are more alike together to explain the 

greatest amount of variation.  Finally, I tested the selected AIMs by Snipper’s naïve Bayesian 

classification and MLR, which are commonly used to predict BGA13, 38-47. 

1.3.1 Ancestry Informative Markers 

Ancestry informative markers (AIMs) are locations in the DNA that have diverged from 

each other since the last common ancestor and thus can be used to empirically determine BGA.  

There are various types of AIMs: insertion/deletions (indels), microhaplotypes, mtDNA, Y 

chromosome, and SNPs.  A SNP is a single point within the DNA sequence where an individual 

sample may have an alternate nitrogenous base (i.e. allele) than the reference.  They arise via 

random mutations that occur over time, which once passed down through the germ line to the 

next generation becomes a substitution and contributes to genetic drift of two populations away 

from each other.  Due to their small size, SNPs are particularly useful in the analysis of highly 

degraded DNA. 

The ability of an AIMs panel to differentiate populations relies heavily on the use of 

relevant reference samples during panel design.  The ascertainment process for Hispanic 
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populations is much more complex when the appropriate reference samples have yet to be 

created, resulting in the reliance on the continental ancestral lineages (African, European, and 

Amerindian).  The process is complicated due to the three-way admixture which is present in 

Hispanic individuals.  Additionally, Amerindian data is often unavailable and therefore East 

Asian samples are typically used as proxies8, 24.  The use of African, European, and East Asian as 

the three ancestral lineages is problematic, because it does not account for the long period of 

isolation Indigenous Peoples had from East Asians after the crossing of Beringia10 or Western 

Eurasia as a contributor to their genomes48, 49. 

Previously, researchers focused on global AIMs panels18-20, which were calibrated to 

determine continental origins with a focus across Eurasia, whereas the AIMs described here were 

designed to supplement global AIMs panels when the sample is presumed to be of Hispanic 

origin.  Elhaik et al. used 40,000 – 130,000 SNPs with complex statistical analysis to 

differentiate Hispanic ancestries21; however, this would be very difficult to implement in most 

forensic labs or environments with limited resources.  In general, there is a trade-off between the 

greater resolution provided by more SNPs and restricting a panel to a practical size.   

Defining continental origin is more straightforward because populations have had 

thousands of years of genetic history to accumulate substitutions in their DNA, creating alternate 

alleles with respect to the reference allele.  Although continental AIMs have been largely defined 

in numerous populations, space remains to create additional panels on a finer regional/national 

scale.  Loci that may be monomorphic in one population may in fact have rich polymorphism in 

another (e.g. rs1689198241, rs180041441, 50, rs381180150, and rs67150).  Additionally, isolated 

populations may have private alleles that are yet to be identified.  Having not found AIMs panels 

for BGA prediction specific to the Caribbean and Central/South America, I designed my own 
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panel to predict the specific BGA for Hispanic populations using various bioinformatic tools. 

1.3.2 Biostatistics & Bioinformatics  

In order to interrogate a dataset for AIMs, an array of tools were used to identify 

informative SNPs, visualize the capability to separate populations within the dataset, and 

determine the accuracy of the BGA classification using those SNPs.  To ensure the SNPs I 

selected assorted independently, I filtered the dataset based on LD to create an efficient panel of 

SNPs that can still distinguish the desired populations.  Weir & Cockerham’s estimator51 of 

Wright’s FST
29 was calculated as a measure of genetic differentiation in order to select SNPs that 

were very different between populations.  STRUCTURE31 and PCA are two different clustering 

algorithms that were used to determine whether the panel had sufficient discrimination of genetic 

differentiation for the algorithm to separate the populations in the same manner as the actual 

populations.  Finally, we tested the panel’s ability to correctly predict Hispanic BGA using a 

simulated dataset built from the allele frequencies of the actual population data. 

1.3.2.1 Linkage Disequilibrium (LD) 

As seen in Figure 4, linkage equilibrium is a product of chromosomal recombination 

during meiosis, where allele 1A+ at locus 1 and 2A- at locus 2 does not predict that the progeny 

of the parental chromosomes as 1A+, 2A-.  The units of linkage are the centimorgan where one 

centimorgan is the distance between two positions such that 0.01 recombination events occur 

between them in a single generation.  The concrete physical distance corresponding to the 

centimorgan is 10-160kbp in coding regions, but varies widely across the genome52.  Linkage 

disequilibrium (LD) is measured on a scale of 0 to 1 where |D’|=1 represents complete LD52, 53.  

In order to maximize the information contained in a SNP panel, LD is undesirable as the goal is 

to condense as much information into the fewest number of SNPs53, as seen in my Hispanic 
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AIMs panel.  When the SNPs in a panel are in complete linkage equilibrium, and hence 

segregate independently, the product rule can be applied such that the random match probability 

is the product of the allele frequencies at each locus. 

 

 

 

 

1.3.2.2 FST for Population Differentiation 

Ding et al. compared five measures of genetic differentiation, and reported 

Informativeness for Assignment Measure In and FST statistics performed the best 55.		Conversely, 

Wright’s FST
29 is the correlation between gametes within a subpopulation with respect to the total 

population33.  Weir & Cockerham extended the FST concept to finite populations such as that 

seen in this study51.  Allele frequencies are intrinsic to FST, specifically the frequency of the most 

common allele56 where FST is dependent on the diversity of the population.  If M is the allele 

frequency of the most frequent allele and F is the genetic differentiation, the highest level of FST 

in the case of two alleles, is where M = 0.5 (Figure 5)56.  Nei’s GST (similar to FST) is based on 

the relationship between the heterozygosity of the total population and the heterozygosity of the 

sub-population, and complementarily the homozygosity (Eqn 1)56, 33.  The Wahlund principal 

Figure 4: Recombination and Linkage Equilibrium   
Illustration showing how alleles at different loci assort 
independently due to the process of recombination.  
Borrowed from54. 
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ensures that the homozygosity of the subpopulation will always be greater than that of the total 

population which, combined with the knowledge that the homozygosity of the sub-population 

must be less than 1, defines GST as greater than 0 and less than 1 (Eqn 2)33.  Due to the 

heterozygosity of the total population being less than 1, FST is the complement of the ratio of the 

heterozygosities of the sub-population over the total population and it “cannot exceed the mean 

homozygosity across subpopulations” (Eqn 3)33.  

 

 

  

 

            

 

Eqn 1 

Eqn 2 

Eqn 3 

Figure 5: The Relationship Between F and the Frequency of the Most 
Frequent Allele (M)   
In a two-allele case (binary SNP) FST increases as M approaches 0.5.  Borrowed 
from56 and reused with permission of the Genetics Society of America. 
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 1.3.2.3 Clustering Algorithms 

To visualize the separation of subpopulations, I used STRUCTURE31 and principal 

components analysis (PCA) via EIGENSOFT57.  STRUCTURE31 is a model-based Bayesian 

clustering method that estimates the number of populations in a dataset by using an algorithm 

that includes prior probabilities.  PCA is a different clustering method that uses dimensionality 

reduction to align axes of variation in similar directions into more condensed eigenvectors58.  

Both STRUCTURE18, 20, 34, 35 and PCA18, 20, 34-37 are commonly used in the design and evaluation 

of AIMs panels.  I used these two tools to assess each SNP panel’s ability to distinguish between 

the populations provided with the original dataset download.   

1.3.2.4 Modeling & BGA Classification via Snipper 2.5 App Suite 

Naive Bayesian classification and multinomial logistic regression (MLR)39 were 

conducted using the Snipper 2.5 app suite13.  This web-based classifier was designed for ancestry 

analysis, particularly in forensics, and allows the user to enter custom spreadsheet training sets13, 

as we have used here.  This Bayesian-model based classifier is similar to STRUCTURE31 but for 

single samples13.  While STRUCTURE31 gives the proportion of membership in each computer 

determined population, naïve Bayes classifies the sample as belonging to the population with the 

highest “proportion”.  Multiple linear regression uses metric allele frequencies as the 

independent variable where my desired result is a country name (which is categorical); with 

logarithmic transformation MLR was a logical choice for BGA prediction59.  In the past, Snipper 

2.5 app suite has most often been used to classify externally visible characteristics [e.g.  

eye38, 40, 41 and hair color42, 43, and ancestry via the SNPforID 34-plex44, Indels45, and 

development35 and refinement of the EUROFORGEN panel46, 47.  Ancestry analysis in admixed 

Hispanic populations has been conducted using Snipper on populations from Bolivia60, 61, 
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Venezuela40, as well as Brazil40; thus, we considered it robust for classification of admixed 

populations.   

 

1.4 Conclusions 

Allele frequencies can be employed to address many different types of problems: 

forensic, anthropological, pharmacological, clinical, and genealogical.  I have created a panel of 

ancestry informative SNPs that can distinguish BGA down to country sized regions for closely 

related Hispanic populations.  My research is innovative, because it accurately establishes BGA 

beyond general ethnicity in a highly efficient SNP panel focused on Hispanic populations that 

have not been described as extensively as European, African, and Asian populations.  

Although these “races” and/or “ethnicities” are commonly used, scientific enquiry does 

not support the use of externally visible characteristics as a proxy for more subtle ancestry 

information that is more continuous than discrete62.  Use of AIMs is more objective and uses 

algorithms designed to differentiate closely related populations for accurate prediction of BGA.  

Using two types of clustering software, I designed a SNP panel that accurately predicts BGA of 

Hispanic populations by two separate classification algorithms.  The underlying technique of 

BGA determination is the allele frequencies of the populations in question.   They can be applied 

in forensics to add weight to the association of crime scene evidence to reference sample and 

also to determine the origins of anthropological samples and detect possible migration patterns.  

Allele frequencies can also be used to determine which ancestries are most at risk for which 

diseases or have deleterious reactions to specific pharmaceuticals.  Importantly, this information 

can be used in clinical studies to ensure that the effects are real and not an artifact of the ancestry 

of the cases and controls.  They are also the foundation of genetic genealogical where they are 
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used to determine ancestry percentages across the world and potentially find distant relatives.  

Although my research began from a forensic point of view, the utility of allele frequency 

determination applies to a wide variety of genetic questions. 
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2.1 Introduction  

The overall goal of this project was to design a panel of ancestry informative markers 

(AIMs) that could separate heterogeneous Hispanic populations.  A panel to differentiate 

country-sized populations into their respective biogeographic ancestries (BGA) has not been 

accomplished for Hispanic populations.  Using data from five populations of the Genomic 

Origins and Admixture in Latinos (GOAL)1 study, I designed a set of AIMs panels that were 

able to correctly predict BGA with limited information about the individual.  I hypothesized that 

it was possible to accurately assign specific BGA within Hispanic populations using a small set 

of ancestry informative markers. 

There are nearly as many methods for single nucleotide polymorphism (SNP) 

ascertainment as there are published AIMs panels.  Older panels use large numbers of SNPs (e.g. 

Price et al., 2007)2, while modern panels use high quality SNPs that are carefully selected by 

various methods.  Candidate SNPs may be selected using raw allele frequency differential across 

populations δ (delta)3, 4, FST
5-7, Rosenberg’s In

6, 7, or SNP weights from principal components 

analysis (PCA)7, 8.  Their candidate SNPs have been narrowed down further using locus specific 

branch length (LSBL)5 or receiver operating curves (ROC)7. 

While older ancestry estimations rely on a large number of SNPs to accurately predict 

BGA2, 9, 10, more recently, smaller curated SNP panels have demonstrated their utility.  As more 

information on global genetic diversity has become available {e.g. Human Genome Diversity 

Project – Centre d’Etude du Polymorphisme Humain (HGDP-CEPH)11, HapMap12, and The 

1000 Genomes Project13}, research groups have carefully selected, condensed SNP panels and 

compared them to panels using large numbers (~100,000) of randomly selected SNPs to 

demonstrate that high quality SNPs provide similar results14, 15.  C. Phillips et al. designed a 



23	

panel of 34 AIMs by selecting SNPs with substantial allele frequency differences between three 

populations3.  Paschou et al. demonstrated that, using a hierarchical decision tree based 

approach, they could achieve comparable results with as few as 0.1% of the original 650,000 

SNPs16.  Galanter et al. employed locus-specific branch length (LSBL) using FST statistics and 

neighbor joining trees to estimate genetic distance5, 17.   They selected 446 AIMs for admixture 

mapping of Latin American populations and distinguished populations within 10% of the values 

from genome-wide data, for 95% of the samples5.  Huerta-Chagoya et al. used the first principal 

component SNP weights to differentiate European and Native American ancestral contributions 

within Mexican mestizos and found their population discernment with 32 AIMs8 comparable to 

previously existing panels5, 14, 18.   

These methods all yielded viable SNP panels.  For comparison, Zeng et al. tested three 

statistical methods (δ, FST, and In) to design AIMs panels using Ancestry SNPMiner19 in 

combination with PCA and receiver operating curves (ROC)7.  Utilizing the HapMap III data20 

on African Americans, Caucasians, East Asians, and Hispanic Americans; they performed PCA 

on all permutations of the four populations and three statistical methods to select the top 30 SNPs 

each.  The quality of clustering for each panel was determined using PCA plots and ROC curves 

to select diagnostic/prediction thresholds that maximize sensitivity (true positive rate) while 

minimizing the complement of specificity (false positive rate) and define the PC 1 cutoff value21.  

Once researchers established the accuracy of BGA with smaller, high quality panels, the 

field expanded to admixture proportions22 and admixture mapping2.  Such panels could 

differentiate populations, depending on the SNP selection method.  Various AIMs panels have 

been published on specific regions of the world including Brazil23, Pacifiplex24, Ecuador25, 

Malaysia26, etc.  Given the increasing number of panels, C. Phillips gives a comprehensive 
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overview of AIMs selection methods27.  In 2016, Soundararajan et al. reviewed 21 existing 

ancestry informative SNP panels and found only 46 of the 1397 total SNPs were present in three 

or more panels28. 

My Hispanic AIMs panel uses a variation of Wright’s FST method29, which focuses on the 

four pairwise comparisons with a country in common (country attributable mean FST), for a more 

granular BGA when Hispanic ancestry is presumed.  I chose FST statistics based on the results 

from Ding et al. due to 1) better correlation than other AIMs statistics6, 2) direct incorporation of 

the degree of heterozygosity30, and 3) it is more common in recent literature5, 7, 31.  For my 

panels, all SNPs where country attributable mean FST ≥ 0.15, were ranked by highest mean FST 

and balanced based on the number of SNPs attributed to each country as 1st or 2nd country 

attributable mean FST.  

 

2.2 Materials and Methods 

2.2.1 The Genomic Origins and Admixture in Latinos (GOAL) Study 

I used 160 unrelated individuals from the GOAL study whose samples were previously 

collected in South Florida as family trios in which three of four grandparents were from the same 

country1.  My chosen populations consisted of Honduras (HUR, n = 13), the Dominican 

Republic (DOM, n = 21), Colombia (COL, n = 53), Cuba (CUB, n = 55), and Puerto Rico (PUR, 

n = 18)1 and includes SNP data from 897,336 autosomal SNPs across all chromosomes with 

paired phenotypic and genotypic information.   

 2.2.2 SNP Ascertainment 

SNPs were filtered for linkage disequilibrium (LD), missingness, and minor allele 

frequency (maf) using PLINK v.1.932.  To maximize the value of the entire panel, SNPs were 
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removed if LD ≥ 0.7 and did not assort independently of other SNPs, leaving 531,878 SNPs.  

Additionally, I removed SNPs where the number of samples not genotyped at that locus was ≥ 

0.10 so that BGA determination was not made on incomplete information for the remaining 

522,083 SNPs.  Further quality control included filtering out SNPs with a minor allele frequency 

(maf) < 0.01, resulting in a dataset of 494,886. 

2.2.3 Overview of FST 

FST statistics were calculated for the ten pairwise comparisons at each of 494,886 SNPs  

and 1,578 SNPs were identified where at least one pairwise FST ≥ 0.14.  The 1,509 SNPs that 

exceeded FST ≥ 0.15 for at least one pairwise comparisons had their FST statistics averaged by 

country (e.g. HUR where HUR vs. DOM, HUR vs. COL, HUR vs. CUB, and HUR vs. PUR 

were averaged) which became the country attributable mean FST for that country.  The country 

with the highest country attributable mean FST per SNP was assigned as the 1st country and the 

next highest as the 2nd country.   

 2.2.4 AIMs Panel Creation 

From the 1,509, I selected 234 SNPs using the country attributable mean FST and pared 

the panel down to 80 SNPs.  The Setser80 excludes those SNPs with paired HUR and DOM as 

1st and 2nd country.  Additionally, I removed SNPs with lower 1st country attributable mean FST 

SNPs for HUR and DOM and retained those SNPs where COL or CUB was the 1st country.   

Finally, I verified that the AIMs I selected were not present in other AIMs panels to 

ensure their utility as a supplementary panel.  I compared my AIMs to those used in multiple 

studies14, 28, 31, both directly and by LD ≤ 0.7 using the LDMatrix function within the LDLink 

website33 hosted by National Cancer Institute. 
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2.2.5 Alternative SNP Ascertainment Methods  

Although I devised country attributable mean FST as a way to broaden the search for 

potentially informative SNPs per country, there are other common methods used in population 

genetics studies.  First, I calculated the FST values of ~500,000 SNPs and ranked them.  For 

method 1, I selected the top 234 SNPs from the 1509 based solely on mean FST, or the “Top 234 

mean FST”.  In method 2, I selected the Top 20 and Top 10 pairwise FST values for each pairwise 

comparison; there were 99 unique SNPs in the “99 Top 20 SNPs and 51 unique SNPs in the “51 

Top 10 SNPs”.  For method 3, I selected any SNP with FST ≥ 0.15 for any pairwise comparison, 

recalculated the FST, and chose those that had any four or five pairwise comparisons (not 

exclusively country attributable mean FST) above threshold as the “131 SNPs from 4 Pairwise”.  

2.2.6 STRUCTURE 

Using a Bayesian model-based clustering algorithm (STRUCTURE) v. 2.3.434, I assessed 

whether the SNP panels could distinguish populations.  In this program, each vertical line 

represents an individual and the different colors represent the computationally determined 

ancestry proportions for each individual.  STRUCTURE34 analysis was conducted using 10,000 

burn-in and 100,000 Monte Carlo Markov Chain (MCMC) repetitions with 10 iterations per level 

of K (K=2 to K=7) for the two Setser panels34.  I applied the Evanno method35 via STRUCTURE 

Harvester36 at each of the computer’s estimated number of populations (K), and selected those 

with the most likely number of clusters (populations).  The final STRUCTURE diagrams for 

each SNP panel were aligned by CLUMPP37 and averaged by Distruct38.  

Quantifiable genetic proportions, which underlie the STRUCTURE34 algorithm, provide 

continuous, quantifiable genetic proportions using the pre-defined K level to determine the 

number of clusters.  For the most likely level of K35, I aligned the populations and averaged the 
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ten iterations in order to report ancestry proportion clusters per population.  The underlying 

numerical genetic proportions served to quantify the degree of genetic difference of each 

population. 

2.2.7 Principal Components Analysis (PCA) 

Each dataset was also evaluated by PCA, a dimensionality reduction clustering method, 

using EIGENSOFT v.6.1.439 and plotted using the first three eigenvectors.  Genesis40 was used 

for improved visualization of clustering.  

2.2.8 Classification by Naïve Bayesian and Multinomial Logistic Regression 

For the prediction of biogeographic ancestry, I utilized the web-based program Snipper 

2.5 app suite3.  This program uses –log(likelihood) as the basis for a naïve Bayesian classifier 

and multinomial logistic regression. 

 

2.3 Results 

 2.3.1 Quality Control 

 I used PLINK v.1.932 to prune the dataset of n=244 individuals, retaining n=160 

unrelated individuals and unlinked, high quality SNPs with great genetic differentiation41.  The 

GOAL study was collected as family trios; therefore I removed 84 “children” to maximize the 

size of an unrelated dataset to n=1601.  Using Plink v.1.932, I filtered for LD ≤ 0.7 and reduced 

the 897,336 autosomal SNPs to 531,878.  For quality control, I filtered out missingness ≥ 0.1, 

yielding 522,083 SNPs, and maf < 0.01, yielding 494,886 autosomal SNPs.  Using Weir & 

Cockerham’s estimator42, I selected the 1509 SNPs where FST ≥ 0.15 for at least one pairwise 

comparison.  Of the 1509, I selected 234 SNPs and a subset of 80 SNPs (Figure 1). 
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Figure 1: SNP Ascertainment Schematic 
 

 

Figure 1: SNP Ascertainment Schematic 
Methods used to select the SNPs used in the Setser234 and Setser80.  Abbreviations  
used: SNPs = single nucleotide polymorphisms, LD = linkage disequilibrium,  
maf = minor allele frequency, Max = maximum, HUR = Honduras, DOM = Dominican 
Republic, COL = Colombia, CUB = Cuba, and PUR = Puerto Rico. 
 
 
 

2.3.2 Genetic Differentiation by FST 

 The FST distributions of the Setser234 and Setser80 were indistinguishable by mean FST 

across all ten pairwise comparisons (Figure 2a) and country attributable mean FST (Figure 2b). 

The mean of the mean FST values for the Setser234 was (mean 0.09441, StDev = 0.01461) and 

was (mean = 0.10516, StDev = 0.01469) for the Setser80, with rs12431505 mean FST = 0.17 

(Figure 2a)(Supplemental Table S2.1).  Comparing the country attributable mean FST, there was 

no appreciable difference in mean as the panel was condensed from Setser234 (country 

attributable mean FST = 0.19124, StDev = 0.03228) to Setser80 (country attributable mean FST = 

0.19174, StDev = 0.04754) (Figure 2b).  The two outliers, rs12435621 and rs12431505, were 
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members of both panels with country attributable mean FST = 0.31 and 0.39, respectively (Figure 

2b)(Supplemental Table S2.2).  

 

Figure 2: FST Distributions of SNPs from Setser234 and Setser80 
  

 
  

Figure 2: FST Distributions of SNPs from Setser234 and Setser80 
a) Distribution of SNPs by mean FST across all ten pairwise comparisons for both panels. 
b) Distribution of SNPs by country attributable mean FST across four pairwise  
comparisons of both panels.  Abbreviations used: SNP = single nucleotide polymorphism. 
 

The proportion of overall SNPs with FST ≥ 0.15 was stable at 32.6% to 33.3%, indicating 

the Setser SNP panels retained high quality SNPs during panel compression (Supplemental Table 

S2.3).  Additionally, high differentiating populations HUR (35% to 23.1%) and DOM (22.6% to 

13.8%) had reduced proportions of attributable SNPs from Setser234 to Setser80 while COL 

(13.5% to 25%) and CUB (16% to 27.5%) increased (Table 1). 

 2.3.3 Alternative SNP Ascertainment Methods 

 To further verify my SNP panels, I selected SNPs by three alternative methods: by 

highest mean FST, by the top 10 – 20 FST values for each pairwise comparison, and the other 

selecting any SNP with FST ≥ 0.15 for any pairwise comparison and a subset where any four 

pairwise comparisons had FST ≥ 0.15.   
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 2.3.3.1 Method 1: Ranked Mean FST 

For comparison, I selected the top 234 SNPs from the 1509 solely by highest mean FST 

and 145 of these SNPs were present in the Setser234 (Table 2).  Of the SNPs present only in the 

Setser234, an additional 21 were attributed to PUR demonstrating that Setser234 was able to 

select SNPs to distinguish populations with lower genetic differentiation.  The 234 SNPs with 

the highest mean FST (mean FST = 0.09 - 0.17) would have excluded SNPs like rs3910480 where 

mean FST = 0.08, but was attributed to COL (1st country attributable mean FST = 0.14) and CUB 

(2nd country attributable mean FST = 0.07), two populations requiring additional SNPs to resolve. 

 2.3.3.2 Method 2: Top 10 and Top 20 Pairwise Comparisons 

 Starting with the dataset of 494,886 SNPs, I selected the SNPs with the 20 highest FST 

values for each pairwise comparison.  After removing duplicates, there were 99 Top 20 SNPs, 82 

of which were present in the Setser234.  For the Top 20 SNPs, the SNPs present in the Setser234 

comprised 35% of the panel and in the Setser80 comprised 67.5% of the panel (Table 2).  Of the 

99 Top 20 SNPs, the 17 not captured by Setser234 were identified from the following 

comparisons: HUR vs. COL = 3, HUR vs. PUR = 1, COL vs. CUB = 4, CUB vs. PUR = 9, and 1 

shared by HUR vs. COL and COL vs. CUB.   Three of these did not have one pairwise FST ≥ 

0.15 and were not present in the 1509.  The others did not meet my criteria because they either 

did not have enough pairwise comparisons above threshold, the pairwise comparisons did not 

have a country in common, or would have been filtered out in the Setser80 as a lower value HUR 

attributed SNP.  Similarly, there were 51 Top 10 SNPs, 49 of which were present in the 

Setser234 comprising 20.9% of the Setser234 and 43.8% of the Setser80 (Table 2).  

  

 



31	

2.3.3.3 Method 3: SNPs with FST ≥ 0.15 for 4 Pairwise Comparisons 

I selected SNPs with FST ≥ 0.15 for any four pairwise comparisons with no regard to 

country resulting in 131 SNPs that met criteria, of which 129 were already in the Setser234. 

These 131 SNPs covered 55.1% of the Setser234 and 62.5% of the Setser80 SNPs, which 

indicated the panel was streamlined from the Setser234 to the Setser80.  Using the country 

attributable FST method, a large proportion of the SNPs identified by the three alternative 

methods were still captured. 

2.3.4 STRUCTURE 

To determine the optimum level of K and utility for population differentiation, I 

interrogated the Setser234 using a Bayesian model-based clustering method, STRUCTURE34, 

followed by the Evanno method35 (as applied in STRUCTURE Harvester36) (Figure 3a).  The 

Setser234 at K=3 identified three distinct clusters with different predominant genetic 

proportions: HUR (Cluster 1 = 0.8529), DOM (Cluster 2 = 0.7888), and COL|CUB|PUR (Table 

3).  It was difficult to determine whether PUR clustered more closely with COL or CUB since all 

three had their highest proportion in Cluster 3: COL (Cluster 3 = 0.6199, Cluster 1 = 0.3376), 

PUR (Cluster 3 = 0.7378, Cluster 1 = 0.1465), and CUB (Cluster 3 = 0.7203, Cluster 2 = 0.235) 

(see Table 3). 

As determined by the Evanno method35, the Setser80 optimized to K=4 where COL was 

differentiated as Cluster 3, (distinguishing it from CUB|PUR) to reveal the final four clusters: 

HUR (Cluster 1 = 0.8290), DOM (Cluster 2 = 0.6976), COL (Cluster 3 = 0.6562), and CUB|PUR 

(Cluster 2 = 0.2892|0.2048, Cluster 3 = 0.0634|0.2969, and Cluster 4 = 0.6125|0.4145) (Table 3).   
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Figure 3: STRUCTURE and PCA of Setser Panels 

   Setser234     

 
 

    Setser80 

 
Figure 3: STRUCTURE and PCA of Setser Panels 
Each plot represents 160 unrelated GOAL individuals and their respective populations.  Figures a 
and c are STRUCTURE34 plots where each vertical line represents one person.  Figures b and d 
are PCA plots created through EIGENSOFT39 where the first three principal components are 
plotted.  Figures a and b use the Setser234 SNP panel (K=3) while c and d use the Setser80 
(K=4).  Abbreviations used: HUR = Honduras, DOM = Dominican Republic, COL = Colombia, 
CUB = Cuba, PUR = Puerto Rico, and PCA = principal components analysis. 

 

2.3.5 Principal Components Analysis (PCA) 

In the PCA of Setser234, HUR, DOM, COL, and CUB|PUR were easily identifiable 

(Figure 3b).  Therefore, separating these three regions using PCA was straightforward: Central 

America (HUR), South America (COL), and Caribbean (DOM, CUB and PUR).  The Dominican 

Republic (DOM) clustered better in STRUCTURE34 as Cluster 2, (Figure 3a), but overlapped 
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more with CUB in PCA as I condensed the panel (Figure 3d).  In contrast, COL clustered better 

in PCA (Figure 3b), but only officially became Cluster 3 in the STRUCTURE34 analysis of 

Setser80, K=4 (Figure 3d).  The decreased clustering of DOM and increased clustering of COL 

in PCA (Figure 3d) as the panel was compressed from 234 to 80 SNPs is a relic of removing 

SNPs attributed to HUR and DOM while enriching for low differentiating populations.   

By observing the first three principal components, it is evident that the Setser80 

quantitatively provides clusters that are less ambiguous than the Setser234.  The increased 

separation is most clear in the first principal component (PC1) where Setser80 PC1=27.8% and 

Setser234 PC1=22.4%.   

2.3.6 BGA Classification 

Utilizing the allele frequencies calculated above, I created five sets of 500 micro-

simulations via a resampling approach to model the data43.  I evaluated the validity the Setser 

panels using the naïve Bayesian classifier and multinomial logistic regression (MLR) classifier 

found in Snipper 2.5 app suite3 to predict Hispanic BGA.  With the nested SNP panels, I used 

Snipper to test the accuracy of prediction of each of country in each panel size.  Additionally, I 

tested an intermediate panel of 188 SNPs as well as panels of 128 and 55 SNPs to mimic the size 

of the 55 SNPs from Kidd et al., 2014 and the 128 SNPs from Kosoy et al., 2009 for comparison 

purposes (see Chapter 3)14, 31.  I found that HUR and COL were robust at as few as 55 SNPs with 

an average 98% accuracy (Figure 4).  For the remaining three countries, there was greater than 

95% accuracy using 80 SNPs.  While 128 SNPs would have resulted in 2-3% greater accuracy, 

the Setser80 balanced small panel size (>100 SNPs) with 95% accuracy. 
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Figure 4: Effect of SNP Panel Size on BGA Classification Accuracy 

 

Figure 4: Effect of SNP Panel Size on BGA Classification Accuracy 
Percent accuracy of naïve Bayes classification in the Snipper 2.5 app suite3 for five different 
sized panels in each of five countries.  Snipper selected SNPs for each subset based on degree of 
divergence.  Abbreviations used: COL = Colombia, CUB = Cuba, DOM = Dominican Republic, 
HUR = Honduras, PUR = Puerto Rico, SNP = single nucleotide polymorphism. 
 

2.4 Discussion 

I designed panels of 234 and 80 AIMs capable of differentiating Hispanic individuals 

using a variant of Wright’s FST
29 based on five populations captured in the Genomic Origins and 

Admixture in Latinos (GOAL) study1.  This was accomplished using country attributable mean 

FST, which averages the four comparisons with one country in common rather than the ten 

possible pairwise comparisons.  To test my method for choosing SNPs, I compared my AIMs 

panel to other methods employed by various research groups44, 45 and most of the SNPs from 

these methods were selected in my panel(s).   

Comparing the two AIMs panels, the Setser80 performs comparably (or better) to the 

Setser234 with fewer SNPs.  The FST distributions revealed no appreciable difference in mean 

FST between the two panels (Figure 2).  The PCA results exhibited similar clustering and the 

concentration of genetic differentiation into fewer SNPs and resulted in higher eigenvalues for 
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the first PCs (Figure 3).  The 68.5% reduction in panel size to increase the contribution of low 

differentiating populations resulted in the formation of a fourth cluster in the STRUCTURE34 

diagram (Figure 3).  Furthermore, the genetic proportions behind the STRUCTURE algorithm34 

provided additional support regarding the retention of genetic differentiation during panel 

compression (Table 3). 

My Setser80 panel may be an addition to existing panels.  The EUROFORGEN Global 

AIM-SNP panel from C. Phillip et al., which leveraged data mining by reviewing ten separate 

studies to select 128 SNPs15, did not in encompass any of the Setser SNPs.  Shortly thereafter, 

Soundararajan et al. conducted an expanded review of 21 published AIMs panels for overlap; not 

a single one of the Setser SNPs were included in the resulting consensus panel28.  Independent 

assortment of the Setser80 SNPs from those identified by Soundararajan et al.28 and C. Phillips et 

al.15 fulfills the goal of supplementing global panels; where no adjustments for redundancy are 

necessary.  Therefore, the Setser80 may be used as a whole, without removal of AIMs in LD 

with the AIMs from the primary panel. 

Although the Setser AIMs panels reliably classified BGA, this study has its limitations: 

sample size vs. relatedness, accurate representation of BGA, the inaccuracy of self-identification 

of ancestry, and utilization of an early generation chip46 for genotyping.  This study used data 

from the GOAL study developed by Moreno-Estrada et al. which is available for download from 

the Database of Genotypes and Phenotypes (dbGAP)1.  Its 250 samples (6 Haitians removed for 

small sample size) were collected as family trios in South Florida.  Therefore, I removed ~1/3 of 

the individuals due to relatedness to prevent false enrichment of certain alleles.  Also, data from 

the GOAL study was a convenience sample where: 1) an immigrant population may not be truly 

representative of their source BGA and 2) self-identification of ancestry can often be inaccurate.  
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While this study provides new and useful information on the complex genetics of 

heterogeneous Hispanic populations, it also creates more avenues of enquiry.  The logical next 

step would be to test the portability of this panel into another (larger) dataset, such as the 

American Admixed super-population from 1000 Genomes (n = 347)47.  In the future, the 

expansion of my study would use data from an updated genechip (e.g. Infinium Multi-Ethnic 

AMR/AFR beadchip from Illumina)48 or obtain sequence data from similar populations.  

Sequence data would be invaluable to the identification of additional loci that are polymorphic in 

Hispanic populations, but monomorphic in more extensively studied (e.g. European) populations.  

Importantly, the degree of characterization of a population factors into the level of influence it 

has on the design of the next generation of gene-chips and AIMs panels. 
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2.6 Tables 
 
 
Table 1: Proportions of Country Attributable Mean FST 

 
Setser234 % (n) Setser80 % (n) 

HUR 1st + 2nd Country 
Proportion (# SNPs) 35% (164) 23.1% (37) 

DOM 1st + 2nd Country 
Proportion (# SNPs) 22.6% (106) 13.8% (22) 

COL 1st + 2nd Country 
Proportion (# SNPs) 13.5% (63) 25% (40) 

CUB 1st + 2nd Country 
Proportion (# SNPs) 16% (75) 27.5% (44) 

PUR 1st + 2nd Country 
Proportion (# SNPs) 12.8% (60) 10.6% (17) 

Table 1: Proportions of Country Attributable Mean FST  
Description of the two Setser panels by the number of SNPs attributed to each  
country by 1st and 2nd highest country attributable mean FST.  The proportion  
of SNPs attributed to each country per panel is reported with the number of  
SNPs given in parentheses ().  Note that each SNP is counted twice: once for  
1st country attribution and once for 2nd country attribution.  
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Table 2: SNPs from Alternative Methods Present in the Setser Panels 
 Method 1 Method 2 Method 3 

Panel 
Top 234  

Mean FST % (n) 
99 Top 20 

SNPs % (n) 
51 Top 10 

SNPs % (n) 
131 SNPs from 

4 Pairwise % (n) 
Setser234 62% (145) 35% (82) 20.9% (49) 55.1% (129) 
Setser80 91.3% (73) 67.5% (54) 43.8% (35) 62.5% (50) 

 
Table 2: SNPs from Alternative Methods Present in the Setser Panels Number of SNPs 
present in the Setser234 and Setser80 that were selected by the three alternative methods.  The 
proportion of SNPs selected by each alternative method that is present in the Setser234 and the 
Setser80; number of SNPs is listed in parentheses ().  Note that the Top 20 SNPs are in addition 
to those already identified in Top 10.  Proportions are listed in relation to the number of SNPs in 
the Setser panel (e.g. 50/80 = 62.5%). 
 
 
 
Table 3: STRUCTURE Genetic Proportions for Setser Panels on the GOAL Dataset 
Panel Population Cluster 1 Cluster 2 Cluster 3 Cluster 4 n 
Setser80 (K=4) HUR 0.8290 0.0387 0.0647 0.0676 13 
Setser80 (K=4) DOM 0.0811 0.6976 0.1147 0.1067 21 
Setser80 (K=4) COL 0.1601 0.0474 0.6562 0.1365 53 
Setser80 (K=4) CUB 0.0348 0.2892 0.0634 0.6125 55 
Setser80 (K=4) PUR 0.0836 0.2048 0.2969 0.4145 18 
Setser234 (K=3) HUR 0.8529 0.0496 0.0976 N/A 13 
Setser234 (K=3) DOM 0.0717 0.7888 0.1396 N/A 21 
Setser234 (K=3) COL 0.3376 0.0424 0.6199 N/A 53 
Setser234 (K=3) CUB 0.0448 0.2350 0.7203 N/A 55 
Setser234 (K=3) PUR 0.1465 0.1158 0.7378 N/A 18 

 
Table 3: STRUCTURE Genetic Proportions for Setser Panels on the GOAL Dataset 
Proportion of each population’s separation into the computer calculated clusters as determined 
by the Evanno method (K=3 or K=4).  Clusters were aligned per population and averaged across 
the ten iterations.  Abbreviations used: HUR = Honduras, DOM = Dominican Republic, COL = 
Colombia, CUB = Cuba, and PUR = Puerto Rico. 
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3.0 Abstract 

 

Ancestry informative single nucleotide polymorphisms (SNPs) can identify biogeographic 

ancestry (BGA); however, population substructure and relatively recent admixture can make 

differentiation difficult in heterogeneous Hispanic populations.  Utilizing unrelated individuals 

from the Genomic Origins and Admixture in Latinos dataset (GOAL, n=160), we designed an 80 

SNP panel (Setser80) that accurately depicts BGA through STRUCTURE and PCA.  We 

compared our Setser80 to the Seldin and Kidd panels via resampling simulations, which models 

data based on allele frequencies.  We incorporated Admixed American 1000 Genomes 

populations (1000G, n=347), into a combined populations dataset to determine robustness.  

Using multinomial logistic regression (MLR), we compared the 3 panels on the combined dataset 

and found overall MLR classification accuracies: 93.2% Setser80, 87.9% Seldin panel, 71.4% 

Kidd panel.  Naïve Bayesian classification had similar results on the combined dataset: 91.5% 

Setser80, 84.7% Seldin panel, 71.1% Kidd panel.  Although Peru and Mexico were absent from 

panel design, we achieved high classification accuracy on the combined populations for Peru 

(MLR = 100%, naïve Bayes = 98%), and Mexico (MLR = 90%, naïve Bayes = 83.4%) as 

evidence of the portability of the Setser80.  Our results indicate the Setser80 SNP panel can 

reliably classify BGA for individuals of presumed Hispanic origin. 
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3.1 Introduction 

It is important to study the genetics of Hispanic populations to avoid oversimplifying this 

heterogeneous ethnicity into a single conglomerate.  The identification of specific biogeographic 

ancestries (BGA) has implications both in clinical1 and forensic2 genetics.  Clinically, a more 

complete description of the various Hispanic BGAs may result in identification of rare variants 

that may not have been previously described when grouping all Hispanic populations together3, 

or for controlling for population substructure in clinical trials4, 5.  Hispanic individuals are known 

to have differential predispositions for various diseases and ignoring this diversity restricts the 

generalizability of the results6.  In forensics, BGA data could be used to investigate the origin of 

unidentified human remains (UHR)7, or locate the rightful parents/guardians of a child who is 

unable to identify where she/he is from8.  It is the heterogeneous nature of Hispanic populations 

that has previously deterred full characterization of their substructure.  However, in the past 

decade, there has been a movement to explore global human diversity and a variety of genetic 

panels have been designed for this purpose. 

Early ancestry informative marker (AIMs) panels are “continental” in nature, focused on 

admixture mapping to determine from which of the six inhabited continents an individual has 

ancestry; these include: Seldin1289, Galanter et al.’s 44610, Kidd5511, EUROFORGEN12, Genetic 

Atlas13, Genographic Project14, Cuba by Marcheco-Teruel et al.15, and Cuba by Fortes-Lima et 

al.16.  Although these studies assessed continental ancestry proportions (e.g. Seldin128)9, highly 

differentiated populations may be detected within continental panels, even identifying admixed 

populations such as Gujarati Indians in Houston, TX and Mexican ancestry from Los Angeles, 

CA17.  The ability to separate small admixed populations among larger more homogenous 

populations supports the notion that continental SNPs with high genetic differentiation may still 
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be informative on a more specific country level.  The simultaneous description of highly 

divergent populations alongside less specific populations using the same SNP panel is central to 

the goals of our study.  However, dual level analysis of admixed populations within continental 

panels is rare, as it tends to decrease the panel’s performance2, 17.   

Other panels target more specific, country BGA beginning in European populations 

before extending to other regions of the world (e.g. Denmark within Northern Europe).  

Although the Genographic Project14 assessed populations worldwide (though sparsely in the 

Americas), their in-house geographic population structure (GPS) algorithm is capable of 

identifying country of origin.  EASTASAIMS was one of the first non-European AIMs panels 

focusing on 22 East Asian populations using 1,500 AIMs and was able to separate the five 

largest populations in the region18.  Zeng et al.19 created a panel of 23 AIMs using FST focusing 

on the four major US populations from HapMap 320: African ancestry from Southwest United 

States (ASW), Utah residents with Northern and Western European ancestry (CEU), Chinese 

from Metropolitan Denver, Colorado (CHD), and Mexican ancestry from Los Angeles, CA 

(MEX).  And more recently, Huerta-Chagoya et al.21 reported 32 AIMs within Mexican mestizo 

populations, to estimate admixture proportions in various regions of Mexico.  

Highly accurate BGA predictions are possible with up to 83% accuracy, but at the 

expense of panel size, requiring 40,000 – 130,000 SNPs as used in the Genographic Project14.  

Additionally, of the 12,476 reference samples used to select 40,000+ SNPs in their panel, only 

9% were from American/Amerindian populations22, which limits the utility of their panel for 

resolving Hispanic ancestry.  The size of this panel14, the proprietary nature of the SNPs on their 

Genochip22, and poor representation of the Western hemisphere, has prompted us to create a 
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small, efficient, and publicly available SNP panel concentrated on BGA of Central America, 

South America, and the Caribbean.  

Within one country, both Great Britain23 and Cuba15, 16 have attempted to describe the 

diversity of their populations.  The British Isles were ideal candidates for national differentiation 

due to their relative homogeneity and the presence of a geographic barrier which has historically 

restricted continuous gene flow with continental Europe and other island populations.  In 

contrast, studies by Marcheco-Teruel et al.15, and Fortes-Lima et al.16 superficially appear to 

differentiate between the fifteen Cuban provinces on a national level, but their real focus was 

measuring admixture proportions using a subset of Galanter et al.’s 446 SNPs10, making their 

studies better described as continental and highlighting the need for a within country panel.  

Overall, at least 21 AIMs panels have been reported; however, of the 1,397 SNPs identified by 

Soundararajan et al.24, only 46 Consensus SNPs were in common to three or more SNP panels.  

At present, there is no AIMs panel that focuses on the determination of BGA between 

countries in the Americas.  Despite the overlap of our region of interest with the Galanter et al.’s 

446 Latin American AIMs10, our purpose was to classify BGA, not to estimate the ancestral 

proportions contributed from 3-4 continental populations.  The majority of AIMs panels and 

genetic ancestry studies have a heavy concentration of populations in Europe and Asia and far 

fewer in Central America, South America, and the Caribbean13, 14, 18.  Our country panel 

addresses this gap in knowledge and focuses on these same populations.  
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3.2 Materials and Methods 

3.2.1 Genomic Origins and Admixture in Latinos (GOAL) Dataset 

Here we downloaded the GOAL dataset and used 160 unrelated individuals including 

Honduran (HUR, n=13), Dominican Republican (DOM, n=21), Colombian (COL, n=53), Cuban 

(CUB, n=55), and Puerto Rican (PUR, n=18) populations with three of four grandparents from 

the same country25.  These samples were collected in South Florida and genotyped using the 

Affymetrix 6.0 gene chip of 906,600 predetermined SNPs26.  

The Genomic Origins and Admixture in Latinos (GOAL) dataset analyzed during the 

current study is available in the dbGaP repository, accession number phs000750.v1.p1, found 

at: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000750.v1.p1&phv=202273&phd=4443&pha=&pht=3936&phvf=

&phdf=&phaf=&phtf=&dssp=1&consent=&temp=1.  Funding support for the GOAL Study 

was provided by the National Institute of General Medical Sciences (1R01GM090087).  

Additional support for sample collection was provided by a grant from the Stanley J. Glaser 

Foundation and the Dr. John T. Macdonald Foundation Department of Human Genetics. 

3.2.2 1000 Genomes (1000G) Dataset 

For further comparison, we used fully sequenced individuals from the 1000 Genomes 

Project Phase 3 Admixed American populations (n=347)27, accessed through the UCSC Genome 

Browser28.  These include Colombia in Medellin (CLM, n=94), Peru in Lima (PEL, n=85), 

Puerto Rico (PUR, n=104), and Mexican Living in Los Angeles (MXL, n=64)27.  The 1000 

Genomes Project dataset is available via the UCSC Genome Browser28, found at: 

http://genome.ucsc.edu/. 
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3.2.3 SNP Ascertainment 

We created our AIMs panel by applying a series of quality control algorithms.  Beginning 

with 897,336 autosomal SNPs on the genechip26, we filtered the GOAL dataset by linkage 

disequilibrium (LD) ≤ 0.7, missingness ≤ 0.1, and minor allele frequency (maf) ≥ 0.01 using 

PLINK v.1.929-30 and retained 494,886 SNPs.  After calculating FST
31 by Weir & Cockerham’s 

algorithm32 in PLINK v.1.9 (https://www.cog-genomics.org/plink/1.9/basic_stats#fst)33, 1509 

SNPs with FST ≥ 0.15 for at least one pairwise comparison were retained.   

We calculated the mean FST for each of the five countries and assigned each SNP to a 

country based on the highest mean FST.  The next highest mean FST was designated the 2nd 

country mean FST.  For example, rs3777908 is attributed to HUR because the average of HUR 

vs. DOM, HUR vs. COL, HUR vs. CUB, and HUR vs. PUR is [(0.27318 + 0.19754 + 0.19560 + 

0.28808)/4] = 0.23860, which was the highest mean FST value for rs3777908.  The 2nd highest 

mean FST = 0.07442, corresponded to PUR (see Supplemental Table S3.1 for example 

calculations).  

We binned the 1509 SNPs by the 1st and 2nd highest country attributable mean FST and 

removed SNPs where the 1st country mean FST < 0.11 and 2nd country mean FST < 0.09, resulting 

in 437 SNPs.  Since 63.3% of the 1509 candidate SNPs were attributable to HUR or DOM, we 

removed SNPs where HUR and DOM had the 1st and 2nd highest country mean FST, where HUR 

had the 2nd highest country mean FST, and the 100 lowest ranked SNPs where HUR or DOM had 

the highest country mean FST.  From the remaining 247 SNPs, we chose a subset of 80 in order to 

maintain ~20% contribution of SNPs for each country across 1st and 2nd country attribution.   

Therefore we proceeded with the Setser80 (Supplemental Table S3.2), which has the 

following country attributable mean FST values: HUR (mean FST = 0.21228), DOM (mean FST = 
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0.16901), COL (mean FST = 0.14212), CUB (mean FST = 0.10803), and PUR (mean FST = 

0.10272). 

To assess the value of our panel, we compared it to two commonly sited AIMs panels9, 11.  

Here, we refer to the panel developed by Kosoy et al., 2009 as the Seldin1289, and the 55 

ancestry informative SNPs developed by Kidd et al., 2014 as the Kidd5511.  We performed each 

analysis on the Setser80 in parallel with the Kidd and Seldin panels to evaluate the utility of our 

Hispanic AIMs panel. 

3.2.4 Imputation 

 The SNPs on the Affymetrix 6.0 gene chip26 were pre-determined and not all SNPs were 

included in the ABI Taqman assay used to genotype the Seldin1289 and Kidd5511; therefore, we 

imputed these two panels into the GOAL dataset25 using IMPUTE234 on the full 250 individuals 

using a 5Mb window centered on each SNP and an effective population size of 20,000 as seen in 

Instructions for IMPUTE version 235.  We used 2,504 individuals from 1000G27 for the genetic 

map and legend and the strand alignment from dbSNP batch query.  Given the use of genome 

builds NCBI35/hg17 to GRCh38/hg38, we converted all components to GRCh37/hg19 for 

analysis.   

However, the gene chip used26 was based on an early genome build (NCBI35/hg17) 

which did not have all the tag SNPs necessary (in comparison to the 1000G Project) to reliably 

impute ~30 of the SNPs from Seldin1289 and 11 from Kidd5511 for each individual.  We 

assessed the accuracy of the imputation using the concordance tables provided by IMPUTE2; of 

the ~160 imputed SNPs from 20 chromosomes the mean concordance = 92.6% and range = 

85.3% to 96.4%.  Of the ~30 SNPs with missingness > 10%, there was no obvious pattern 

between missingness proportion and concordance.  Despite multiple attempts with different 
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intervals, rs10954737 from the Seldin1289 was unable to be imputed due to the lack of Panel 2 

SNPs.  Because STRUCTURE and PCA ignore missing data36, 37, the full Seldin1289 and 

Kidd5511 were used in these analyses.  However, since the resampling approach to simulations is 

dependent upon the reliability of allele frequencies in our real data38, we applied the same <10% 

missingness filter used in the development of the Setser80; this resulted in 96 SNPs in the Seldin 

panel and 44 SNPs in the Kidd panel after imputation.  

3.2.5 STRUCTURE 

 We evaluated ancestry by the Bayesian model-based clustering method used in 

STRUCTURE v.2.3.439 to compare the self-reported to computer-determined (K) populations.  

We performed STRUCTURE analysis at K=2 to K=7 for each dataset/panel at 10 iterations each 

using the admixture model, no LOCPRIOR, 10,000 burn-in, and 100,000 Markov Chain Monte 

Carlo (MCMC) repetitions.  The final STRUCTURE diagrams for each SNP panel were 

optimized and averaged through STRUCTURE Harvester40, CLUMPP41, and Distruct42 to create 

the diagrams in Figure 1. 
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Figure 1: Comparison to other panels 

 
Figure 1: Comparison to Other Panels 
Each plot represents 160 unrelated GOAL individuals and their respective populations.  Figures 
a, c, and e are STRUCTURE plots where each vertical line represents one person.  Figures b, d, 
and f are PCA plots created through EIGENSOFT where the first three principal components are 
plotted.  Figures a and b use the Kidd55 SNP panel (K=3), c and d use the Setser80 (K=4), and e 
and f use the Seldin128 (k=3).  Abbreviations used: HUR = Honduras, DOM = Dominican 
Republic, COL = Colombia, CUB = Cuba, PUR = Puerto Rico, PCA = principal components 
analysis. 
 

3.2.6 Principal Components Analysis (PCA) 

 We analyzed the Setser80, Seldin1289, and Kidd5511 on the GOAL dataset by PCA using 

EIGENSOFT v.6.1.443 and plotted the first three eigenvectors.  Genesis44 was used for improved 

visualization of clustering as seen in Figure 1.  
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3.2.7 Linkage Disequilibrium (LD) Analysis 

 Using the web-based tool LDmatrix45, we compared the Setser80 to the Seldin1289 and 

Kidd5511, and the 46 Consensus SNPs described in a review article by Soundararajan et al.24.  

We used r2 > 0.7 as the threshold to evaluate whether any SNP in the Setser80 was in strong LD 

with SNP(s) from Seldin1289 and Kidd5511 (tested together) or the 46 Consensus SNPs 

appearing in more than 3 of 21 panels of AIMs24. 

3.2.8 Modeling for the Prediction of Unknowns 

 To model the data for BGA prediction of unknown individuals, we used a resampling 

approach based on calculated allele frequencies of the three SNP panels on each dataset38.  We 

simulated a randomly mating population of 100-125 individuals within each country.  Next, we 

assigned a genotype to individuals by generating a random number between 1 and 0 and 

comparing this number to the maf for the country at the specified locus.  Any random number 

above the maf was assigned the major allele.  All genotypes were created from 2 separate allele 

generations for each locus.  The simulation of each population was performed at least 5 times for 

the GOAL and 1000G countries.  The 7 Populations Combined dataset was created by merging 

the countries from the 1000G and GOAL simulations without regard to simulation number.  We 

verified our model using a chi-square test for each panel and found the allele frequencies from 

the simulation sets were not significantly different from the true allele frequencies at α = 0.05 

after Bonferroni correction. 

3.2.9 Classification of Unknowns 

 Snipper 2.5 app suite46 is a web-based Naïve Bayes classifier, found here (http:// 

mathgene.usc.es/snipper/), which calculates –log(likelihood) with leave-one-out cross-validation 

and multinomial logistic regression (MLR) options.  Cross-validation divides a set of data into a 
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training set and a testing set, and rotates the samples until all samples have been in the testing 

set.  Using the “Thorough analysis of population data with a custom Excel file” option, Snipper 

calculated likelihood ratios (LR) of population vs. not the population and selected the country 

that corresponded to the highest LR.  MLR is similar to STRUCTURE39, which calculated 

genetic proportions of individuals (as percent admixture) instead of whole populations, and 

categorized individuals based on those probabilities.  We used 100-125 micro-simulations 

(individuals) each from population for references and selected 10% of profiles from a separate 

set of micro-simulations to predict unknowns.  We evaluated potential overlap of MLR 

classification using the confusion matrix and assessed the validity of our classification by 

sensitivity, specificity, and positive predictive value from the naïve Bayes classification of the 

actual 1000G genotypes (n=347; CLM=94, PUR=104, PEL=85, and MXL=64). 

 

3.2.10 Ethical Approval and Informed Consent 

This research study using the Genomic Origins and Admixture in Latinos (GOAL) from 

Moreno-Estrada, A. et al.  (2013)25, and the 1000 Genomes Project27 datasets was approved 

under University of North Texas Health Science IRB 2013-201.  As this manuscript only used 

pre-existing genetic data from Moreno-Estrada, A. et al. (2013)25, where their “Informed consent 

was obtained from all participants under approval by the University of Miami Institutional 

Review Board (study no. 20081175)”.  The 1000 Genomes Project data was only included in the 

International Genome Sample Resource if the submission was in accordance with the Consent, 

Ethics Review and Sampling Process of the 1000 Genomes Project27. 
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3.3 Results  

3.3.1 Setser80 SNP Panel Evaluation 

 We evaluated the ability of a newly developed Hispanic AIMs panel (the Setser80) 

versus the Seldin1289 and Kidd5511 to separate heterogeneous Hispanic populations in the 

GOAL dataset (from Moreno-Estrada et al.25) using STRUCTURE39 and principal components 

analysis (PCA).  With the STRUCTURE39 results, we applied the Evanno method47 which 

optimized the computer-determined (K) populations; the highest likelihood for the Setser80 was 

at K=4 while Seldin1289 and Kidd5511 were optimized at K=3 (Figure 1a, 1c, 1e).  The genetic 

proportions from STRUCTURE39 indicated that the Setser80 clearly separates HUR (Cluster 1 = 

0.8290), DOM (Cluster 2 = 0.6976), and COL (Cluster 3 = 0.6562) (Table 1); but CUB (Cluster 

2 = 0.2892, Cluster 4 = 0.6125) and PUR (Cluster 2 = 0.2048, Cluster 4 = 0.4145) remain 

indistinguishable (Figure 1c).  Using the genetic proportions from STRUCTURE39 for the 

Seldin1289 and Kidd5511 panels, HUR and COL separated predominately into Cluster 1 (HUR: 

Seldin1289 = 0.7274, Kidd5511 = 0.7258)(COL: Seldin1289 = 0.5370, Kidd5511 = 0.5311) (Table 

1), but the remaining populations did not separate into distinct clusters. 

We performed a principal components analysis (PCA) for the AIMs panels in the GOAL 

population (Figure 1b, 1d, 1f).  In the PCA of the Setser80, HUR clearly separated across PC1 

and PC2, DOM separated from HUR across PC2, and COL separated from HUR across PC1 and 

from DOM across PC2, which occupies three separate quadrants of the PCA (Figure 1d).  

Seldin1289 PCA showed HUR and COL separated together but apart from the other populations 

across PC1, and CUB and DOM separated together along PC2 (Figure 1f).  The Kidd5511 

performed poorly in PCA (Figure1b), not forming recognizable clusters, consistent with the 

genetic proportions generated in STRUCTURE39 (Figure 1a)(Table 1).  The Setser80 was able to 
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differentiate HUR, DOM, and COL by the two different algorithms underlying STRUCTURE39 

and PCA. 

3.3.2 Classification of Unknowns 

Based on the GOAL25 and 1000 Genomes Project27 (1000G) allele frequencies, we 

modeled populations to determine classification accuracy using the Snipper 2.546 app suite.  

Snipper uses naïve Bayesian likelihood ratios and multinomial logistic regression (MLR) 

prediction of unknowns via –log(likelihood)46.  Despite the different algorithms, both analyses 

had similar results.  

As expected, the Setser80 had the highest overall accuracy across the three panels in the 

simulated GOAL dataset (98.4%) by naïve Bayesian classification implemented via leave-one-

out cross-validation.  Additionally, the Setser80 achieved 90% accuracy in the 1000G dataset 

and 91.5% in the 7 Populations Combined dataset, both of which include populations not 

involved in our SNP ascertainment (Table 2).  In the latter, the Setser80 panel (98%) and the 

Seldin panel (98.8%) achieved approximately equal accuracy in PEL, a population on which the 

Setser80 was not trained.  In the 1000G simulations, the Seldin panel was more accurate overall 

(92.4%) in comparison to the Setser80 (90%).  

Naïve Bayes analysis of the actual 1000G genotypes revealed the Setser80 had the 

highest specificity in CLM (98.4%), the highest sensitivity in MXL (84.4%), and similar 

specificity in PUR (85.2%) and PEL (97.7%) in comparison to the Seldin (86.8%, 95.4%) and 

Kidd (85.2%, 94.7%) panels (Table 3).  In all three SNP panels, the micro-simulations 

underestimated the positive predictive value of CLM.  The positive predictive value of Setser80 

for PUR (simulated = 69.8%, real = 70.2%) and PEL (simulated = 91.8%, real = 89.8%) was 

concordant between the simulated and real data where it was either under or overestimated by 
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the Seldin and Kidd panels.  Both the Setser80 (simulated = 59.3%, real = 36.7%) and the Seldin 

(simulated = 80.1%, real 54.1%) panels overestimated positive predictive value in MXL while 

the Kidd panel values were concordant between the simulations (47.3%) and real genotypes 

(45.7%). 

Utilizing the MLR algorithm, Setser80 had the highest accuracy in GOAL and 7 

Populations Combined (99% and 93.2%, respectively); the Setser80 and Seldin panel had equal 

accuracy in 1000G (93.8%); and the Kidd panel had 80.5% in GOAL, 71.4% in 7 Populations 

Combined, and 82.2% overall in 1000G (Table 3).  As expected, HUR achieved >95% accuracy 

in the Setser80 and the Seldin panel across all datasets.  Surprisingly, PEL also achieved >95% 

and MXL >90% accuracies using the Setser80, although the Setser80 had not been trained on 

these populations.   

Despite performing best overall, the Setser80 did misclassify COL 22.5% of the time in 

the 7 Populations Combined dataset (Supplemental Table S3.3.  When it misclassified COL, the 

individual was classified as MXL 77.8% and PUR 22.2% of the time.  Conversely, even though 

MXL classified correctly 90% of the time, when individuals were misclassified they were 

misclassified as COL 100% of the time.  In comparison, the Seldin panel misclassified COL 

17.5% of the time spread across four countries, primarily into PUR (10%).  The Kidd panel 

exhibited a similar trend where COL misclassified into five countries: PUR (15%), MXL (10%), 

HUR (7.5%), CUB (7.5%), and DOM (2.5%) in addition to one individual which could not be 

classified.  When MXL was misclassified using the Kidd panel, it misclassified into PEL (7.5%), 

HUR (5%), and COL (5%).  Additionally, the Kidd panel had high misclassification of HUR into 

MXL (20%), COL (15%), and PUR (7.5%). 
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3.4 Discussion 

We report a panel of 80 AIMs for Hispanic BGA classification using Weir & 

Cockerham’s estimator32 of Wright’s FST
31.  Honduras (HUR) and DOM emerged first in 

STRUCTURE39 and PCA, followed by COL at K=4, which separated from CUB & PUR, 

indicating three distinct populations (Table 1).  Based on the allele frequencies, we created a 

series of micro-simulations to compare the BGA classification of the Setser, Seldin, and Kidd 

panels.  Overall, the Setser80 outperformed the Seldin and Kidd panels in naïve Bayesian 

classification and MLR classification accuracies in the GOAL dataset (naïve Bayes = 98.4%, 

MLR = 99%) and the 7 Populations Combined (naïve Bayes = 91.5%, MLR = 93.2%).  Notably, 

PEL and MXL were classified with >95% and >80% accuracy, respectively, indicating the 

Setser80 panel is portable into other Hispanic datasets and populations.  

Many panels have sought country-level ancestry determination, using a variety of SNP 

ascertainment methods19, 21, 27, 46   Continentally, the EUROFORGEN Global AIMs12 and the 

Kidd5511 panel used allele frequency differentials (δ).  Within a country, the United States 

HapMap 3 populations20 used PCA with receiver operating characteristics curve (ROC)19, and 

the Mexican mestizos panel used nested subsets with high SNP weights followed by the lowest 

number of SNPs with the highest PC121.  Similar to Kidd et al.11, we prioritized SNPs that 

distinguished populations with lower mean FST per country.  However, we focused on 

differentiating Hispanic instead of continental populations.  Kosoy et al.9 (Seldin128) also 

concentrates on continental differentiation, but they also evaluated their AIMs on African 

American, Puerto Rican, and Mexican/Mexican American populations. 

We used the Snipper 2.5 app suite46 that provided two classification methods: a naive 

Bayesian classifier and MLR48.  This web-based classifier was designed for classification of 
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externally visible characteristics49-53 and ancestry12, 54-57, particularly in forensics.  Snipper has 

successfully analyzed admixed South American populations50, 58, 59, similar to those used here.  

The classification accuracy of the Seldin and Kidd panels is due to both the composition 

of their SNP ascertainment datasets and the size of the panels.  The Seldin panel (96.2%, 96.3%) 

was more accurate in MXL than the Setser80 (83.4%, 89.8%) in the 7 Populations Combined and 

1000G datasets, respectively.  Its success is likely because 199 of their 825 samples were from 

admixed Latin American and Amerindian individuals (Mexico and Puerto Rico especially)9.  The 

Kidd11 panel emphasized capturing diversity by using 63 global populations11 including seven 

isolated Amerindian populations; they continue to add more populations via ALFRED60.  The 

size of the Kidd panel and the ratio of SNPs to the number of samples (Kidd55 = 55 SNPs / 3071 

samples = 0.0179; Seldin128 = 128 SNPs / 825 samples = 0.1552) suggest the number of SNPs, 

rather than SNP ascertainment population size, is the higher contributing factor to population 

differentiation.  However, the number of individuals per population may also be a factor. 

Our study’s limitations include: genechip design, sample size and its effect on allele 

frequencies, the use of a static model, and missingness.  The GOAL25 study genechip26 was built 

on 270 African (YRI), Caucasian (CEU), and East Asian population (CHB and JPT) samples 

from HapMap 161, without any Amerindian component.  Although, our SNP ascertainment 

dataset was small it was not inconsistent with other studies11, 18, 20 where the larger overall size 

was coupled with small sub-populations.  Therefore, we combined the GOAL25 dataset with the 

1000 Genomes Admixed American dataset (n=347)27, merging COL with CLM (n=147) and 

PUR with PUR (n=122) due to negligible allele frequency differences, to create the 7 

Populations Combined.   



59	

The design of the Setser80 is based on the balance of the countries via country 

attributable mean FST and selection of SNPs with LD < 0.7.  Using a dilution series of 234 to 44 

SNPs, we evaluated the effect of panel size on classification accuracy in relation to Seldin and 

Kidd sized panels and found 80 SNPs to be sufficient.  Therefore we chose 80 SNPs from 247 

candidates by selecting SNPs such that ~20% could be attributed to each country.  It is possible 

that other panels informative of Hispanic ancestry could be selected from the same candidates, 

but testing multiple different panels was beyond the scope of this study.  Residual LD is possible 

despite our threshold where four pairs of SNPs had r2 > 0.5; however, removing one of each pair 

and classifying two separate 76 SNP subsets had negligible effect on classification accuracy via 

naïve Bayes (Supplemental Table S3.4) or MLR (Supplemental Table S3.5).  By treating these 

loci as independent, we may underestimate accuracy as Kidd et al. 2013 has shown that 

diplotypes are effective predictors of ancestry62.   

We used micro-simulations in this study in order to normalize the size of each population 

and expand the analysis to seven Hispanic populations instead of the four publicly available 

through the 1000 Genomes Project27.  Although real genotypes would have been preferable, 

widely variable population sizes could disproportionately affect the classification accuracy for 

smaller populations, as may have been the case with the real MXL genotypes.  Our analysis of 

additional populations is a more realistic representation of the challenges of a more granular 

classification of heterogeneous populations.  Forensic labs may not have access to a sizeable 

Hispanic database of individuals from multiple different countries; therefore, we simulated 

datasets based on readily available allele frequencies from multiple sources.  By doing so, we 

have allowed MXL to misclassify into HUR which otherwise do not exist within the same 

dataset.  
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Additionally, our use of a static model for BGA determination may have overestimated 

classification success; despite reasonable success by other research groups63.  Finally, our 

imputation of the Seldin1289 and Kidd5511 into the GOAL25 dataset required removal of ~30 loci 

to comply with the Setser80 QC filters.  Missingness was not detrimental here because 

STRUCTURE disregards it36, 37, and at 10% MLR is robust36.  Alternatively, some missingness 

in micro-simulations may approximate the degraded forensic samples64.  

Our findings indicate that the Setser80 can predict BGA of individuals of presumed 

Hispanic origin with high confidence.  By selecting additional SNPs attributed to countries with 

lower average country attributable FST (COL, CUB, and PUR) to create the panel, the Setser80 

had similar accuracy overall in GOAL25 and 7 Populations Combined.  The Setser80 is robust as 

it clusters well with Bayesian model-based clustering and PCA, and classifies equally well in 

naïve Bayes classification and MLR.  The Setser80 is portable and, to our knowledge, is the first 

BGA AIMs panel specifically for the Caribbean and surrounding mainland countries.  In 

comparison to Seldin1289, Kidd5511, and 46 Consensus SNPs24, our 80 AIMs for Hispanic BGA 

is unique, both exact and by linkage disequilibrium.  Therefore, it is our intention that the 

Setser80 be integrated into a future Western Hemisphere panel. 
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3.9 Tables 
	
Table 1: Genetic Proportions from STRUCTURE 

  Panel Population Cluster 1 Cluster 2 Cluster 3 Cluster 4 Individuals 
Setser80 
(K=4) HUR 0.8290 0.0387 0.0647 0.0676 13 

Setser80 
(K=4) DOM 0.0811 0.6976 0.1147 0.1067 21 

Setser80 
(K=4) COL 0.1601 0.0474 0.6562 0.1365 53 

Setser80 
(K=4) CUB 0.0348 0.2892 0.0634 0.6125 55 

Setser80 
(K=4) PUR 0.0836 0.2048 0.2969 0.4145 18 

Seldin128 
(K=3) HUR 0.7274 0.1155 0.1570 N/A 13 

Seldin128 
(K=3) DOM 0.2296 0.4283 0.3422 N/A 21 

Seldin128 
(K=3) COL 0.5370 0.1280 0.3349 N/A 53 

Seldin128 
(K=3) CUB 0.1672 0.3507 0.4822 N/A 55 

Seldin128 
(K=3) PUR 0.3415 0.2728 0.3860 N/A 18 

Kidd55 
(K=3) HUR 0.7258 0.1077 0.1664 N/A 13 

Kidd55 
(K=3) DOM 0.2664 0.3548 0.3788 N/A 21 

Kidd55 
(K=3) COL 0.5311 0.0690 0.4001 N/A 53 

Kidd55 
(K=3) CUB 0.1723 0.2528 0.5749 N/A 55 

Kidd55 
(K=3) PUR 0.3907 0.1705 0.4389 N/A 18 

	
Table 1: Genetic Proportions from STRUCTURE  
Each vertical line in a STRUCTURE diagram represents one individual, and the values listed 
here correspond to the genetic proportions of each of “K” computer determined populations, 
represented as colors in the diagram.  The Setser80 categorized genetic proportions of samples 
into four computer-determined populations (K=4).  The Seldin128 and Kidd55 categorized 
genetic proportions into three computer-determined populations (K=3). 
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Table 2: Naïve Bayesian Classification Accuracy  
Comparison of the nine possible combinations of each of three simulated datasets on each of three 
SNP panels and their naïve Bayesian classification accuracy for each population.  Reported as 
percent accuracy with two-tailed standard deviations listed in parentheses ().  Abbreviations used: 
GOAL = Genomic Origins and Admixture in Latinos, 1000G = 1000 Genomes Project, 7 Pops = 7 
Populations Combined, COL = Colombia, CUB = Cuba, DOM = Dominican Republic, HUR = 
Honduras, PUR = Puerto Rico, PEL = Peru from Lima, and MXL = Mexicans living in Los Angeles.  
Both Colombian populations from GOAL and 1000G are listed in this table as “COL”.   
 
 
 
 
 
 
 
 
 
 
 
 

	

Table 2: Naïve Bayesian Classification Accuracy 
   Panel 

(Dataset) HUR DOM COL CUB PUR PEL MXL Overall 
Setser80 
(GOAL) 

100% 
(±0%) 

96.8% 
(±2.5%) 

99.4% 
(±0.5%) 

96.8% 
(±2.8%) 

99% 
(±0.7%) N/A N/A 98.4% 

Seldin96 
(GOAL) 

99.2% 
(±0.4%) 

89.6% 
(±3%) 

78.4% 
(±4.2%) 

76% 
(±3.3%) 

90.8% 
(±1.8%) N/A N/A 87.9% 

Kidd44 
(GOAL) 

88.4% 
(±3.4%) 

78.6% 
(±4.1%) 

67.6% 
(±4%) 

66.2% 
(±5.3%) 

68% 
(±7.3%) N/A N/A 73.8% 

Setser80 
(1000G) N/A N/A 

81.9% 
(±2.7%) N/A 

90.4% 
(±2.1%) 

98.1% 
(±0.9%) 

89.8% 
(±3%) 90% 

Seldin96 
(1000G) N/A N/A 

84.2% 
(±3.6%) N/A 

89.8% 
(±4.9%) 

99.4% 
(±0.7%) 

96.3% 
(±1.5%) 92.4% 

Kidd44 
(1000G) N/A N/A 

63.2% 
(±1.9%) N/A 

75.84% 
(±3%) 

91.84% 
(±2.7%) 

85.28% 
(±3.3%) 79.00% 

Setser80 
(7 Pops) 

98.4% 
(±0.9%) 

97.4% 
(±1.7%) 

77.6% 
(±8.2%) 

95.8% 
(±1.9%) 

89.8% 
(±2.9%) 

98% 
(±1%) 

83.4% 
(±3.3%) 91.5% 

Seldin96 
(7 Pops) 

85% 
(±2.5%) 

84.4% 
(±3.1%) 

79.8% 
(±4.6%) 

68.8% 
(±3.1%) 

79.6% 
(±7%) 

98.8% 
(±0.8%) 

96.2% 
(±0.8%) 84.7% 

Kidd44 
(7 Pops) 

67.8% 
(±7.8%) 

83.2% 
(±5.1%) 

59% 
(±4.4%) 

61.2% 
(±4.3%) 

56.4% 
(±2.1%) 

91.4% 
(±1.1%) 

78.6% 
(±4.6%) 71.1% 
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Table 3: Positive predictive values from naïve Bayes analysis 

  
5 sets of 500 micro-simulations 347 real 1000G genotypes 

Known 
Origin 

SNP 
Panel Sen. (%) Spe. (%) PPV (%) Sen. (%) Spe. (%) PPV (%) 

CLM 
Setser80 81.9% 70.1% 47.8% 17.0% 98.4% 80.0% 
Seldin96 84.2% 77.9% 55.9% 55.3% 90.9% 69.3% 
Kidd44 63.2% 49.9% 29.6% 51.1% 83.8% 53.9% 

PUR 
Setser80 90.4% 86.9% 69.8% 81.7% 85.2% 70.2% 
Seldin96 89.8% 80.5% 60.6% 89.4% 86.8% 74.4% 
Kidd44 75.8% 51.7% 34.4% 71.2% 85.2% 67.3% 

PEL 
Setser80 98.1% 97.1% 91.8% 62.4% 97.7% 89.8% 
Seldin96 99.4% 98.9% 96.9% 87.1% 95.4% 86.0% 
Kidd44 91.8% 90.4% 76.1% 75.3% 94.7% 82.1% 

MXL 
Setser80 89.8% 79.5% 59.3% 84.4% 67.1% 36.7% 
Seldin96 96.3% 92.0% 80.1% 51.6% 90.1% 54.1% 
Kidd44 85.3% 68.3% 47.3% 50.0% 86.6% 45.7% 

	
	

Table 3: Positive predictive values from naïve Bayes analysis. Sensitivity, specificity, and 
positive predictive values from naïve Bayes leave-one-out cross-validation for the average of five 
sets of 500 micro-simulations (left) and n=347 actual 1000G genotypes (right).  Micro-simulations 
were generated based on the allele frequencies from the 1000G dataset only.  Abbreviations used: 
Sen. = sensitivity, Spe. = specificity, PPV = positive predictive value, CLM = Colombia from 
Medellin, PUR = Puerto Rico, PEL = Peru from Lima, and MXL = Mexicans living in Los Angeles. 
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Table 4: MLR Classification Accuracy  
Comparison of the nine possible combinations of each of three simulated datasets on each of three SNP 
panels and their MLR classification accuracy for each population.  Reported as percent accuracy with 
two-tailed standard deviations listed in parentheses ().  Abbreviations used: GOAL = Genomic Origins 
and Admixture in Latinos, 1000G = 1000 Genomes Project, 7 Pops = 7 Populations Combined, COL = 
Colombia, CUB = Cuba, DOM = Dominican Republic, HUR = Honduras, PUR = Puerto Rico, PEL = 
Peru from Lima, MXL = Mexicans living in Los Angeles, and MLR = multinomial logistic regression.  
Both Colombian populations from GOAL and 1000G are listed in this table as “COL”.   

	
	
	
	
	
	
	
	
	
	
	
 

 

Table 4: MLR Classification Accuracy 
  Panel 

(Dataset) HUR DOM COL CUB PUR PEL MXL Overall 
Setser80 
(GOAL) 

100% 
(±0%) 

100% 
(±0%) 

100% 
(±0%) 

97.5% 
(±5%) 

97.5% 
(±5%) N/A N/A 99% 

Seldin96 
(GOAL) 

97.5% 
(±5%) 

95% 
(±5.8%) 

85% 
(±12.9%) 

90% 
(±11.5%) 

95% 
(±5.8%) N/A N/A 92.5% 

Kidd44 
(GOAL) 

92.5% 
(±9.6%) 

90% 
(±0%) 

75% 
(±17.3%) 

72.5% 
(±15%) 

72.5% 
(±9.6%) N/A N/A 80.5% 

Setser80 
(1000G) N/A N/A 

90.4% 
(±7.4%) N/A 

90.4% 
(±7.4%) 

100% 
(±0%) 

94.2% 
(±7.4%) 93.8% 

Seldin96 
(1000G) N/A N/A 

94.2% 
(±3.8%) N/A 

88.5% 
(±7.7%) 

100% 
(±0%) 

92.3% 
(±6.3%) 93.8% 

Kidd44 
(1000G) N/A N/A 

76.9% 
(±8.9%) N/A 

76.9% 
(±6.3%) 

92.3% 
(±8.9%) 

82.7% 
(±9.7%) 82.2% 

Setser80 
(7 Pops) 

95% 
(±5.8%) 

97.5% 
(±5%) 

77.5% 
(±9.6%) 

100% 
(±0%) 

92.5% 
(±9.6%) 

100% 
(±0%) 

90% 
(±8.2%) 93.2% 

Seldin96 
(7 Pops) 

100% 
(±0%) 

82.5% 
(±20.6%) 

82.5% 
(±12.6%) 

85% 
(±17.3%) 

67.5% 
(±17.1%) 

97.5% 
(±5%) 

100% 
(±0%) 87.9% 

Kidd44 
(7 Pops) 

57.5% 
(±9.6%) 

85% 
(±12.9%) 

55% 
(±5.8%) 

72.5% 
(±12.6%) 

55% 
(±12.9%) 

92.5% 
(±9.6%) 

82.5% 
(±9.6%) 71.4% 
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4.1 Summary 

 The Hispanic BGA AIMs (ancestry informative markers) panels described here, 

Setser234 and Setser80, are able to differentiate biogeographic ancestry (BGA) of individuals of 

Hispanic origin, particularly those surrounding the Caribbean.   Based on the Genomic Origins 

and Admixture in Latinos (GOAL) dataset1, I designed my panels using country attributable 

mean FST, a variant of Wright’s FST
2, for SNP ascertation focused on distinguishing countries 

through dedicated SNPs.  Utilizing this method I was able to select 234 SNPs from a filtered 

dataset of 494,886 SNPs, and further compress my panel by 65.8% by adjusting the proportion of 

the SNPs attributed to Honduras (HUR) and the Dominican Republic (DOM) in favor of those 

attributed to Colombia (COL), Cuba (CUB), and Puerto Rico (PUR).  I found that these 80 SNPs 

were sufficient for differentiation to 95% accuracy in the GOAL dataset and it performed better 

than the Kidd panel3 and comparably if not better than the Seldin panel4 on an expanded dataset.  

When combining the GOAL dataset with the Admixed American dataset from the 1000 

Genomes Project5, the Setser80 performed to >90% accuracy overall, including two populations 

not involved in SNP ascertainment, Mexicans living in Los Angeles (MXL, >90%) and Peru in 

Lima (PEL, >98%). 

 While panel selection was successful, there are a number of potential limitations to my 

study. These include SNP selection and a lack of inclusion of neighboring countries within my 

testing groups.  Despite these limitations there are a number of fields of study that my panel 

could contribute to now and in the future including forensics, genealogy, and potentially 

precision medicine. 
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4.2 Future Directions 

4.2.1 Potential Improvements 

 As with all research, there are various improvements that could be made.  To balance the 

panel, 77.4% of the SNPs attributed to Honduras were removed; this unintentionally also 

removed a disproportionate amount of SNPs attributed to Puerto Rico.  Inclusion of additional 

Puerto Rico SNPs would be beneficial, particularly those with high PUR vs. CUB FST, given the 

difficulty separating these two populations by STRUCTURE6 and PCA.  Query of SNP 

databases such as AncestrySNPminer7 could produce additional SNPs of value. 

 4.2.2 Sample Size 

 The size of the unrelated individuals GOAL dataset (n=160)1 is a limiting factor 

in this study.  I combined this dataset with the Admixed American super-population from the 

1000 Genomes Project Phase III (n=347)5 to address this, but other studies have much larger 

populations.  It would be interesting to test this panel on a mega-dataset by assembling data from 

multiple studies such as: POPRES (n=205 including Mexicans from Guadalajara)8, Seldin128 

(n=825 including Mexican, Puerto Rican, and Amerindian)4, Human Genome Diversity Project – 

Centre d’Étude du Polymorphisme Humain (HGDP-CEPH; n=938 including Colombia, Pima, 

Maya, Surui, Karitiana, and Yoruba)9, the Diversity of Latin Americans study (n=7342 from 

Brazil, Chile, Colombia, Mexico, and Peru)10, and the Hispanic Community Health Survey/Study 

of Latinos (HCHS/SOL; n= 12,803 from Cuba, Dominican Republic, Puerto Rican, Mexican, 

and Central and South American)11.  The Genome Aggregation Database (gnomAD) has made 

great strides towards dataset aggregation and gnomAD v3.0 contains a total of 71,702 samples, 

6,835 of which are Latino/Admixed American12.  The reference population on which an AIMs 

panel was designed has a major impact of the accuracy of the panel. 
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Testing my panel’s ability to separate populations from expanded datasets with new 

populations and further adjusting it would greatly improve genetic differentiation for Central and 

South American regions.  Sequence data, including mitochondrial and Y chromosome, would be 

invaluable because the GOAL study1 used an older generation genechip13 designed using 

HapMap I data14, which may not capture the full diversity of Hispanic populations.   

 4.2.3 Geography 

The labels provided in the datasets, which corresponded to country and not direct 

geographical space, also confined my Hispanic BGA classification.  Natural topographical 

borders (e.g. mountains and bodies of water) are far more relevant than arbitrary geopolitical 

borders (e.g. country) for ancestry determination.  For example, the three Western Antilles 

populations (CUB, PUR, and DOM) are separated from HUR by the Caribbean Sea and were 

easily distinguishable.  What remains to be seen is if the Setser80 AIMs, which differentiated 

HUR in this study, retain sufficient FST to distinguish Honduras from the two adjacent 

populations of the Northern Triangle: Guatemala and El Salvador.  PCA analysis conducted in 

Chapter 2 had CUB clustering in one section that tailed off along PC1 and overlapped with 

DOM, similar to that seen in the Hispanic Community Health Survey (HCHS)11.  Contrastingly, 

Colombia would seem to be isolated from the Western Antilles; however, mtDNA and linguistic 

evidence suggests the Caribbean was populated from the Orinoco Basin15-17.  In this study, it 

should be noted that none of the seven populations share a geographic border. 
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4.3 Applications 

Even with these potential limitations or areas of improvement, my panel could be utilized 

for forensic genetics, genealogical genetics, and potentially clinical genetics; all of these fields 

use allele frequencies to answer various questions.  

4.3.1 Forensic Genetics 

The Setser80 panel has the potential to be utilized to help identify unidentified human 

remains.  There are over 40,000 recalcitrant UHRs in the US at any time, a fact that has been 

referred to as a “mass disaster over time”18.  According to 2010 Census data, Hispanic 

individuals are 17% of the total US population (and the majority of the minority groups) and, as 

of 2012, became the largest population group of those under age 18, and are projected to be 38% 

of the population of the United States by 206019.  The Hispanic demographic continues to grow 

in our nation of immigrants where 60.1% of the 5,749,343 individuals who entered the country 

between 2005 and 2010 originated from Central and South America20.  These individuals have 

origins across two continents and, despite their heterogeneity, are all grouped under the catchall 

terms “Hispanic” or “Latino”.  In fact, the allele frequencies used to calculate random match 

probability in forensic genetics were originally divided into Southeast Hispanics (Puerto Rico, 

Cuba, etc.) and Southwest Hispanics (Mexico), leaving the choice of which population’s allele 

frequencies to use at the lab’s discretion or selected on a case by case basis pursuant to details of 

the case itself21.  Hispanic UHRs found on the US-Mexico border are often assumed to be of 

Southwest Hispanic origin, but if that assumption is inaccurate it can have a considerable effect 

on the reported conclusions. The Setser80 panel could create a more distinct classification by 

creating a likely country of origin classification. 
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Ancestry informative markers (AIMs) are used for objective human identification of 

deceased individuals, both modern and ancient.  The Setser80 panel could be utilized to 

determine country of origin in mass graves or mass disaster areas within Central and South 

America.  The small size of this panel lends itself to multiplexing to conserve precious specimen 

for future analysis. 

4.3.2 Genetic Genealogy 

In the past decade the cost of DNA analysis has become affordable to individual 

consumers, which has prompted an entire cottage industry that has grown up around direct-to-

consumer (DTC) ancestry DNA kits.  One of the stated goals of individuals who participate in 

these tests is to find out their country of origin.  The Setser80 panel I developed or similar panels 

could be used to help stratify individuals into a country because there is still wide variability in 

the accuracy of these tests22, 23.  The DTC DNA kits came to market with Rite Aid’s HomeDNA 

Paternity Test kits in 200724.  Since then the market has matured, and now two main companies 

that account for most of the DTC ancestry DNA analysis in the United States: AncestryDNA and 

23andMe.   

AncestryDNA created their reference database using 800 publicly available references 

from HGDP-CEPH, 1,500 proprietary in-house reference samples, and 1,800+ samples from 

their customers25.  Those ~4,100 references were trimmed by removing related samples based on 

identity-by-descent and outlier samples based on PCA and was further refined using leave-one-

out cross-validation25.  Of these, only 281 samples (9.4% of the database) were from Hispanic 

relevant populations: 83 references from Iberia, 131 Native Americans, and 67 from Nigeria25.  

The actual classification of customer ethnicity is based on the algorithm applied in 

ADMIXTURE25, 26, a data analysis program very similar to STRUCTURE6.  My panel could add 
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additional granularity to the country of origin results by highlighting polymorphisms that could 

be of high value for separating the Hispanic population. 

Similarly, 23andMe performs their analysis as a five-step process: phasing, window 

classification (using a support vector machine), smoothing, re-calibrating (using simulated data), 

and aggregation & reporting27.  As of 2014, 23andMe uses a database of 10,699 individuals from 

45 populations including Balkan, Iberian, Italian, and Sardinian from Southern Europe; 

Senegambian & Guinean, Coastal West Africa, and Nigerian from West Africa; and a 

conglomerate Native American population under East Asian & Native American27.  Similar to 

AncestryDNA, and in the context of Hispanic populations, my panel could be utilized to 

highlight potential high value polymorphisms for distinguishing these populations.  In a broader 

sense some of my methodology such as country attributable FST might identify new 

polymorphisms that could be used for any closely related populations. 

4.3.3 Clinical Genetics 

Complex admixture means Hispanics have not been studied as extensively as European 

ancestry.  A simple query of PubMed for “GWAS” AND population (“Hispanic”, “Latino”, 

“African American”, “European”, or “Caucasian”) yields the following: African American = 

1053, Caucasian = 2,586, European = 5,145, Hispanic = 547, and Latino = 373 as of January 6, 

2020.  Acknowledging the likely overlap between “Hispanic” or Latino” and between 

“European” or “Caucasian”, I conservatively estimated complete overlap and considered only the 

label with the most citations per pair where Hispanic and Latino (n = 547) still have far fewer 

GWAS studies than European and Caucasian (n = 5,145) despite efforts to combat health 

disparities.  While GWAS studies between ancestry and disease status exist, typical association 

studies avoid consideration of the difference in allele frequencies between the populations.  That 
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is, population substructure is not corrected for automatically.  My Setser80 panel could 

potentially be used to help correct for substructure within this highly admixed population.   

It is not known how similar the conglomerate Hispanic demographic in the United States 

(predominantly Mexican) is to Central American populations from the Northern Triangle 

(Guatemala, Honduras, and El Salvador); therefore, it is important to characterize their genetics 

to avoid assuming their disease risk or drug metabolism operates in the same way as other 

Hispanic populations28.  My Hispanic AIMs panel, in combination with full disease screening of 

individuals from the Northern Triangle, could be used for inexpensive and rapid determination of 

ancestry that will allow practitioners to focus primarily on the diseases of the individuals’ 

specific ancestry.  Studies demonstrate that Hispanic individuals have differential predispositions 

for various diseases, while acknowledging the diversity among Latin American populations 

restricts the results only to the populations studied29.  As early as 2003, it was known that 

Southwestern Hispanics (Mexico) were predisposed to obesity30, diabetes31, and gallbladder32 

disease while Southeastern Hispanics (Puerto Rico) were predisposed to hypertension33, 21.  Both 

of these populations are Hispanic, but considering them as a single population could have drastic 

effects in their medical care.   

4.4 Ethical Considerations  

Ethical and legal considerations must also be accounted for in the study of ancestry 

informative markers. The forensic genetic community and the public are currently struggling 

with how best to regulate the utilization of genetic information for identification and 

classification purposes.   Using public genetic genealogy databases such as GEDMatch34 for 

criminal investigations has only recently been regulated35, because it is the relative that has 

consented to the use of their genetic data, not the suspect themselves as in the FBI’s Combined 
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DNA Index System (CODIS) Arrestee and Convicted Offender databases36.  In the United 

States, The Genetic Information and Nondiscrimination Act (GINA) only covers discrimination 

based on genetics as it applies to employment and health care37.  However, AIMs genetic data 

can also be used for discrimination in other ways, such as the cataloguing of ethnic minority 

Uygurs in China38, 39.  We must take care to preserve the anonymity of genetic data (as much as 

is possible) and educate lawmakers on what is appropriate scientific use of such data. 

Despite these ethical considerations, utilizing an identification panel can also have great 

benefits.  My exploration of the human genome for AIMs that can differentiate Hispanic 

populations was originally inspired by the influx of unaccompanied minors in the summer of 

2014.  From 2011 to 2014, there was a steady increase of unaccompanied minors from Central 

and South America40.  Hispanic ancestry studies continue to be relevant given the continued 

influx of people seeking to cross the US-Mexico border.  One of the arguments for the 2018 

family separation policy was an effort to combat human trafficking, the rationale being that 

children may have been abducted to be presented at the border as part of a family and increase 

the chances of the adult(s) gaining entry and claiming asylum.  While normal autosomal 

paternity (or maternity) DNA analysis can inform immigration authorities that the adult is or is 

not the parent or close relation, ancestry DNA can be used to identify where the child came from 

and what country/region to look for missing persons reports.   
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Supplemental Table S2.1: FST Statistic for the Setser80 

 
COL vs. 
CUB 

COL vs. 
DOM 

COL vs. 
HUR 

COL vs. 
PUR 

CUB vs. 
DOM 

CUB vs. 
HUR 

CUB vs. 
PUR 

DOM vs. 
HUR 

DOM vs. 
PUR 

HUR vs. 
PUR Mean 

SNP FST FST FST FST FST FST FST FST FST FST FST 
rs12130873 0.02136 0.01523 0.23743 0.01372 0.00264 0.23168 0.00118 0.31409 0.00003* 0.33016 0.11675 
rs6694897 0.14630 0.15723 0.18921 0.16943 0.14101 0.08312 0.08346 0.03199 0.02449 0.01305* 0.10132 
rs1570099 0.12924 0.14424 0.16141 0.16369 0.12662 0.06736 0.06373 0.03474 0.03218 0.01291* 0.09103 
rs10493701 0.04411 0.00876 0.20767 0.00724 0.07290 0.18628 0.06543 0.22719 0.00187* 0.23910 0.10568 
rs1040424 0.06061 0.00125 0.14142 0.00294 0.08222 0.15247 0.07259 0.15904 0.01465* 0.16933 0.08272 
rs10495889 0.05877 0.03008 0.16038 0.03825 0.11837 0.14681 0.06727 0.16385 0.02373 0.17784 0.09853 
rs17018313 0.01280 0.00668* 0.19987 0.00805* 0.01894 0.19414 0.01711 0.26947 0.00256* 0.28424 0.09793 
rs7568419 0.04844 0.02191 0.16717 0.02062 0.04850 0.17164 0.03463 0.24218 0.04174 0.30209 0.10989 
rs11693873 0.06161 0.03212 0.17206 0.03240 0.08637 0.14060 0.08297 0.14644 0.00038* 0.15187 0.09061 
rs4433950 0.01326 0.00651* 0.20323 0.00790* 0.03187 0.19048 0.02938 0.26195 0.00345 0.27627 0.09955 
rs9853146 0.14228 0.12291 0.18906 0.12965 0.15898 0.13224 0.13075 0.04184 0.00311 0.02862 0.10794 
rs4685443 0.11960 0.14048 0.14544 0.15009 0.08436 0.04481 0.03160 0.04611 0.03052 0.01054* 0.07825 
rs259425 0.13624 0.16602 0.18872 0.15814 0.10776 0.03165 0.04636 0.06488 0.07145 0.00325* 0.09680 
rs2356298 0.07992 0.04926 0.19876 0.04926 0.11418 0.15765 0.09575 0.15429 0.00334 0.15792 0.10603 
rs11719358 0.09912 0.13420 0.16491 0.12028 0.15724 0.06468 0.05171 0.11445 0.08203 0.02709 0.10157 
rs9857908 0.12265 0.15319 0.21601 0.15047 0.20331 0.10969 0.07975 0.15533 0.09551 0.07984 0.13657 
rs1586861 0.16504 0.15315 0.19918 0.16167 0.14848 0.13311 0.13746 0.00633 0.01097* 0.00315 0.10966 
rs3910480 0.12445 0.14086 0.15129 0.14969 0.05526 0.04296 0.07184 0.00175 0.03367 0.02424 0.07960 
rs1366363 0.07582 0.01519 0.19465 0.02053 0.11305 0.19362 0.08934 0.20508 0.00541* 0.22018 0.11220 
rs3733838 0.04389 0.00248 0.19398 0.00446 0.06036 0.18333 0.06874 0.22558 0.00476* 0.24026 0.10183 
rs1438745 0.02533 0.18021 0.00563 0.05249 0.18034 0.00320* 0.04119 0.26755 0.26260 0.04352 0.10557 
rs16902270 0.14557 0.16233 0.18446 0.16684 0.11799 0.06752 0.07443 0.02803 0.02933 0.01502* 0.09615 
rs871234 0.07459 0.17146 0.09206 0.05378 0.15663 0.01475 0.00150 0.24140 0.24402 0.03115 0.10813 
rs692713 0.09401 0.18700 0.11996 0.07294 0.16283 0.01292 0.01075* 0.24732 0.22844 0.01679 0.11315 
rs4608884 0.12067 0.13477 0.13419 0.17569 0.15144 0.08472 0.07586 0.05550 0.06161 0.01129 0.10057 
rs190592 0.11932 0.19870 0.12133 0.08898 0.16337 0.00291 0.00792* 0.24295 0.23473 0.00081 0.11652 
rs6596807 0.04105 0.02010 0.20048 0.01865 0.07882 0.16821 0.07273 0.21379 0.02509 0.22430 0.10632 
rs9392285 0.07138 0.01935 0.19268 0.02448 0.08596 0.18517 0.12283 0.19751 0.00728 0.21554 0.11222 
rs9501948 0.06262 0.16167 0.11387 0.11593 0.16684 0.00953 0.00953 0.20403 0.18567 0.04587 0.10756 
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COL vs. 
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COL vs. 
HUR 

COL vs. 
PUR 

CUB vs. 
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CUB vs. 
HUR 

CUB vs. 
PUR 

DOM vs. 
HUR 

DOM vs. 
PUR 

HUR vs. 
PUR 

 
Mean 

SNP FST FST FST FST FST FST FST FST FST FST FST 
rs1329521 0.15709 0.15311 0.18385 0.17877 0.15953 0.11346 0.10928 0.01519 0.01231 0.00961* 0.10730 
rs17745021 0.00602* 0.00726 0.18035 0.01559 0.00890 0.17775 0.01727 0.25347 0.04501 0.27456 0.09741 
rs3777908 0.01129 0.00482 0.19754 0.00327 0.00583 0.19560 0.00425 0.27318 0.00207 0.28808 0.09859 
rs17087570 0.06604 0.00537* 0.22108 0.00546* 0.07436 0.22732 0.08779 0.27261 0.01493* 0.28288 0.12063 
rs4709836 0.11661 0.15187 0.14770 0.16086 0.12933 0.03893 0.03556 0.08065 0.07383 0.01132* 0.09240 
rs12536738 0.07829 0.03401 0.20886 0.03500 0.10623 0.17465 0.09867 0.17456 0.00853* 0.18462 0.10863 
rs10953750 0.06575 0.01883 0.16149 0.01933 0.08834 0.15363 0.08909 0.15051 0.00990* 0.16034 0.08974 
rs2352479 0.09944 0.12592 0.12388 0.16367 0.12004 0.04338 0.04705 0.05936 0.07068 0.01437 0.08678 
rs17480133 0.17271 0.19398 0.22183 0.19761 0.12585 0.06882 0.08521 0.03356 0.04229 0.00784* 0.11340 
rs766382 0.10783 0.09639 0.14531 0.10471 0.15439 0.10352 0.09324 0.05682 0.02488 0.02515 0.09122 
rs1588459 0.16094 0.17730 0.18981 0.19184 0.10978 0.08773 0.07225 0.02378 0.01105 0.01087* 0.10136 
rs6474712 0.06351 0.20209 0.04217 0.03827 0.19691 0.00109 0.00100* 0.28843 0.26641 0.01229* 0.10856 
rs880397 0.08331 0.18444 0.02767 0.03029 0.17970 0.01329 0.01599 0.27002 0.24699 0.01705* 0.10346 
rs10981894 0.09794 0.07058 0.10767 0.13719 0.18782 0.11750 0.12768 0.07918 0.10264 0.13199 0.11602 
rs2008617 0.04151 0.23629 0.03781 0.05985 0.24319 0.00878* 0.00819 0.33617 0.31925 0.01496 0.12884 
rs16912280 0.06727 0.22852 0.06626 0.04629 0.22431 0.00910 0.00491* 0.32309 0.29758 0.00340 0.12609 
rs1259603 0.02251 0.01626 0.22770 0.02316 0.05286 0.18333 0.06271 0.25254 0.04393 0.27361 0.11586 
rs16932385 0.02925 0.01002 0.26014 0.00765 0.06678 0.22826 0.06055 0.30385 0.02558 0.31814 0.13102 
rs11189628 0.14119 0.15050 0.18026 0.15521 0.10708 0.07625 0.09228 0.00541 0.01201 0.00759* 0.09126 
rs17112705 0.15421 0.17786 0.20491 0.18132 0.14930 0.07153 0.07455 0.06097 0.05382 0.00910* 0.11194 
rs1849352 0.04784 0.02982 0.18714 0.02097 0.09955 0.15449 0.05584 0.19384 0.01604 0.19270 0.09982 
rs2878712 0.02350 0.01319 0.21765 0.02009 0.05090 0.17748 0.06149 0.24141 0.03553 0.26197 0.11032 
rs10840730 0.03540 0.00242* 0.18961 0.00952* 0.05926 0.18939 0.03252 0.25024 0.00123* 0.27258 0.10158 
rs2051827 0.13258 0.14135 0.21359 0.14807 0.09160 0.09166 0.14127 0.03493 0.03900 0.07688 0.11109 
rs12146822 0.12337 0.06844 0.22311 0.06976 0.14798 0.19816 0.14918 0.14798 0.01263* 0.15767 0.12730 
rs7310083 0.09213 0.10322 0.11711 0.21128 0.00655* 0.00630* 0.19156 0.01749* 0.22097 0.25073 0.11567 
rs1967232 0.13608 0.14002 0.16603 0.14445 0.11483 0.08604 0.09842 0.00013* 0.00396 0.01392* 0.08758 
rs6486527 0.09037 0.11347 0.10785 0.16676 0.13478 0.05597 0.06954 0.05911 0.09296 0.04229 0.09331 
rs9569702 0.05638 0.01380 0.15060 0.01385 0.07090 0.14390 0.08272 0.14845 0.00957* 0.15819 0.08292 
rs4341647 0.05664 0.01630 0.16065 0.01417 0.06451 0.15779 0.10149 0.18030 0.00407 0.18691 0.09428 
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COL vs. 
CUB 

COL vs. 
DOM 

COL vs. 
HUR 

COL vs. 
PUR 

CUB vs. 
DOM 

CUB vs. 
HUR 

CUB vs. 
PUR 

DOM vs. 
HUR 

DOM vs. 
PUR 

HUR vs. 
PUR 

 
Mean 

SNP FST FST FST FST FST FST FST FST FST FST FST 

rs9556940 0.14825 0.16077 0.17331 0.16619 0.09477 0.08631 0.08767 0.00633* 0.00356* 0.01316* 0.08942 
rs1957572 0.05095 0.03394 0.17552 0.02228 0.11559 0.15235 0.05842 0.19330 0.02768 0.18830 0.10183 
rs178384 0.10567 0.07545 0.13410 0.10048 0.15544 0.11984 0.10358 0.05628 0.02126 0.05578 0.09279 
rs12434466 0.06045 0.00397 0.18396 0.00635 0.08965 0.18450 0.07129 0.20759 0.00935* 0.22593 0.10243 
rs17094860 0.05559 0.01398 0.21462 0.00702 0.10716 0.20471 0.06533 0.25468 0.00927 0.25856 0.11909 
rs12435621 0.01696 0.00164* 0.27281 0.00235* 0.01966 0.26739 0.01881 0.35841 0.00348 0.37576 0.13293 
rs12431505 0.03591 0.00398* 0.34602 0.00119* 0.05134 0.33386 0.05551 0.43078 0.01278 0.45007 0.17111 
rs1462266 0.05430 0.00750* 0.21034 0.00693* 0.07260 0.21682 0.05326 0.26940 0.00805* 0.29686 0.11511 
rs17097005 0.01992 0.00340* 0.19965 0.00324 0.03771 0.18000 0.04973 0.24160 0.01043 0.26055 0.09994 
rs2869550 0.06303 0.02152 0.15877 0.01963 0.07555 0.14941 0.08703 0.14425 0.01501* 0.15287 0.08570 
rs7198325 0.09113 0.19367 0.03953 0.05931 0.18518 0.01100 0.02889 0.27872 0.25715 0.00333 0.11479 
rs4470161 0.07818 0.18528 0.13241 0.08502 0.17175 0.01589 0.01104* 0.24469 0.21048 0.02841 0.11411 
rs1019118 0.14512 0.18108 0.18284 0.15749 0.10161 0.00191 0.01339 0.10697 0.11458 0.00519* 0.09998 
rs17246021 0.07581 0.05279 0.22181 0.05652 0.10004 0.16398 0.10776 0.17468 0.02013 0.19030 0.11638 
rs12936629 0.01998 0.01411 0.21765 0.02500 0.04430 0.17194 0.06143 0.23753 0.04229 0.26252 0.10967 
rs221308 0.14085 0.16834 0.18475 0.17292 0.13002 0.05482 0.05504 0.05435 0.04844 0.01656* 0.09930 
rs6015771 0.15009 0.13830 0.20477 0.16103 0.17017 0.12877 0.11655 0.05072 0.01474 0.03421 0.11694 
rs1013001 0.07874 0.06691 0.21432 0.06699 0.10817 0.14339 0.09917 0.15517 0.03093 0.16044 0.11242 
rs2834567 0.14717 0.15771 0.20497 0.16125 0.11549 0.08042 0.10691 0.02358 0.03044 0.01768 0.10456 
rs440431 0.11581 0.18229 0.09782 0.09714 0.14255 0.01190* 0.01318* 0.21730 0.19426 0.01947* 0.10026 
rs1000472 0.16861 0.18993 0.20436 0.19454 0.08235 0.04620 0.05654 0.03668 0.04488 0.00699 0.10311 
	
Supplemental Table S2.1: FST Statistic for the Setser80.   
All ten possible pairwise FST statistics for the five populations from the GOAL study.  Numbers listed in bold denote FST values above 
the 0.15 FST threshold.  Abbreviations used: SNP = single nucleotide polymorphism, HUR = Honduras, DOM = Dominican Republic,  
COL = Colombia, CUB = Cuba, PUR = Puerto Rico.  Asterisk* denotes values less than 0. 
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Supplemental Table S2.2: Country Attributable Mean FST for the Setser80 
  Position COL CUB DOM HUR PUR 1st  2nd  
Chr SNP NCBI36/hg18 FST FST FST FST FST Country Country 
1 rs12130873 14629827 0.07193 0.06421 0.08298 0.27834 0.08626 HUR PUR 
1 rs6694897 25990886 0.16554 0.11347 0.08868 0.07282 0.06608 COL CUB 
1 rs1570099 35071891 0.14964 0.09674 0.08445 0.06265 0.06167 COL CUB 
1 rs10493701 81919788 0.06695 0.09218 0.07675 0.21506 0.07748 HUR CUB 
1 rs1040424 208201005 0.05155 0.09197 0.05697 0.15556 0.05755 HUR CUB 
2 rs10495889 41547938 0.07187 0.09780 0.08401 0.16222 0.07677 HUR CUB 
2 rs17018313 80045074 0.04948 0.06075 0.06979 0.23693 0.07268 HUR PUR 
2 rs7568419 177078765 0.06454 0.07581 0.08859 0.22077 0.09977 HUR PUR 
2 rs11693873 197850455 0.07454 0.09289 0.06614 0.15274 0.06672 HUR CUB 
2 rs4433950 239329179 0.05052 0.06625 0.07269 0.23298 0.07530 HUR PUR 
3 rs9853146 12274313 0.14598 0.14106 0.08171 0.09794 0.07303 COL CUB 
3 rs4685443 17205888 0.13890 0.07009 0.07537 0.05645 0.05042 COL DOM 
3 rs259425 22041732 0.16228 0.08050 0.10253 0.07050 0.06818 COL DOM 
3 rs2356298 51509761 0.09430 0.11188 0.08027 0.16715 0.07657 HUR CUB 
3 rs11719358 139267512 0.12963 0.09319 0.12198 0.09278 0.07028 COL DOM 
3 rs9857908 139318436 0.16058 0.12885 0.15183 0.14021 0.10139 COL DOM 
3 rs1586861 140541186 0.16976 0.14602 0.07425 0.08544 0.07283 COL CUB 
4 rs3910480 161880988 0.14157 0.07363 0.05788 0.05506 0.06986 COL CUB 
5 rs1366363 29985377 0.07655 0.11796 0.08198 0.20338 0.08116 HUR CUB 
5 rs3733838 42757753 0.06120 0.08908 0.07092 0.21079 0.07717 HUR CUB 
5 rs1438745 85249943 0.06592 0.06091 0.22267 0.07837 0.09995 DOM PUR 
5 rs16902270 85859474 0.16480 0.10138 0.08442 0.06625 0.06390 COL CUB 
5 rs871234 174418204 0.09797 0.06186 0.20338 0.09484 0.08261 DOM COL 
5 rs692713 176186041 0.11848 0.06475 0.20640 0.09925 0.07685 DOM COL 
5 rs4608884 178979749 0.14133 0.10817 0.10083 0.07143 0.08111 COL CUB 
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  Position COL CUB DOM HUR PUR 1st  2nd  
Chr SNP NCBI36/hg18 FST FST FST FST FST Country Country 
5 rs190592 179263370 0.13208 0.06942 0.08445 0.09200 0.07915 DOM COL 
6 rs6596807 1267033 0.07007 0.09021 0.07752 0.20170 0.08519 HUR CUB 
6 rs9392285 1310265 0.07697 0.11633 0.17955 0.19772 0.09253 HUR CUB 
6 rs9501948 3156786 0.11352 0.06213 0.08503 0.09332 0.08925 DOM COL 
6 rs1329521 47840137 0.16820 0.13484 0.07866 0.07572 0.07269 COL CUB 
6 rs17745021 73769618 0.04929 0.04948 0.07148 0.22153 0.08811 HUR PUR 
6 rs3777908 111980345 0.05423 0.05424 0.08166 0.23860 0.07442 HUR PUR 
6 rs17087570 156949439 0.06907 0.11388 0.10892 0.25097 0.08757 HUR CUB 
6 rs4709836 164636380 0.14426 0.08011 0.19199 0.06399 0.06473 COL DOM 
7 rs12536738 95370320 0.08904 0.11446 0.07656 0.18567 0.07744 HUR CUB 
7 rs10953750 113424187 0.06635 0.09920 0.09400 0.15649 0.06471 HUR CUB 
7 rs2352479 137589866 0.12823 0.07748 0.09892 0.06024 0.07394 COL DOM 
7 rs17480133 145414794 0.19653 0.11315 0.08312 0.07909 0.07932 COL CUB 
8 rs766382 60170978 0.11356 0.11474 0.08048 0.08270 0.06200 CUB COL 
8 rs1588459 142143028 0.17997 0.10768 0.08445 0.07261 0.06607 COL CUB 
9 rs6474712 12405123 0.08651 0.06513 0.23846 0.07985 0.07285 DOM COL 
9 rs880397 12451349 0.08143 0.07307 0.22029 0.07348 0.06905 DOM COL 
9 rs10981894 115508956 0.10335 0.13274 0.11006 0.10909 0.12488 CUB PUR 
10 rs2008617 34499344 0.09387 0.07103 0.28372 0.09504 0.10056 DOM PUR 
10 rs16912280 59880729 0.10208 0.07394 0.26838 0.10046 0.08559 DOM COL 
10 rs1259603 76814933 0.07241 0.08035 0.09140 0.23429 0.10085 HUR PUR 
10 rs16932385 77017391 0.07676 0.09621 0.10156 0.27760 0.10298 HUR PUR 
10 rs11189628 100230671 0.15679 0.10420 0.06875 0.06358 0.06298 COL CUB 
10 rs17112705 101927184 0.17958 0.11240 0.11049 0.08208 0.07515 COL CUB 
11 rs1849352 61578905 0.07144 0.08943 0.08481 0.18204 0.07139 HUR CUB 
11 rs2878712 132343165 0.06861 0.07834 0.08526 0.22463 0.09477 HUR PUR 
12 rs10840730 17553352 0.05327 0.07914 0.07647 0.22546 0.07359 HUR CUB 
12 rs2051827 46242298 0.15890 0.11428 0.07672 0.10426 0.10131 COL CUB 
12 rs12146822 66857933 0.12117 0.15467 0.08795 0.18173 0.09100 HUR CUB 
12 rs7310083 68347053 0.13093 0.06771 0.07504 0.08601 0.21863 PUR COL 
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  Position COL CUB DOM HUR PUR 1st  2nd  
Chr SNP NCBI36/hg18 FST FST FST FST FST Country Country 
12 rs1967232 115531283 0.14664 0.10884 0.06467 0.05950 0.05823 COL CUB 
12 rs6486527 129231989 0.11961 0.08767 0.10008 0.06631 0.09289 COL DOM 
13 rs9569702 56996265 0.05866 0.08848 0.05589 0.15029 0.06130 HUR CUB 
13 rs4341647 77872864 0.06194 0.09511 0.06630 0.17141 0.07666 HUR CUB 
13 rs9556940 97818960 0.16213 0.10425 0.06142 0.06003 0.05929 COL CUB 
14 rs1957572 67806224 0.07067 0.09433 0.09263 0.17737 0.07417 HUR CUB 
14 rs178384 79252594 0.10392 0.12113 0.07711 0.09150 0.07028 CUB COL 
14 rs12434466 96394042 0.06368 0.10147 0.07296 0.20049 0.07356 HUR CUB 
14 rs17094860 96560669 0.07280 0.10820 0.09627 0.23314 0.08505 HUR CUB 
14 rs12435621 97182294 0.07145 0.08070 0.09498 0.31859 0.09892 HUR PUR 
14 rs12431505 97188301 0.09419 0.11915 0.12273 0.39018 0.12929 HUR PUR 
14 rs1462266 97319155 0.06255 0.09924 0.08161 0.24835 0.08378 HUR CUB 
14 rs17097005 98013715 0.05485 0.07184 0.07159 0.22045 0.08099 HUR PUR 
15 rs2869550 76768056 0.06574 0.09375 0.05658 0.15132 0.06113 HUR CUB 
16 rs7198325 12572650 0.09591 0.07905 0.22868 0.08314 0.08717 DOM COL 
16 rs4470161 78627029 0.12023 0.06370 0.20305 0.10535 0.07822 DOM COL 
17 rs1019118 52103046 0.16663 0.06551 0.12606 0.07163 0.07007 COL DOM 
17 rs17246021 67616034 0.10173 0.11189 0.08691 0.18769 0.09368 HUR CUB 
17 rs12936629 67854083 0.06918 0.07441 0.08456 0.22241 0.09781 HUR PUR 
20 rs221308 34709812 0.16671 0.09518 0.10029 0.06934 0.06496 COL DOM 
20 rs6015771 58532301 0.16355 0.14140 0.09348 0.10462 0.08163 COL CUB 
21 rs1013001 14581125 0.10674 0.10737 0.09030 0.16833 0.08938 HUR CUB 
21 rs2834567 34950995 0.16778 0.11250 0.08180 0.08166 0.07907 COL CUB 
21 rs440431 42905781 0.12326 0.05832 0.18410 0.07094 0.06469 DOM COL 
21 rs1000472 43602306 0.18936 0.08843 0.08846 0.07356 0.07574 COL DOM 
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Supplemental Table S2.2: Country Attributable Mean FST for the Setser80. Each country attributable mean FST 
is calculated by averaging the four population comparisons that have one country in common (e.g. HUR vs. DOM,  
HUR vs. COL, HUR vs. CUB, and HUR vs. PUR).  The highest country FST is the 1st country attributable mean FST  
value of the five populations and is shown in bold.  The next highest country FST is the 2nd country attributable mean  
FST and is shown in italics.  Abbreviations used: Chr = chromosome, SNP = single nucleotide polymorphism,  
HUR = Honduras, DOM = Dominican Republic, COL = Colombia, CUB = Cuba, and PUR = Puerto Rico. 
 



91	

Supplemental	Table S2.3: Summary of the FST Values of the Setser Panel SNPs  

 
Setser234 Setser80 

FST ≥ 0.15 769 266 
FST < 0.15 1571 534 

Total 2340 800 
Proportion FST ≥ 0.15 32.9% 33.3% 

HUR vs. DOM FST 0.19507 0.16059 
HUR vs. COL FST 0.13102 0.17113 
HUR vs. PUR FST 0.13091 0.12042 
HUR vs. CUB FST 0.09967 0.11534 
DOM vs. CUB FST 0.09459 0.10858 
DOM vs. PUR FST 0.08400 0.05933 
DOM vs. COL FST 0.07687 0.09258 
COL vs. CUB FST 0.05105 0.08509 
COL vs. PUR FST 0.04137 0.07991 
CUB vs. PUR FST 0.03994 0.06415 

Overall 1st  
Country Attributable Mean FST 0.19124 0.19194 

HUR FST 0.13974 0.14187 
DOM FST 0.11240 0.10527 
COL FST 0.07477 0.10718 
PUR FST 0.07389 0.08095 
CUB FST 0.07116 0.09329 

 
 Supplemental Table S2.3: Summary of FST Values of the Setser Panel SNPs  
Description of the two Setser panels from the top down by the amount of FST ≥ 0.15.  
First = number of eligible SNPs after the data from GOAL study was filtered for quality.  
Second = mean FST value for each pairwise comparison on the selected SNPs.  
Third = mean FST values for the 4 pairwise comparisons that are combined to create the 1st 
country attributable mean FST for each population.  Abbreviations used: HUR = Honduras,  
DOM = Dominican Republic, COL = Colombia, CUB = Cuba, and PUR = Puerto Rico.
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Supplemental Table S2.4: Allele Frequencies for the Setser80 
  Loci rs12130873 rs6694897 rs1570099 rs10493701 rs1040424 rs10495889 
  Missing  4 0 0 1 1 2 
  Maj./Min. G/T A/G G/C G/A A/G A/C 

ALL Major Freq 0.98125 0.40549 0.69207 0.84663 0.87117 0.77778 
n=160 Minor Freq 0.01875 0.59451 0.30793 0.15337 0.12883 0.22222 

HUR Major Freq 0.80769 0.5 0.65385 0.46154 0.57692 0.42308 
n=13 Minor Freq 0.19231 0.5 0.34615 0.53846 0.42308 0.57692 
DOM Major Freq 1 0.23810 0.85714 0.90476 0.90000 0.90476 
n=21 Minor Freq 0 0.76190 0.14286 0.09524 0.10000 0.09524 

COL Major Freq 1 0.63208 0.49057 0.79245 0.83019 0.69811 
n=53 Minor Freq 0 0.36792 0.50943 0.20755 0.16981 0.30189 

CUB Major Freq 0.99091 0.24545 0.82727 0.94444 0.97273 0.90566 
n=55 Minor Freq 0.00909 0.75455 0.17273 0.05556 0.02727 0.09434 

PUR Major Freq 1 0.41667 0.63889 0.88889 0.86111 0.69444 
n=18 Minor Freq 0 0.58333 0.36111 0.11111 0.13889 0.30556 

  Loci rs17018313 rs7568419 rs11693873 rs4433950 rs9853146 rs4685443 
  Missing  0 0 1 0 1 0 
  Maj./Min. A/G A/C C/T C/T A/G T/C 
ALL Major Freq 0.97866 0.71951 0.39877 0.96951 0.43865 0.81707 
n=160 Minor Freq 0.02134 0.28049 0.60123 0.03049 0.56135 0.18293 

HUR Major Freq 0.80769 0.23077 0.80769 0.76923 0.65385 0.88462 
n=13 Minor Freq 0.19231 0.76923 0.19231 0.23077 0.34615 0.11538 

DOM Major Freq 1 0.83333 0.325 1 0.325 0.95238 
n=21 Minor Freq 0 0.16667 0.675 0 0.675 0.04762 

COL Major Freq 0.98113 0.76415 0.50943 0.96226 0.64151 0.65094 
n=53 Minor Freq 0.01887 0.23585 0.49057 0.03774 0.35849 0.34906 
CUB Major Freq 1 0.8 0.25455 1 0.24545 0.9 
n=55 Minor Freq 0 0.2 0.74545 0 0.75455 0.1 

PUR Major Freq 1 0.55556 0.33333 1 0.41667 0.80556 
n=18 Minor Freq 0 0.44444 0.66667 0 0.58333 0.19444 

  Loci rs259425 rs2356298 rs11719358 rs9857908 rs1586861 rs3910480 
  Missing  0 0 1 0 2 7 
  Maj./Min. A/G T/C G/A C/T T/C G/A 

ALL Major Freq 0.70122 0.88720 0.61043 0.56098 0.70988 0.71656 
n=160 Minor Freq 0.29878 0.11280 0.38957 0.43902 0.29012 0.28344 
HUR Major Freq 0.61538 0.61538 0.80769 0.84615 0.57692 0.76923 
n=13 Minor Freq 0.38462 0.38462 0.19231 0.15385 0.42308 0.23077 
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DOM Major Freq 0.90476 0.95238 0.35714 0.28571 0.76190 0.8 
n=21 Minor Freq 0.09524 0.04762 0.64286 0.71429 0.23810 0.2 

  Loci rs259425 rs2356298 rs11719358 rs9857908 rs1586861 rs3910480 
  Missing  0 0 1 0 2 7 
  Maj./Min. A/G T/C G/A C/T T/C G/A 
COL Major Freq 0.49057 0.80189 0.79808 0.76415 0.5 0.51961 
n=53 Minor Freq 0.50943 0.19811 0.20192 0.23585 0.5 0.48039 
CUB Major Freq 0.8 0.99091 0.48182 0.4 0.89091 0.81481 
n=55 Minor Freq 0.2 0.00909 0.51818 0.6 0.10909 0.18519 
PUR Major Freq 0.77778 0.91667 0.63889 0.63889 0.72222 0.86667 
n=18 Minor Freq 0.22222 0.08333 0.36111 0.36111 0.27778 0.13333 

  Loci rs1366363 rs3733838 rs1438745 rs16902270 rs871234 rs692713 
  Missing  2 1 0 5 0 0 
  Maj./Min. G/A A/G T/A C/A T/G A/G 

ALL Major Freq 0.81173 0.93558 0.85976 0.86164 0.88415 0.71341 
n=160 Minor Freq 0.18827 0.06442 0.14024 0.13836 0.11585 0.28659 

HUR Major Freq 0.42308 0.66667 0.88462 0.83333 1 0.88462 
n=13 Minor Freq 0.57692 0.33333 0.11538 0.16667 0 0.11538 
DOM Major Freq 0.875 0.95238 0.54762 0.975 0.61905 0.33333 
n=21 Minor Freq 0.125 0.04762 0.45238 0.025 0.38095 0.66667 
COL Major Freq 0.74528 0.90566 0.90566 0.70192 0.97170 0.85849 
n=53 Minor Freq 0.25472 0.09434 0.09434 0.29808 0.02830 0.14151 
CUB Major Freq 0.94444 1 0.89091 0.96226 0.9 0.72727 
n=55 Minor Freq 0.05556 0 0.10909 0.03774 0.1 0.27273 

PUR Major Freq 0.77778 0.97222 1 0.88889 0.80556 0.66667 
n=18 Minor Freq 0.22222 0.02778 0 0.11111 0.19444 0.33333 

  Loci rs4608884 rs190592 rs6596807 rs9392285 rs9501948 rs1329521 
  Missing  0 0 0 0 0 0 
  Maj./Min. G/A A/G A/G C/G T/C G/A 

ALL Major Freq 0.85366 0.87500 0.90854 0.88720 0.83232 0.49695 
n=160 Minor Freq 0.14634 0.12500 0.09146 0.11280 0.16768 0.50305 
HUR Major Freq 0.88462 0.96154 0.61538 0.57692 0.96154 0.57692 
n=13 Minor Freq 0.11538 0.03846 0.38462 0.42308 0.03846 0.42308 
DOM Major Freq 1 0.59524 0.97619 0.88095 0.54762 0.35714 
n=21 Minor Freq 0 0.40476 0.02381 0.11905 0.45238 0.64286 
COL Major Freq 0.70755 0.99057 0.85849 0.83019 0.95283 0.72642 
n=53 Minor Freq 0.29245 0.00943 0.14151 0.16981 0.04717 0.27358 
CUB Major Freq 0.96364 0.89091 0.98182 0.99091 0.79091 0.30909 
n=55 Minor Freq 0.03636 0.10909 0.01818 0.00909 0.20909 0.69091 
PUR Major Freq 0.75 0.83333 0.97222 0.97222 0.94444 0.55556 
n=18 Minor Freq 0.25 0.16667 0.02778 0.02778 0.05556 0.44444 
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  Loci rs17745021 rs3777908 rs17087570 rs4709836 rs12536738 rs10953750 
  Missing  0 0 0 0 7 0 
  Maj./Min. T/C C/T C/T C/T C/T A/G 
ALL Major Freq 0.90549 0.97866 0.91159 0.73476 0.85987 0.82622 
n=160 Minor Freq 0.09451 0.02134 0.08841 0.26524 0.14013 0.17378 
HUR Major Freq 0.57692 0.80769 0.57692 0.73077 0.53846 0.5 
n=13 Minor Freq 0.42308 0.19231 0.42308 0.26923 0.46154 0.5 
DOM Major Freq 0.97619 1 0.90476 0.95238 0.90476 0.85714 
n=21 Minor Freq 0.02381 0 0.09524 0.04762 0.09524 0.14286 
COL Major Freq 0.91509 0.99057 0.88679 0.54717 0.77174 0.75472 
n=53 Minor Freq 0.08491 0.00943 0.11321 0.45283 0.22826 0.24528 
CUB Major Freq 0.91818 0.99091 1 0.83636 0.97273 0.94545 
n=55 Minor Freq 0.08182 0.00909 0 0.16364 0.02727 0.05455 
PUR Major Freq 1 1 0.94444 0.66667 0.88889 0.86111 
n=18 Minor Freq 0 0 0.05556 0.33333 0.11111 0.13889 

 Loci rs2352479 rs17480133 rs766382 rs1588459 rs6474712 rs880397 
 Missing  1 0 0 0 0 0 
 Maj./Min. C/T C/G T/G G/A A/G G/C 
ALL Major Freq 0.45706 0.40854 0.80183 0.85976 0.92073 0.96037 
n=160 Minor Freq 0.54294 0.59146 0.19817 0.14024 0.07927 0.03963 
HUR Major Freq 0.46154 0.46154 0.96154 0.92308 0.96154 0.96154 
n=13 Minor Freq 0.53846 0.53846 0.03846 0.07692 0.03846 0.03846 
DOM Major Freq 0.23810 0.23810 0.66667 0.95238 0.66667 0.78571 
n=21 Minor Freq 0.76190 0.76190 0.33333 0.04762 0.33333 0.21429 
COL Major Freq 0.65385 0.66038 0.94340 0.68868 0.98113 1 
n=53 Minor Freq 0.34615 0.33962 0.05660 0.31132 0.01887 0 
CUB Major Freq 0.33636 0.26364 0.66364 0.96364 0.94545 0.99091 
n=55 Minor Freq 0.66364 0.73636 0.33636 0.03636 0.05455 0.00909 
PUR Major Freq 0.61111 0.33333 0.83333 0.86111 0.94444 0.97222 
n=18 Minor Freq 0.38889 0.66667 0.16667 0.13889 0.05556 0.02778 

 Loci rs10981894 rs2008617 rs16912280 rs1259603 rs16932385 rs11189628 
 Missing  8  4 0 0 0 0 
 Maj./Min. G/A A/T G/A C/A T/G T/C 
ALL Major Freq 0.75962 0.92500 0.92683 0.90549 0.90549 0.68293 
n=160 Minor Freq 0.24038 0.07500 0.07317 0.09451 0.09451 0.31707 
HUR Major Freq 0.57692 0.96154 1 0.57692 0.53846 0.61538 
n=13 Minor Freq 0.42308 0.03846 0 0.42308 0.46154 0.38462 
DOM Major Freq 0.92857 0.65 0.66667 0.97619 0.97619 0.78571 
n=21 Minor Freq 0.07143 0.35 0.33333 0.02381 0.02381 0.21429 
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 Loci rs10981894 rs2008617 rs16912280 rs1259603 rs16932385 rs11189628 
 Missing  8  4 0 0 0 0 
 Maj./Min. G/A A/T G/A C/A T/G T/C 
COL Major Freq 0.64 0.98113 0.99057 0.85849 0.86792 0.47170 
n=53 Minor Freq 0.36 0.01887 0.00943 0.14151 0.13208 0.52830 
CUB Major Freq 0.91509 0.93396 0.94545 0.96364 0.97273 0.82727 
n=55 Minor Freq 0.08491 0.06604 0.05455 0.03636 0.02727 0.17273 
PUR Major Freq 0.53333 1 0.94444 1 0.97222 0.75 
n=18 Minor Freq 0.46667 0 0.05556 0 0.02778 0.25 

  Loci rs17112705 rs1849352 rs2878712 rs10840730 rs2051827 rs12146822 
  Missing  0 3 1 1 8 0 
  Maj./Min. T/C G/C G/A G/A G/A G/A 
ALL Major Freq 0.62805 0.72671 0.91718 0.92025 0.82692 0.82622 
n=160 Minor Freq 0.37195 0.27329 0.08282 0.07975 0.17308 0.17378 
HUR Major Freq 0.53846 0.30769 0.61538 0.61538 0.65385 0.5 
n=13 Minor Freq 0.46154 0.69231 0.38462 0.38462 0.34615 0.5 
DOM Major Freq 0.83333 0.85714 0.97619 0.97619 0.86842 0.85714 
n=21 Minor Freq 0.16667 0.14286 0.02381 0.02381 0.13158 0.14286 
COL Major Freq 0.39623 0.64 0.875 0.91346 0.65625 0.70755 
n=53 Minor Freq 0.60377 0.36 0.125 0.08654 0.34375 0.29245 
CUB Major Freq 0.77273 0.84545 0.97273 0.98182 0.94444 0.98182 
n=55 Minor Freq 0.22727 0.15455 0.02727 0.01818 0.05556 0.01818 
PUR Major Freq 0.63889 0.72222 1 0.88889 0.97222 0.86111 
n=18 Minor Freq 0.36111 0.27778 0 0.11111 0.02778 0.13889 

  Loci rs7310083 rs1967232 rs6486527 rs9569702 rs4341647 rs9556940 

  Missing  0 1 13 0 0 0 

  Maj./Min. G/T C/T T/C T/C C/T C/G 

ALL Major Freq 0.88110 0.81902 0.85762 0.77744 0.71951 0.85366 

n=160 Minor Freq 0.11890 0.18098 0.14238 0.22256 0.28049 0.14634 

HUR Major Freq 0.92308 0.76923 0.88462 0.42308 0.30769 0.88462 

n=13 Minor Freq 0.07692 0.23077 0.11538 0.57692 0.69231 0.11538 

DOM Major Freq 0.88095 0.9 0.68750 0.78571 0.66667 0.90476 

n=21 Minor Freq 0.11905 0.1 0.31250 0.21429 0.33333 0.09524 

COL Major Freq 1 0.65094 0.98039 0.70755 0.65094 0.68868 
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n=53 Minor Freq 0 0.34906 0.01961 0.29245 0.34906 0.31132 

CUB Major Freq 0.85455 0.94545 0.76 0.9 0.85455 0.96364 

n=55 Minor Freq 0.14545 0.05455 0.24 0.1 0.14545 0.03636 

PUR Major Freq 0.58333 0.86111 1 0.83333 0.83333 0.88889 

n=18 Minor Freq 0.41667 0.13889 0 0.16667 0.16667 0.11111 

  Loci rs1957572 rs178384 rs12434466 rs17094860 rs12435621 rs12431505 
  Missing  2 0 0 7 1 0 
  Maj./Min. T/C C/T A/G T/A T/G G/A 
ALL Major Freq 0.85802 0.42683 0.85671 0.88535 0.79448 0.87195 
n=160 Minor Freq 0.14198 0.57317 0.14329 0.11465 0.20552 0.12805 
HUR Major Freq 0.53846 0.65385 0.5 0.53846 0.23077 0.34615 
n=13 Minor Freq 0.46154 0.34615 0.5 0.46154 0.76923 0.65385 
DOM Major Freq 0.97619 0.28571 0.90476 0.97368 0.85714 0.92857 
n=21 Minor Freq 0.02381 0.71429 0.09524 0.02632 0.14286 0.07143 
COL Major Freq 0.79412 0.58491 0.81132 0.84314 0.81132 0.86792 
n=53 Minor Freq 0.20588 0.41509 0.18868 0.15686 0.18868 0.13208 
CUB Major Freq 0.95455 0.24545 0.96364 0.98077 0.85185 0.94545 
n=55 Minor Freq 0.04545 0.75455 0.03636 0.01923 0.14815 0.05455 
PUR Major Freq 0.83333 0.52778 0.83333 0.86111 0.86111 0.94444 
n=18 Minor Freq 0.16667 0.47222 0.16667 0.13889 0.13889 0.05556 

  Loci rs1462266 rs17097005 rs2869550 rs7198325 rs4470161 rs1019118 
  Missing  0 0 8 1 1 0 
  Maj./Min. G/T T/G T/C C/T C/G T/A 
ALL Major Freq 0.32927 0.94512 0.88141 0.95092 0.78834 0.58537 
n=160 Minor Freq 0.67073 0.05488 0.11859 0.04908 0.21166 0.41463 
HUR Major Freq 0.88462 0.69231 0.59091 0.96154 0.96154 0.65385 
n=13 Minor Freq 0.11538 0.30769 0.40909 0.03846 0.03846 0.34615 
DOM Major Freq 0.26190 0.97619 0.88095 0.75 0.45238 0.30952 
n=21 Minor Freq 0.73810 0.02381 0.11905 0.25 0.54762 0.69048 
COL Major Freq 0.34906 0.92453 0.81633 1 0.92308 0.81132 
n=53 Minor Freq 0.65094 0.07547 0.18367 0 0.07692 0.18868 
CUB Major Freq 0.2 0.99091 0.98113 0.98182 0.77273 0.52727 
n=55 Minor Freq 0.8 0.00909 0.01887 0.01818 0.22727 0.47273 
PUR Major Freq 0.38889 1 0.91667 1 0.80556 0.5 
n=18 Minor Freq 0.61111 0 0.08333 0 0.19444 0.5 

  Loci rs17246021 rs12936629 rs3803828 rs6015771 rs1013001 rs2834567 
  Missing  0 0 0 0 0 0 
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  Maj./Min. T/C T/G C/T C/A G/A A/G 
ALL Major Freq 0.89634 0.85061 0.97256 0.64024 0.63720 0.86585 
n=160 Minor Freq 0.10366 0.14939 0.02744 0.35976 0.36280 0.13415 
HUR Major Freq 0.61538 0.46154 0.80769 0.84615 0.23077 0.76923 
n=13 Minor Freq 0.38462 0.53846 0.19231 0.15385 0.76923 0.23077 
DOM Major Freq 0.95238 0.92857 1 0.5 0.76190 0.95238 
n=21 Minor Freq 0.04762 0.07143 0 0.5 0.23810 0.04762 

 Loci rs17246021 rs12936629 rs3803828 rs6015771 rs1013001 rs2834567 
 Missing  0 0 0 0 0 0 
 Maj./Min. T/C T/G C/T C/A G/A A/G 
COL Major Freq 0.81132 0.79245 0.96226 0.84906 0.49057 0.70755 
n=53 Minor Freq 0.18868 0.20755 0.03774 0.15094 0.50943 0.29245 
CUB Major Freq 0.99091 0.91818 1 0.45455 0.78182 0.97273 
n=55 Minor Freq 0.00909 0.08182 0 0.54545 0.21818 0.02727 
PUR Major Freq 0.97222 0.97222 1 0.69444 0.75 0.94444 
n=18 Minor Freq 0.02778 0.02778 0 0.30556 0.25 0.05556 

  Loci rs440431 rs1000472 
  Missing  1 3 
  Maj./Min. C/G T/C 
ALL Major Freq 0.59816 0.36957 
n=160 Minor Freq 0.40184 0.63043 
HUR Major Freq 0.77358 0.61538 
n=13 Minor Freq 0.22642 0.38462 
DOM Major Freq 0.60909 0.26364 
n=21 Minor Freq 0.39091 0.73636 
COL Major Freq 0.21429 0.21429 
n=53 Minor Freq 0.78571 0.78571 
CUB Major Freq 0.53846 0.29167 
n=55 Minor Freq 0.46154 0.70833 
PUR Major Freq 0.58333 0.26471 
n=18 Minor Freq 0.41667 0.73529 
 
 
Supplemental Table S2.4: Allele Frequencies for the Setser80 
Allele frequencies of the unrelated individuals from the GOAL dataset (n=160) are listed overall 
and per population.  Missing refers to the number of genotypes missing from the full dataset.  
Abbreviations used: Maj. = major allele, Min. = minor allele, Major Freq = major allele 
frequency, Minor Freq = minor allele frequency, HUR = Honduras, DOM = Dominican 
Republic, COL = Colombia, CUB = Cuba, and PUR = Puerto Rico. 
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Supplemental Table S3.1: Country Attributable Mean FST 
    

SNP 
COL v. 
CUB FST 

COL v. 
DOM FST 

COL v. 
HUR FST 

COL v. 
PUR FST 

CUB vs. 
DOM 
FST 

CUB vs. 
HUR FST 

CUB vs. 
PUR FST 

DOM vs. 
HUR FST 

DOM vs. 
PUR FST 

HUR vs. 
PUR FST 

rs3777908 0.01129 0.00482 0.19754 0.00327 0.00583 0.19560 0.00425 0.27318 0.00207 0.28808 
rs9857908 0.12265 0.15319 0.21601 0.15047 0.20331 0.10969 0.07975 0.15533 0.09551 0.07984 
rs871234 0.07459 0.17146 0.09206 0.05378 0.15663 0.01475 0.00150 0.24140 0.24402 0.03115 
rs10981894 0.09794 0.07058 0.10767 0.13719 0.18782 0.11750 0.12768 0.07918 0.10264 0.13199 
rs16932385 0.02925 0.01002 0.26014 0.00765 0.06678 0.22826 0.06055 0.30385 0.02558 0.31814 
rs2051827 0.13258 0.14135 0.21359 0.14807 0.09160 0.09166 0.14127 0.03493 0.03900 0.07688 
rs178384 0.10567 0.07545 0.13410 0.10048 0.15544 0.11984 0.10358 0.05628 0.02126 0.05578 
rs7198325 0.09113 0.19367 0.03953 0.05931 0.18518 0.01100 0.02889 0.27872 0.25715 0.00333 
rs2834567 0.14717 0.15771 0.20497 0.16125 0.11549 0.08042 0.10691 0.02358 0.03044 0.01768 
rs1000472 0.16861 0.18993 0.20436 0.19454 0.08235 0.04620 0.05654 0.03668 0.04488 0.00699 

SNP Max FST Mean FST Min FST COL FST CUB FST 
DOM 
FST HUR FST PUR FST 

1st 
Country 

2nd 
Country 

rs3777908 0.28808 0.09859 0.00021 0.05423 0.05424 0.07148 0.23860 0.07442 HUR PUR 
rs9857908 0.21601 0.13657 0.00797 0.16058 0.12885 0.15183 0.14021 0.10139 COL DOM 
rs871234 0.24402 0.10813 0.00015 0.09797 0.06186 0.20338 0.09484 0.08261 DOM COL 
rs10981894 0.18782 0.11602 0.00706 0.10335 0.13274 0.11006 0.10909 0.12488 CUB PUR 
rs16932385 0.31814 0.13102 0.00076 0.07676 0.09621 0.10156 0.27760 0.10298 HUR PUR 
rs2051827 0.21359 0.11109 0.00349 0.15890 0.11428 0.07672 0.10426 0.10131 COL CUB 
rs178384 0.15544 0.09279 0.00213 0.10392 0.12113 0.07711 0.09150 0.07028 CUB COL 
rs7198325 0.27872 0.11479 0.00033 0.09591 0.07905 0.22868 0.08314 0.08717 DOM COL 
rs2834567 0.20497 0.10456 0.00177 0.16778 0.11250 0.08180 0.08166 0.07907 COL CUB 
rs1000472 0.20436 0.10311 0.00070 0.18936 0.08843 0.08846 0.07356 0.07574 COL DOM 
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Supplemental Table S3.1: Country Attributable Mean FST  
This table gives examples of how the FST calculations are made for each of the five countries.  From left to right: section 1 gives the 
position information about that locus, section 2 presents the ten FST pairwise comparisons for each SNP, section 3 gives the standard 
maximum/mean/minimum, section 4 shows the final country attributable mean FST values for each country (the mean of the four 
pairwise comparisons with one country in common highlighted in bold in section 2), and section 5 identifies the highest (1st) and 
second highest (2nd) country attributable mean FST values and their corresponding country.  Abbreviations used: HUR = Honduras, 
DOM = Dominican Republic, COL = Colombia, CUB = Cuba, and PUR = Puerto Rico.
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Supplemental Table S3.2: Description of the Setser80 Panel 
 

CHR SNP POS (hg18) 
1st Country 
FST 

1st 
Country 

2nd Country 
FST 

2nd 
Country 

1 rs12130873 14629827 0.27834 HUR 0.08626 PUR 
1 rs6694897 25990886 0.16554 COL 0.11347 CUB 
1 rs1570099 35071891 0.14964 COL 0.09674 CUB 
1 rs10493701 81919788 0.21506 HUR 0.09218 CUB 
1 rs1040424 208201005 0.15556 HUR 0.09197 CUB 
2 rs10495889 41547938 0.16222 HUR 0.09780 CUB 
2 rs17018313 80045074 0.23693 HUR 0.07268 PUR 
2 rs7568419 177078765 0.22077 HUR 0.09977 PUR 
2 rs11693873 197850455 0.15274 HUR 0.09289 CUB 
2 rs4433950 239329179 0.23298 HUR 0.07530 PUR 
3 rs9853146 12274313 0.14598 COL 0.14106 CUB 
3 rs4685443 17205888 0.13890 COL 0.07537 DOM 
3 rs259425 22041732 0.16228 COL 0.10253 DOM 
3 rs2356298 51509761 0.16715 HUR 0.11188 CUB 
3 rs11719358 139267512 0.12963 COL 0.12198 DOM 
3 rs9857908 139318436 0.16058 COL 0.15183 DOM 
3 rs1586861 140541186 0.16976 COL 0.14602 CUB 
4 rs3910480 161880988 0.14157 COL 0.07363 CUB 
5 rs1366363 29985377 0.20338 HUR 0.11796 CUB 
5 rs3733838 42757753 0.21079 HUR 0.08908 CUB 
5 rs1438745 85249943 0.22267 DOM 0.09995 PUR 
5 rs16902270 85859474 0.16480 COL 0.10138 CUB 
5 rs871234 174418204 0.20338 DOM 0.09797 COL 
5 rs692713 176186041 0.20640 DOM 0.11848 COL 
5 rs4608884 178979749 0.14133 COL 0.10817 CUB 
5 rs190592 179263370 0.20994 DOM 0.13208 COL 
6 rs6596807 1267033 0.20170 HUR 0.09021 CUB 
6 rs9392285 1310265 0.19772 HUR 0.11633 CUB 
6 rs9501948 3156786 0.17955 DOM 0.11352 COL 
6 rs1329521 47840137 0.16820 COL 0.13484 CUB 
6 rs17745021 73769618 0.22153 HUR 0.08811 PUR 
6 rs3777908 111980345 0.23860 HUR 0.07442 PUR 
6 rs17087570 156949439 0.25097 HUR 0.11388 CUB 
6 rs4709836 164636380 0.14426 COL 0.10892 DOM 
7 rs12536738 95370320 0.18567 HUR 0.11446 CUB 
7 rs10953750 113424187 0.15649 HUR 0.09920 CUB 
7 rs2352479 137589866 0.12823 COL 0.09400 DOM 
7 rs17480133 145414794 0.19653 COL 0.11315 CUB 
8 rs766382 60170978 0.11474 CUB 0.11356 COL 
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CHR SNP POS (hg18) 
1st Country 
FST 

1st 
Country 

2nd Country 
FST 

2nd 
Country 

8 rs1588459 142143028 0.17997 COL 0.10768 CUB 
9 rs6474712 12405123 0.23846 DOM 0.08651 COL 
9 rs880397 12451349 0.22029 DOM 0.08143 COL 
9 rs10981894 115508956 0.13274 CUB 0.12488 PUR 

10 rs2008617 34499344 0.28372 DOM 0.10056 PUR 
10 rs16912280 59880729 0.26838 DOM 0.10208 COL 
10 rs1259603 76814933 0.23429 HUR 0.10085 PUR 
10 rs16932385 77017391 0.27760 HUR 0.10298 PUR 
10 rs11189628 100230671 0.15679 COL 0.10420 CUB 
10 rs17112705 101927184 0.17958 COL 0.11240 CUB 
11 rs1849352 61578905 0.18204 HUR 0.08943 CUB 
11 rs2878712 132343165 0.22463 HUR 0.09477 PUR 
12 rs10840730 17553352 0.22546 HUR 0.07914 CUB 
12 rs2051827 46242298 0.15890 COL 0.11428 CUB 
12 rs12146822 66857933 0.18173 HUR 0.15467 CUB 
12 rs7310083 68347053 0.21863 PUR 0.13093 COL 
12 rs1967232 115531283 0.14664 COL 0.10884 CUB 
12 rs6486527 129231989 0.11961 COL 0.10008 DOM 
13 rs9569702 56996265 0.15029 HUR 0.08848 CUB 
13 rs4341647 77872864 0.17141 HUR 0.09511 CUB 
13 rs9556940 97818960 0.16213 COL 0.10425 CUB 
14 rs1957572 67806224 0.17737 HUR 0.09433 CUB 
14 rs178384 79252594 0.12113 CUB 0.10392 COL 
14 rs12434466 96394042 0.20049 HUR 0.10147 CUB 
14 rs17094860 96560669 0.23314 HUR 0.10820 CUB 
14 rs12435621 97182294 0.31859 HUR 0.09892 PUR 
14 rs12431505 97188301 0.39018 HUR 0.12929 PUR 
14 rs1462266 97319155 0.24835 HUR 0.09924 CUB 
14 rs17097005 98013715 0.22045 HUR 0.08099 PUR 
15 rs2869550 76768056 0.15132 HUR 0.09375 CUB 
16 rs7198325 12572650 0.22868 DOM 0.09591 COL 
16 rs4470161 78627029 0.20305 DOM 0.12023 COL 
17 rs1019118 52103046 0.16663 COL 0.12606 DOM 
17 rs17246021 67616034 0.18769 HUR 0.11189 CUB 
17 rs12936629 67854083 0.22241 HUR 0.09781 PUR 
20 rs221308 34709812 0.16671 COL 0.10029 DOM 
20 rs6015771 58532301 0.16355 COL 0.14140 CUB 
21 rs1013001 14581125 0.16833 HUR 0.10737 CUB 
21 rs2834567 34950995 0.16778 COL 0.11250 CUB 
21 rs440431 42905781 0.18410 DOM 0.12326 COL 



	 102	

CHR SNP POS (hg18) 
1st Country 
FST 

1st 
Country 

2nd Country 
FST 

2nd 
Country 

21 rs1000472 43602306 0.18936 COL 0.08846 DOM 
	
Supplemental Table S3.2: Description of the Setser80 Panel   
The Setser80 AIMs panel incorporates these 80 SNPs.  Below appears the .map 
information (CHR = Chromosome, SNP = name of single nucleotide polymorphism, and 
POS = position in NCBI36/hg18 genome build).  Mean FST lists the average FST across 
all 10 pairwise comparisons possible across 5 populations.  The 1st country attributable 
mean FST and 2nd country attributable mean FST refers to the average of 4 pairwise 
comparisons that have one country in common.  First country attributable mean FST refers 
to the largest, most divergent average and its corresponding population while the 2nd 
country attributable mean FST refers to the 2nd most divergent average and its population.  
Populations: HUR = Honduras, DOM = Dominican Republic, COL = Colombia, CUB = 
Cuba, and PUR = Puerto Rico. 
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Supplemental Table S3.3: MLR Confusion Matrix 
Known Origin SNP Panel HUR DOM COL CUB PUR PEL MXL Total 

HUR 
Setser80 38 0 0 0 0 0 2 40 
Seldin96 40 0 0 0 0 0 0 40 
Kidd44 23 0 6 0 3 0 8 40 

DOM 
Setser80 0 39 0 1 0 0 0 40 
Seldin96 0 33 0 3 4 0 0 40 
Kidd44 1 34 0 4 1 0 0 40 

COL 
Setser80 0 0 31 0 2 0 7 40 
Seldin96 1 0 33 1 4 0 1 40 
Kidd44 3 1 22 3 6 0 4 39* 

CUB 
Setser80 0 0 0 40 0 0 0 40 
Seldin96 0 4 0 34 1 0 0 39* 
Kidd44 0 4 1 29 6 0 0 40 

PUR 
Setser80 0 0 0 3 37 0 0 40 
Seldin96 0 3 5 5 27 0 0 40 
Kidd44 2 3 8 4 22 0 1 40 

PEL 
Setser80 0 0 0 0 0 40 0 40 
Seldin96 0 0 0 0 0 39 1 40 
Kidd44 0 0 0 0 0 37 3 40 

MXL 
Setser80 0 0 4 0 0 0 36 40 
Seldin96 0 0 0 0 0 0 40 40 
Kidd44 2 0 2 0 0 3 33 40 

	
Supplemental Table S3.3: MLR Confusion Matrix 
Confusion matrix showing into which population(s) each known population classifies.  
This table reflects cumulative values from four sets of 70 micro-simulations (10 per 
population, per analysis) from the 7 Populations Combined dataset classified by MLR.  
Abbreviations used: COL = Colombia, CUB = Cuba, DOM = Dominican Republic, HUR 
= Honduras, PUR = Puerto Rico, PEL = Peru from Lima, and MXL = Mexicans living in 
Los Angeles.  * One sample from this panel was unable to be classified for this 
population. 
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Supplemental Table S3.4: Naïve Bayes Classification of Panels of 76 SNPs 
Evaluation of the effect of four pairs of SNPs with LD r2 > 0.5 in the Setser80 on classification accuracy using the 7 Populations 
Combined dataset.  One of each of the following pairs was removed for each subset of 76 SNPs where the number in parentheses 
corresponds to the SNPs removed: (1) rs11719358-rs9857908 (2), (3) rs6596807-rs9392285 (4), (5) rs1259603-rs16932385 (6), and 
(7) rs12435621-rs12431505 (8).  Abbreviations used: 7 Pops = 7 Populations Combined, COL = Colombia, CUB = Cuba, DOM = 
Dominican Republic, HUR = Honduras, PUR = Puerto Rico, PEL = Peru from Lima, and MXL = Mexicans living in Los Angeles. 
	
	
	

 
 
	
 
 
 
 
 
 
 
 
 

 
	
	
	
	
	
	
	

Supplemental Table S3.4: Naïve Bayes Classification of Panels of 76 SNPs 
SNP Panel Dataset COL CUB DOM HUR PUR PEL MXL Overall 
76 SNPs 

(removed 
1-3-5-7) 

7 Pops 75.6% 
(±6.2%) 

95.2% 
(±2.5%) 

97.4% 
(±1.5%) 

98.2% 
(±0.8%) 

89.2% 
(±5.0%) 

97.4% 
(±1.3%) 

84.2% 
(±2.3%) 91.0% 

Setser80 7 Pops 77.6% 
(±8.2%) 

95.8% 
(±1.9%) 

97.4% 
(±1.7%) 

98.4% 
(±0.9%) 

89.8% 
(±2.9%) 

98% 
(±1.0%) 

83.4% 
(±3.3%) 91.5% 

76 SNPs 
(removed 
2-4-6-8) 

7 Pops 78.6% 
(±5.2%) 

95% 
(±1.6%) 

96.6% 
(±1.1%) 

97.8% 
(±0.8%) 

88.8% 
(±3.3%) 

98.4% 
(±0.5%) 

82.6% 
(±2.9%) 91.1% 
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Supplemental Table S3.5: MLR Classification of Panels of 76 SNPs 

SNP 
Panel Dataset COL CUB DOM HUR PUR PEL MXL Overall 

76 SNPs 
(removed 
1-3-5-7) 

7 Pops 77.5% 
(±9.6%) 

100% 
(±0.0%) 

97.5% 
(±5.0%) 

92.5% 
(±5.0%) 

92.5% 
(±9.6%) 

100% 
(±0.0%) 

90% 
(±0.0%) 92.9% 

Setser80 7 Pops 77.5% 
(±9.6%) 

100% 
(±0.0%) 

97.5% 
(±5.0%) 

95% 
(±5.8%) 

92.5% 
(±9.6%) 

100% 
(±0.0%) 

90% 
(±8.2%) 93.2% 

76 SNPs 
(removed 
2-4-6-8) 

7 Pops 72.5% 
(±12.6%) 

97.5% 
(±5.0%) 

97.5% 
(±5.0%) 

97.5% 
(±5.0%) 

92.5% 
(±9.6%) 

97.5% 
(±5.0%) 

90% 
(±8.2%) 92.1% 

 
Supplemental Table S3.5: MLR Classification of Panels of 76 SNPs 
Evaluation of the effect of four pairs of SNPs with LD r2 > 0.5 in the Setser80 on classification accuracy using the 7 Populations 
Combined dataset.  One of each of the following pairs was removed for each subset of 76 SNPs where the number in parentheses 
corresponds to the SNPs removed: (1) rs11719358-rs9857908 (2), (3) rs6596807-rs9392285 (4), (5) rs1259603-rs16932385 (6), and 
(7) rs12435621-rs12431505 (8).  Abbreviations used: 7 Pops = 7 Populations Combined, COL = Colombia, CUB = Cuba, DOM = 
Dominican Republic, HUR = Honduras, PUR = Puerto Rico, PEL = Peru from Lima, and MXL = Mexicans living in Los Angeles. 
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