DeLillo, Sandy, M.S. <u>Optimization and Validation of the Bode TM Buccal DNA</u> <u>CollectorTM in Conjunction with the AmpFLSTR® Identifiler® Direct PCR Amplification</u> <u>Kit for Single Source Reference Samples.</u> Master of Science (Forensic Genetics), May 2010, 64 pp., 9 tables, 7 illustrations, references, 9 titles.

DNA analysis for human identification is a multi-step process culminating in the generation of a DNA profile unique to the contributor of the biological sample. In order for human identification by way of DNA analysis to be successful, comparisons of a known sample to an unknown sample must be made. Processing of the known or reference samples should be efficient, reliable and reproducible. The Buccal DNA Collector[™] (Bode Technology Group, Lorton, VA) used in conjunction with the AmpFLSTR[®] Identifiler[®] Direct PCR Amplification Kit (Applied Biosystems, Foster City, CA) has been shown to be an effective method for processing single source reference samples. This technique can be reliably applied to the processing of samples for DNA databasing, paternity or reference samples for forensic casework.

OPTIMIZATION AND VALIDATION OF THE BODETM BUCCAL DNA COLLECTORTM WITH THE AMPFLSTR[®] IDENTIFILER[®] DIRECT PCR AMPLIFICATION KIT FOR SINGLE-SOURCE REFERENCE SAMPLES

Presented to the Graduate Council of the

Graduate School of Biomedical Sciences

University of North Texas Health and Science Center at Fort Worth

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

By

Sandy DeLillo, M.S.

Fort Worth, Texas

May 2010

ACKNOWLEDGEMENTS

I would like to acknowledge and thank the many people that supported me throughout this project. First and foremost, I have to thank Pam Curtis. She was my rock during this project. I learned a great deal from her and I am very fortunate to call her a colleague and a friend. Next, I would like to thank Dr. Rhonda Roby. She helped turn me into a better scientist and I will carry her teachings with me as I continue in my professional career. I am very lucky to have worked with her professionally and to have known her personally. I would also like to give deepest thanks to Dr. Art Eisenberg. He gave me this project and without him, it could not have possibly been accomplished. I would like to thank my entire committee. Their guidance and support made this project great and made me a better professional. Thank you to all of you for playing a huge role in my education and helping me become the best scientist I can be. Finally, I would like to thank God and my family. Their prayers and support got me through the last two years of this journey. Thank you.

TABLE OF CONTENTS

LIST OF TABLES	ii
LIST OF ILLISTRATIONS	iii
INTRODUCTION	1
MATERIALS/METHODS	6
RESULTS	10
DISCUSSION	
CONCLUSIONS	
APPENDIX A	
APPENDIX B	40
APPENDIX C	57
APPENDIX D	
APPENDIX E	59
REFERENCES	64

LIST OF TABLES

1. Evaluation of Cycle Number	11
2. Concordance	17
3. Peak Height and Peak Height Ratio Data by Locus for Buccal Samples	19
4. Peak Height and Peak Height Ratio Data by Locus for Bloodstains	20
5. Peak Area and Peak Area Ratio Data by Locus for Buccal Samples	21
6. Peak Area and Peak Area Ratio Data by Locus for Bloodstains	22
7. Peak Height and Peak Height Ratio Data by Dye Color	22
8. Peak Area and Peak Area Ratio Data by Dye Color	22
9. Summary of Inferential Data Analysis	23

LIST OF ILLISTRATIONS

1. Region Map of the Buccal DNA TM Collector10
2. Electropharogram of Amelogenin, D5S818, and FGA for In-house Incubation Solution
Evaluation12
3. Electropharogram of D19S433, vWA, TPOX, and D18S51 for Incubation Solution
Volume13
4. Bar Graph of Region Data14
5. Electropharogram of Amelogenin, D5S818, and FGA for the Different Regions15
6. Electropharogram of a Buccal Sample Processed with the Optimized Protocol16
6A. Electropharogram of a Buccal Sample Processed with the Optimized Protocol17

INTRODUCTION

DNA analysis has proven to be a useful tool for the forensic community. This type of testing is particularly helpful for human identification, kinship analysis, paternity testing and DNA databasing. The process of obtaining a DNA profile involves the analysis of genetic polymorphisms that have been identified within the human genome. DNA profiles are obtained from reference samples provided by known individuals and evidentiary samples originating from an unknown contributor. The DNA profiles are then compared in order to determine the source of the unknown evidentiary sample. In order to obtain a DNA profile, a step-wise process is conducted beginning with the collection of a biological sample. Once collected, the DNA contained within the sample is extracted, the DNA is purified away from potential PCR inhibitors, quantified to determine the amount of sample recovered, an optimum amount of DNA is then added to the PCR amplification reaction to identify the polymorphic variations within the DNA, the different length amplified products are then separated by capillary electrophoresis, and finally the results are analyzed by one or more computer programs. The end result of this timeconsuming and labor-intensive process is a genetic profile unique to every person, with the possible exception of identical twins. For the purposes of human identification, DNA analysis requires the collection of appropriate reference samples for comparison to missing persons or unidentified decedent samples. The reference samples must under go the same step wise laborious and costly process to generate a DNA profile.

The types of samples that are routinely encountered in forensic casework are highly variable. However, the types of samples collected for use as reference samples are typically either a blood or buccal sample. Reference samples are generally collected by either swabbing the inside of the cheek for buccal cells, or by phlembotomy or a finger stick for the collection of

blood. The profiles derived from these samples are almost always from a single source and of known origin. The purpose of this project was to develop a method that would decrease the time and labor of processing single source reference samples by eliminating the purification and quantification steps of DNA analysis. The hypothesis is that by utilizing a novel sample collection device in conjunction with a new PCR STR amplification kit the purification and quantification steps of DNA analysis can be eliminated and still produce reliable and consistent genetic profiles.

This project tested the use of the Buccal DNA CollectorTM (Bode Technology Group, Lorton, VA), as the collection device, in conjunction with the AmpFLSTR[®] Identifiler[®] Direct PCR Amplification Kit (Applied Biosystems, Foster City, CA). In the development of the AmpFLSTR[®] Identifiler[®] Direct PCR Amplification Kit, Applied Biosystems was obtaining DNA profiles from both buccal samples and bloodstains collected on FTA[®] Paper (Whatman Inc., Clifton, NJ) (7). FTA[®] Paper consists of 100% cotton paper with a proprietary solution that has been impregnated into the paper. A biological sample such as either buccal cells or a small amount of blood is directly applied to the FTA paper. Upon contact the buccal or white blood cells lyse and the DNA compacted within the nucleus is released and entangles, becoming trapped within the matrix of the paper (4). In addition, the reagents within the FTA treated paper prevent the bound DNA from degrading and allows for storage at room temperature. A small sample punch is taken and that punch is washed several times in order to remove PCR inhibitors, such as the heme found within the red blood cells as well as the chemicals that are impregnated in the paper (5). This washing step can take 2 to 3 hours. Once this is complete the sample is ready for amplification. Since FTA[®] Paper contains a number of different chemicals, the FTA paper cannot be directly placed within the mouth, and secondary transfer step is required to for

the application of buccal cells onto the FTA Paper. This can be problematic because collection of a buccal sample and then transfer to the FTA[®] Paper is inefficient a substantial amount of the collected sample could be lost.

The Buccal DNA CollectorTM is a collection device that could be used to obtain buccal and blood samples directly on cotton paper without any need for a secondary transfer step. It consists of a plastic handle and a collection paper which is comprised of untreated 100% cotton paper. Since the collection paper is not treated, the cells will not efficiently lyse upon initial contact with the paper. However during the drying process the cells will break down and the DNA will ultimately entrap. Similar to FTA[®] Paper, a small 1.2 sample punch is taken from the Bode collection device. However, with the Buccal DNA CollectorTM the sample punch is added to the Bode PunchPrepTM Solution, and is then incubated at 70°C for 20 minutes. This additional incubation step is presumed to increase the efficiency of cell lysis and the release of DNA from the cells collected on the device. The AmpFLSTR[®] Identifiler[®] Direct amplification mix can then be added directly to the sample plate (2). The Buccal DNA CollectorTM was the collection device chosen for this project for the following reasons: the collection paper is untreated, therefore a direct buccal sample can be obtained; also, the extraction step is a 20 minute incubation as opposed to a 2 to 3 hour washing step.

The AmpFLSTR[®] Identifiler[®] Direct PCR Amplification Kit was the amplification system chosen to work in conjunction with the Buccal DNA CollectorTM. The design of the AmpFLSTR[®] Identifiler[®] Direct PCR Amplification Kit was developed in order to eliminate the need for DNA purification and quantification from buccal or blood single source reference samples. This kit consists of two separate components. The primers, which include the 13 CORE CODIS loci, CSF1PO, FGA, TH01, TPOX, vWA, D3S1358, D5S818, D7S820,

D8S1179, D13S317, D16S539, D18S51, D21S11, in addition to D2S1338 and D19S433 (7). This primer set also includes degenerate primers for D8S1170, vWA, and D16S539. The second component is the PCR reaction mix, which contains a proprietary buffer system, dNTPS, a carrier protein to help overcome inhibition, and the Taq polymerase. The PCR buffering system and cycling parameters of the AmpFLSTR[®] Identifiler[®] Direct PCR Amplification Kit were optimized to overcome the inhibitors that are usually removed during the purification step (6). In 2004, the University of Granada (UGR), Spain, Genetic Identification Laboratory suggested the development of worldwide DNA registries consisting of parents with a missing or abducted child, homeless children found living on the street or in shelters, and children found in orphanages or illegal adoption centers. From this idea the UGR in collaboration with the University of North Texas Center for Human Identification (UNTCHI) launched the DNA-ProKids (Program for Kids Identification with DNA Systems) program. DNA-ProKids is an international humanitarian effort to help identify missing children in order to reunite abducted and homeless children with their parents, and to provide law enforcement agencies a scientific methodology to help deter the human trafficking of children (1). In order to facilitate the collection and processing of samples for the DNA-ProKids program and to increase the utilization of the program throughout the word a simple and efficient process for obtaining DNA profiles must be developed and validated. The use of the Bode Buccal DNA Collector TM in conjunction with the AmpFLSTR[®] Identifiler[®] Direct PCR Amplification Kit could provide the required collection system and an efficient and effective method of processing the reference samples. This collection device together with the new AmpFLSTR[®] Identifiler[®] Direct PCR amplification kit could simplify the process and save significant amounts of time when processing single source reference samples. This is vital for the expansion of DNA databasing.

The more samples that can be processed and loaded into DNA databases, the greater the potential for making identifications, as well as reuniting families and ultimately saving lives.

MATERIALS AND METHODS

This study consisted of a series of experiments designed to generate data in order to optimize the various steps within the entire process. Once each step in the process had been optimized the overall protocol was tested to assess the ability to obtain reliable DNA profiles from single source reference samples. The validation of the optimized protocol is required by National Standards prior to implementation and analysis of actual casework type samples.

Samples

The samples used in this study were obtained from 100 anonymous volunteer donors under UNTHSC IRB protocol number 2010-012. Each of these volunteer donors provided both a buccal swab sample as well as a blood sample. The samples were collected on the Buccal DNA CollectorTM by self-collection of buccal cells from inside of the cheek and by blood applied to the collector from a finger stick. The protocols for collection of these two samples types are in Appendix C and Appendix D. These 100 paired samples were used for both the optimization and validation portions of this project.

Sample preparation

All samples for the optimization experiments and the validation portion of the project were processed in high throughput configuration utilized a 96 well plate. A 2 μ L of the Bode PunchPrepTM Solution (formula is proprietary) was added to each sample well. A 1.2 mm punch was taken from the collection device using a Harris Micro-Punch (Ted Pella, Inc. Redding, CA) and added directly to the 2 μ L to the Bode PunchPrepTM Solution. The sample plate underwent a 20 minute incubation at 70°C. While conducting the optimization experiment, static electricity

was observed. Static electricity can be problematic as the punched disc may "jump" out of the well and into a non-designated well. The protocols were modified by adding the Bode PunchPrepTM Solution FIRST, then punching the disc directly into the appropriate well location. By changing these two steps, a decrease in static electricity was observed. Also, evaporation of the Bode PunchPrepTM Solution was observed. Therefore, when processing a full plate of samples, dispense the Bode PunchPrepTM Solution into a maximum of four columns, add the punched sample disc to the appropriate wells, and then seal the columns. These steps should be repeated until the plate is complete.

Amplification set-up

During the incubation period, the master mix for the amplification was made. The necessary volumes of reagents were calculated by taking the number of samples to be run and adding a 10% pipetting error. The master mix is made by a 1:1 mixture of the AmpFLSTR[®] Identifiler[®] Direct PCR reaction mix and the AmpFLSTR[®] Identifiler[®] Direct primers. Once the incubation is complete, 25 µL of the master mix is dispensed directly into each sample well.

Amplification

The thermocycler parameters are dependent on the sample type being amplified (*i.e.* buccal samples versus bloodstains). Once the amplification master mix is added to each sample well, the plate is then placed on a GeneAmp[®] PCR System 9700 (Applied Biosystems). The thermocycling program was selected for the appropriate sample type (See Appendix E).

Capillary Electrophoresis

Capillary electrophoresis was performed on an ABI PRISM[®] 3130*xl* Genetic Analyzer (Applied Biosystems). Before the amplified product could be analyzed, it had to be prepared for capillary electrophoresis. This was done by preparing a master mix of Hi-Di Formamide and GeneScan 500 LIZ Size Standard (Applied Biosystems). For each sample, the master mix contained 8.7 μ L of Hi-Di Formamide and 0.3 μ L of the GeneScan 500 LIZ Size Standard was added. The total volume of the master mix was calculated based upon the total number of samples and then increased by an additional 10% to account for any potential pipetting error. A new 96 well plate was used and 9 μ L of the master mix was added to every well that would be used to run amplified product or allelic ladder. Once the master mix was dispensed, 1 μ L of amplified product or allelic ladder to the appropriated sample well. The allelic ladder used was the AmpFLSTR[®] Identifiler[®] Direct Allelic Ladder (Applied Biosystems).

Data analysis

Data analysis and interpretation was performed using GeneMapper[®]*ID* v3.2.1 (Applied Biosystems) analysis software. This software was used in two functions. It was used to interpret the data generated from the genetic analyzer and make the appropriate allele calls, generate peak heights and peak areas for all samples for statistical analysis. The second function of the software is as an expert system. The software requires the user or laboratory to establish a defined set of criteria that includes thresholds of detection for each allele, an acceptable peak height for heterozygotes and homozygotes, and an acceptable peak height ratio. If the data do not meet this defined set of criteria, then the expert system will fire a rule. The rule firings are an indication to the analyst that closer inspection of the data may be needed. These defined sets of criteria for the

lab that this project was conducted in are as follows. The detection threshold for all alleles was set at 50 relative florescence units (RFU). With respect to peak height, the detection threshold was set at 200 RFUs for homozygotes and 100 RFUs for heterozygotes. The acceptable peak height ratio for this lab is anything greater than or equal to 60%.

Statistical Analysis

Statistical analyses were performed, using Microsoft Excel and the Data Analysis ToolPak add-in for Microsoft Excel, in order to determine any variation between sample sets, loci and the dyes of the STR amplification kit. These analyses included an ANOVA test, paired t-test, and a Chi-squared test. These statistical tests were performed with respect to peak height ratio and peak area. Peak height (PH), peak area (PA), peak height ratio (PHR), and peak area ratio (PAR) were calculated for each locus. The average PH, average PHR, average PA, and average PAR were calculated per locus, per dye color and per sample set.

RESULTS

Several parameters were evaluated to produce an optimized protocol using the Buccal DNA CollectorTM in conjunction with the AmpFLSTR[®] Identifiler[®] Direct PCR Amplification Kit for the use of buccal samples and bloodstains: 1) An evaluation of two different Harris MicroPunch (Ted Pella, Inc. Redding, CA) devices (1.0mm and 1.2mm) for buccal samples. Only the 1.2mm was used for the bloodstains. Since blood has a consistently higher amount of cells for a 1.2 mm punch size, different cycle numbers for PCR amplification of both buccal samples and bloodstains were evaluated; 2) Two different in-house incubation solutions were evaluated; 3) Varying amounts of Bode PunchPrepTM Solution for incubation were evaluated; 4) A map of the Buccal DNA CollectorTM was designed to evaluate the quantity of DNA for each of its five regions for buccal sample collection (Figure 1). Since bloodstains are visible, a punch from the center of the stain was taken.

Figure 1 Region Map of the Buccal DNATM **Collector.** The Buccal DNA CollectorTM was mapped into five different regions. Discs were punched from the center of each region. (Photograph courtesy of Pam Curtis)

The optimized protocols were implemented for the validation portion of this project. A total of 200 samples were processed. These samples consisted of 100 paired buccal and blood samples. The buccal samples were processed separately from the bloodstains due to the different cycle numbers.

Procedures for 1.0mm and 1.2mm punch sizes were optimized for buccal samples and a 1.2mm punch size procedure was optimized for bloodstains. The cycle numbers that exhibited increased locus and allele dropout, low peak height, increased pull-up, and increased stutter include 28 cycles for the 1.0mm punch size for buccal samples, 27 cycles for the 1.2mm punch size for buccal samples, and 26 cycles for bloodstains. The cycle number that consistently produced a balanced profile was chosen for each punch size and sample type (Table 1).

Sample	Bu	Blood	
Punch Size	1.0mm	1.2mm	1.2mm
	26	25	24
Cycle Number	27	26	25
	28	27	26

Table 1 Evaluation of Cycle Number. Optimization experiments were performed to evaluate the best cycle number for each sample type and each sample punch size. The chosen cycle numbers are highlighted. These cycle numbers produced complete and balanced profiles.

Evaluation of two in-house solutions was performed in addition to the Bode PunchPrepTM Solution. A solution comprised of 0.1% SDS in 1X PBS Buffer (made fresh in-house) and a solution comprised of 0.1% SDS in TE⁻⁴ Buffer (made in-house) were the incubations solutions evaluated. The results indicated that either one of these solutions would produce profiles with acceptable RFU levels. The Bode PunchPrepTM Solution produced a higher signal intensity and therefore was determined to be the optimal incubation solution. Results for evaluation of these solutions are shown in Figure 2 below. Figure 2 is representative of all the samples from this experiment.

Figure 2 Electropharogram of Amelogenin, D5S818, and FGA for In-house Incubation Solution Evaluation. The RFU levels are labeled for the FGA locus. As shown, both in-house solutions produced acceptable RFU levels; however the Bode PunchPrepTM Solution produced the highest signal intensity. Relative fluorescence units (RFU) are labeled for the FGA locus.

Incubation experiments were conducted using $0\mu L$, $2\mu L$ (manufacturer's recommended volume), and $4\mu L$ of the Bode PunchPrepTM Solution. With $0\mu L$ of the Bode PunchPrepTM Solution, locus dropout and low signal were observed. With $4\mu L$ of Bode PunchPrepTM Solution, decreased signal intensity was observed; this decrease in signal was possibly due to dilution of the amplification reaction mix. A balanced profile was obtained using the $2\mu L$ volume of Bode PunchPrepTM Solution (Figure 3). Figure 3 is representative of all samples processed for this experiment.

Figure 3 Electropharogram of D19S433, vWA, TPOX, and D18S51 for Incubation Solution Volume. The same buccal sample was incubated in 0μ L, 2μ L, and 4μ L of the Bode PunchPrepTM Solution. Locus dropout was observed at the TPOX locus for the 0μ L incubation volume (red elliptical). The relative fluorescence units (RFU) at the TPOX locus for 2μ L and 4μ L are labeled. The manufacturer's recommendation of 2μ L was found to be the optimal Bode PunchPrepTM Solution volume.

The collection end or the distal end of the collection device was mapped into five different regions. A decrease in signal was observed in the most proximal regions of the Buccal DNA CollectorTM (*i.e.*, Regions III, IV, and V). Full profiles were obtained from all five regions, but consistent achievement of full profiles and high signal intensity is best obtained with punched discs from Regions I and II (Figures 4 and 5). Figure 4 and Figure 5 representative of all the samples that were tested for this experiment.

Figure 4 Bar Graph of Region Data. This bar graph shows the decreasing signal (RFU) obtained from each of the five regions of the Buccal DNA CollectorTM for one sample. Regions I and II yielded the highest RFUs when compared to the other regions. (Photograph courtesy of Pam Curtis).

Figure 5 Electropharogram of Amelogenin, D5S818, and FGA for the Different Regions.The same buccal sample was punched in the center of each of the five regions of the Buccal DNA CollectorTM. Regions I and II displayed a higher signal intensity. As the regions move closer to the proximal end of the collector, signal intensity decreases. The RFU levels are labeled for the FGA locus.

Optimized protocols were used for the validation of the Buccal DNA Collector[™] and AmpFLSTR[®] Identifiler[®] Direct PCR Amplification Kit for both buccal samples and bloodstains. Concordance between 99 of the 100 paired buccal samples and bloodstains following the optimized protocols was reached (Figures 6, 6A and Table 2). Allele and locus dropout were observed in four of 100 buccal samples on the first amplification. Three of the four samples were recovered upon re-amplification. The one sample that did not produce a profile was due to poor sample collection. A SALIgAE[®] test (Abacus Diagnostics, West Hills, CA) which tests for the presence of amylase found in saliva was performed to see if there was any saliva present on the sample that gave no DNA results. This test was negative for the presence of saliva (data not shown). No dropout was observed for the bloodstains.

Figure 6 Electropharogram of a Buccal Sample Processed with the Optimized Protocol. Shown here is a DNA profile for one of the buccal samples processed with the optimized protocol. It is the same profile as that shown in Figure 6A below.

Figure 6A Electropharogram of a Blood Sample Processed with the Optimized Protocol. Shown is the profile obtained from one of the blood samples and it is concordant with Figure 6. It is the same profile as that shown in Figure 5 above.

Sample # = 200 Data	Buccal (N=100)	Blood (N=100)
% Full Profiles Obtained	96%	100%
Avg. PHR (Range)	91% (58% - 100%)	92% (64% - 100%)
# of Samples with Rule Firings	21	12
Rules Fired	PHR, LPH, AN	BIN, PHR, LPH, AN

Table 2 Concordance. The average peak height ratio (PHR) was calculated for all samples across all heterozygote loci. The PHR range for each sample set is in parentheses. The rules fired were PHR (Peak Height Ratio, \geq 60%), LPH (Low Peak Height, \geq 200 RFU for homozygotes and \geq 100 RFU for heterozygotes), AN (Allele Number, N=2), and BIN (Out of Bin Allele). The BIN rule fires when a peak is not in a designated bin. These observed rule firings are due to sample collection and the effects of the PCR process.

Table 2 shows concordance from the first amplification. As previously stated, three additional profiles were recovered upon re-amplification. This makes the percentage of full profiles obtained from buccal samples 99%. The rules fired for the buccal samples are shown in Table 2. These rules are fired when the data does not meet a defined criteria set by the lab. The PHR (peak height ratio) and AN (allele number) are fired when a stutter peak is called as an allele. Stutter is a known, reproducible artifact of PCR amplification. The LPH (low peak height) rule will fire when the allele peak heights do not meet the defined criteria. This rule also fires when stutter is called as an allele.

Statistical analyses were performed to determine any variation between the sample sets. Table 3 and Table 4 included the average peak height (PH), peak height ratio (PHR), standard deviation of the peak height and peak height ratio as well as the variances for peak height and peak height ratio for buccal samples and bloodstains respectively. This data was calculated for each locus and across the sample set. See Tables 3 through 8. Comparison statistics were calculated to determine any variation between the sample sets. These analyses include an Analysis of Variance (ANOVA), a paired t-test, and a Chi-squared test (Table 9). For complete ANOVA and t-test tables, refer to Appendix A and Appendix B.

				Std.		
Buccal		Avg.	Std. Dev.	Dev.		Var.
Samples	Avg. PH	PHR	PH	PHR	Var. PH	PHR
D8S1179	1208.1050	89.91%	821.5598	0.0717	674960.4611	0.0051
D21S11	955.9553	92.67%	569.7170	0.0423	324577.4474	0.0018
D7S820	1035.9576	90.44%	669.0273	0.1194	447597.5287	0.0142
CSF1PO	658.1471	91.63%	464.7100	0.0566	215955.3924	0.0032
D3S1358	842.2667	90.92%	470.6553	0.0555	221516.4407	0.0031
TH01	423.4364	92.89%	298.2533	0.0530	88955.0035	0.0028
D13S317	656.0341	91.94%	401.7388	0.1147	161394.0445	0.0132
D16S539	627.5864	91.75%	396.0777	0.0443	156877.5732	0.0020
D2S1338	486.9371	87.58%	346.3457	0.0824	119955.3581	0.0068
D19S433	762.1761	92.39%	427.9381	0.0454	183131.0259	0.0021
vWA	823.32745	91.69%	529.0963	0.0530	279942.8804	0.0028
TPOX	566.2500	92.74%	407.8887	0.0460	166373.1821	0.0021
D18S51	652.7765	89.25%	479.9003	0.0818	230304.3318	0.0067
AMEL	1085.2883	91.21%	608.4427	0.0368	370202.4980	0.0014
D5S818	987.4326	90.83%	595.6073	0.0555	354748.0661	0.0031
FGA	613.8811	91.53%	362.7258	0.0434	131569.9967	0.0019
Across Sample						
set	759.5700	91.06%	605.0629	0.0703	303513.6161	0.0049

Table 3 Peak Height and Peak Height Ratio Data by Locus for Buccal Samples. Data shown is the average peak height (PH), average peak height ration (PHR), standard deviations and variances for each locus across the sample set and the grand average of all loci across the sample set for buccal samples.

				Std.		
		Avg.	Std. Dev	Dev.		Var.
Bloodstains	Avg. PH	PHR	PH	PHR	Var. PH	PHR
D8S1179	1497.9669	90.50%	655.9405	0.0495	430257.9656	0.0024
D21S11	1346.2611	93.47%	624.9039	0.0296	390504.8979	0.0009
D7S820	1468.1205	92.95%	855.1120	0.0359	731216.5551	0.0013
CSF1PO	1522.8580	93.31%	1012.7635	0.0275	1030774.8999	0.0008
D3S1358	1056.7091	95.67%	672.4320	0.0324	452164.7807	0.0011
TH01	710.2909	96.08%	417.8604	0.0304	174607.3539	0.0009
D13S317	1000.6590	93.28%	542.2428	0.0318	294027.3074	0.0010
D16S539	1362.5706	92.83%	785.3876	0.0303	616833.6416	0.0009
D2S1338	1093.1469	90.38%	622.8180	0.0654	387902.2738	0.0043
D19S433	1054.6023	94.41%	483.0830	0.0292	233369.1895	0.0008
vWA	1174.3059	92.38%	641.8729	0.0469	412000.8053	0.0022
TPOX	1070.5390	93.77%	609.1853	0.0470	371106.7207	0.0022
D18S51	1095.6648	91.63%	580.3563	0.0446	336813.4813	0.0020
AMEL	1237.1429	96.74%	603.3213	0.0329	363996.6100	0.0011
D5S818	1048.6927	93.32%	469.1746	0.0428	220124.7758	0.0018
FGA	911.8541	93.16%	428.9899	0.0354	184032.2992	0.0013
Across sample						
set	1162.1976	93.10%	678.3612	0.0426	460173.9041	0.0018

Table 4 Peak Height and Peak Height Ratio Data by Locus for Bloodstains. Data shown is the average peak height (PH), average peak height ration (PHR), standard deviations and variances for each locus across the sample set and the grand average of all loci across the sample set for bloodstains.

Buccal		Avg.	Std. Dev.	Std. Dev.		Var.
Samples	Avg. PA	PAR	PA	PAR	Var. PA	PAR
D8S1179	14071.9399	89.33%	10194.2511	0.0737	103922756.3865	0.0054
D21S11	11667.6429	89.46%	7590.5019	0.0417	57615718.8496	0.0017
D7S820	14599.0118	89.49%	10855.8894	0.0472	117850335.2380	0.0022
CSF1PO	10135.4826	89.53%	7588.8887	0.0540	57591231.2570	0.0029
D3S1358	10195.7229	89.49%	6150.7083	0.0555	37831212.9773	0.0031
TH01	4879.4970	89.55%	3584.6438	0.0567	12849670.8660	0.0032
D13S317	8856.6723	89.46%	5571.5825	0.0448	31042531.9375	0.0020
D16S539	8996.4356	89.48%	6096.9805	0.0476	37173170.7288	0.0023
D2S1338	7592.3146	89.40%	5823.5521	0.0753	33913758.8948	0.0057
D19S433	8281.5593	89.54%	5192.2149	0.0459	26959096.0774	0.0021
vWA	9881.0347	89.69%	6757.2504	0.1160	45660432.9872	0.0135
TPOX	7782.3871	89.76%	6028.9793	0.0563	36348591.2388	0.0032
D18S51	9764.9834	89.91%	7707.2804	0.0752	59402171.7386	0.0057
AMEL	15885.2432	89.99%	9934.3731	0.0379	98691769.7857	0.0014
D5S818	14274.4833	90.04%	9583.0131	0.0504	91834139.7372	0.0025
FGA	9330.3369	90.17%	5954.3658	0.0432	35454472.4074	0.0019
Across						
Sample Set	10276.2441	91.79%	7774.9881	0.0630	60450439.7867	0.0040

Table 5 Peak Area and Peak Area Ratio Data by Locus for Buccal Samples. Data shown is the average peak area (PA), average peak area ration (PAR), standard deviations and variances for each locus across the sample set and the grad average of all loci across the sample set for buccal samples.

		Avg.	Std. Dev.	Std. Dev.		Var.
Bloodstains	Avg. PA	PAR	PA	PAR	Var. PA	PAR
D8S1179	17710.5549	91.95%	7554.5497	0.0436	57071221.5854	0.0019
D21S11	16654.5549	91.99%	7380.0289	0.0276	54464826.9666	0.0008
D7S820	20010.6471	92.15%	11472.7275	0.0274	131623475.6972	0.0007
CSF1PO	23089.3779	92.08%	14964.6231	0.0283	223939944.2248	0.0008
D3S1358	12980.1455	92.06%	8122.6784	0.0353	65977903.8812	0.0012
TH01	8190.3653	92.12%	4786.9267	0.0300	22914666.9441	0.0009
D13S317	13261.4294	92.11%	6969.2814	0.0298	48570882.9510	0.0009
D16S539	19660.7222	92.12%	10898.2187	0.0303	118771171.2826	0.0009
D2S1338	16996.4022	92.22%	9613.7473	0.0555	92424137.5789	0.0031
D19S433	11282.0670	92.28%	5014.0558	0.0794	25140755.5011	0.0063
vWA	14114.2151	92.35%	6575.5531	0.0403	43237898.8131	0.0016
TPOX	14961.0129	92.41%	9281.0681	0.0458	86138225.3765	0.0021
D18S51	16228.5635	92.44%	8048.4427	0.0357	64777429.5473	0.0013
AMEL	18081.6667	92.53%	8743.1289	0.0185	76442302.5697	0.0003
D5S818	15259.9056	92.61%	6721.9580	0.0391	45184719.4491	0.0015
FGA	13557.0963	92.63%	5744.7399	0.0332	33002036.0229	0.0011
Across						
Sample Set	15702.4774	94.10%	9243.3877	0.0424	85440215.5329	0.0018

Table 6 Peak Area and Peak Area Ratio Data by Locus for Bloodstains. Data shown is the average peak area (PA), average peak area ration (PAR), standard deviations and variances for each locus across the sample set and the grad average of all loci across the sample set for bloodstains.

	Buccal	Samples	Bloodstains	
	Avg. PH	Avg. PHR	Avg. PH	Avg. PHR
Blue_6-FAM	964.54	91.16%	1458.80	91.64%
Green_VIC	607.25	91.02%	1044.68	92.33%
Yellow_NED	701.13	91.52%	1098.78	91.57%
Red_PET	893.88	90.86%	1065.90	90.11%

Table 7 Peak Height and Peak Height Ratio Data by Dye Color. Shown is the average peak height (PH) and average peak height ratio (PHR) across the different dyes for each samples set.

	Buccal Samples		Bloodstains	
	Avg.			
	Avg. PA	PAR	Avg. PA	Avg. PAR
Blue_6-FAM	12618.5193	89.45%	19366.2837	92.04%
Green_VIC	8104.1285	89.48%	14217.8129	92.13%
Yellow_NED	8927.4911	89.73%	14146.4646	92.37%
Red_PET	13163.3545	90.07%	15632.8895	92.59%

Table 8 Peak Area and Peak Area Ratio Data by Dye Color. Shown is the average peak area (PA) and average peak area ratio (PAR) across the different dyes for each samples set.

	p-value		Chi-Squared
	(ANOVA)	p-value (paired t-test)	Value
PH-Locus	1.6886E-06	1.6886E-06	1.0000000
PH-Dye	1.3005E-02	5.5599E-02	0.9994266
PHR-Locus	4.9623E-01	4.9623E-01	1.0000000
PHR-Dye	5.6958E-01	7.6380E-01	1.0000000
PA-Locus	8.4967E-06	1.7500E-05	1.0000000
PA-Dye	1.2145E-02	5.2375E-02	0.9992549
PAR-Locus	9.6919E-24	4.8411E-22	1.0000000
PAR-Dye	3.4751E-06	2.6325E-04	0.9999998

Table 9 Summary of Inferential Data Analysis. Summary table with the p-values for all ANOVA, t-tests, and chi-squared tests performed. ($\alpha = 0.05$)

DISCUSSION

Optimization of the protocols for each sample type was a vital part of this study. The parameters that are in place for each step of processing the samples were carefully evaluated to ascertain the most optimal results. The reasoning behind optimization of cycle number is that if the cycle number is too low, a full profile may not be obtained. If the cycle number is too high, then increase stutter and pull-up can occur and this can cause rule firings that would slow down the analyst.

Optimization of the incubation solution volume was two-fold. First, it was thought that the incubation solution may not be a necessary step. Second, $2\mu L$ is a very small volume and just barely completely submerged the sample disc. It was hypothesized that increasing the incubation solution volume would more completely submerge the sample disc. The problem with increasing the incubation solution volume is that as the incubation solution volume increases, so does the dilution factor of the amplification mix. Dilution of the amplification mix can cause the sample to not completely amplify. The manufacturer of the Bode PunchPrepTM Solution recommends the $2\mu L$ solution volume.

The instructions for using the Buccal DNA CollectorTMfor collection of buccal samples recommend dragging the collector "firmly toward the lips and out of mouth... similar to the "popping" of the cheek with a finger..."(2, Appendix D). It was hypothesized that varying amounts of DNA maybe deposited during buccal sample collection. This is the reason that the collection device was mapped into the five different regions.

The optimization experiments further increased the efficiency of sample processing with the Buccal DNA CollectorTM in conjunction with the AMPFLSTR[®] Identifiler[®] Direct PCR Amplification Kit. The processing of single source reference samples should not be time

consuming or laborious. DNA analysis from extraction to data analysis can take up to a week to complete. Elimination of DNA purification and quantification does decrease the time and labor spent on sample processing. The method tested in this project allows for a full plate of samples (86 samples to a plate plus 10 controls) to be processed and analyzed in less than a day.

Using GeneMapper[®]*ID* v3.2.1 (Applied Biosystems) analysis software as an expert system also further decreases time and labor spent on sample processing and analysis. As mentioned previously, the software will fire a rule when the data do not meet a defined criteria. Using the software in this manner allows the analyst to only look at the profiles that fire rules. This can save time for the analyst by looking at a few profiles that need closer inspection as opposed to hundreds of profiles.

There is no transfer between sample tubes with this method. Decreasing the amount of sample transfer is advantageous for three reasons. First, there is less chance to introduce contamination into the sample. Second, there is less opportunity to loose portions of the sample during transfer. Lastly, there is less chance of sample switching or mislabeling when processing large amounts of samples.

CONCLUSIONS

In conclusion, optimized protocols for the different sample types were developed using the Bode Technology Buccal DNA Collector[™] in conjunction with the AmpFLSTR[®] Identifiler[®] Direct PCR Amplification Kit to obtain DNA profiles for reference samples. Evaluation of paired buccal samples and bloodstains showed that the protocols are effective in producing full, balanced DNA profiles. Poor sample collection may be attributed to the observed allele and locus dropout in the buccal sample that did not give any results. Also, differences in an individual's diet can produce different PCR inhibitors, which could affect the amplification process (8,9).

The AmpFLSTR[®] Identifiler[®] Direct PCR Amplification Kit system allows for direct amplification which decreases sample processing time. While the sample punching must be done manually, the dispensing of the necessary reagents can be easily automated which results in more time savings. Saving time during the processing of samples not only reduces cost, but also allows for more reference samples to be processed. Increasing the number of reference samples processed leads to the potential for making more positive identifications.

The statistical analyses showed that there was a statistically significant difference between the loci. This is to be expected given the nature of DNA. There was also a statistically significant difference between the dyes within each sample set. Again, this is expected given the chemistry of the amplification kit. All statistical test performed indicated that there was no statistically significant difference between the samples sets. This was the expected result given that the samples were paired samples. The statistical analysis was performed after the first amplification, and again after the second amplification. Incomplete profiles were not included in

the analysis. The descriptive statistical tables (*i.e.* Average PH, Average PHR, etc.) including the additional profiles obtained from the second amplification are in Appendix B.

An effective and efficient method for processing reference samples was obtained through these experiments. The Bode Technology DNA CollectorTM coupled with the AmpFLSTR[®] Identifiler[®] Direct PCR Amplification Kit using the optimized protocols established with these experiments is an ideal collection and processing method for any type of single-source or reference sample (*i.e.* suspect reference samples, paternity samples and samples for DNA databasing). The optimized protocols used in the validation portion of this project produced 99% full profiles for the buccal samples after two amplifications and 100% full profiles for the blood samples after only one amplification. No off scale data was seen in any of the profiles generated from the paired samples.

APPENDIX A

The following tables and graphs are the ANOVA and paired t-test tables that were generated during the statistical analysis portion of this study. The ANOVA and the paired t-test were performed for peak height, peak height ration, peak area, and peak area ratio with respect to each locus and dye color.

ANOVA: '	Two-	Factor Wit	thout	Replication (α	= 0.05)			
SUMMA	RY	Count		Sum	Average	Variance		St. Dev.
D8S1179		2		2706.0718	1353.0359	42009	9543	204.9633
D21S11		2		2302.2164	1151.1082	76169.	3103	275.9879
D7S820		2		2504.0781	1252.0390	93382.	3887	305.5853
CSF1PO		2		2181.0050	1090.5025	373862.	4957	611.4430
D3S1358		2		1898.9758	949.4879	22992.	7767	151.6337
TH01		2		1133.7273	566.8636	41142.	7651	202.8368
D13S317		2		1656.6931	828.3465	59383.	1500	243.6866
D16S539		2		1990.1570	995.0785	270100.	8374	519.7123
D2S1338		2		1580.0840	790.0420	183745.	1304	428.6550
D19S433		2		1816.7784	908.3892	42756.	5226	206.7765
vWA		2		1997.6334	998.8167	61592	9176	248.1792
TPOX		2		1636.7890	818.3945	127153.	6781	356.5861
D18S51		2		1748.4413	874.2207	98074.	.9950	313.1693
AMEL		2		2322.4311	1161.2156	11529.	9050	107.3774
D5S818		2		2031.1676	1015.5838	2192	4036	46.8231
FGA		2		1525.7351	762.8676	44393	9463	210.6987
Buccal		16		12380.6000	773.7875	51689	2947	227.3528
Blood		16		18651.3844	1165.7115	50811.	3592	225.4138
Source of								
Variation		SS	df	MS	F	P-value		F crit
Loci	121:	5862.158	15	81057.47721	3.780105827	0.007163642		2.403447072
Sample								
Sets	122	8835.526	1	1228835.526	57.30659889	1.68859E-06	4	4.543077123
Error	321	647.6505	15	21443.1767				
Total	276	6345.335	31					

Table A ANOVA for Peak Height (PH) with Respect to Locus.

t-Test: Paired Two Sample for 2 0.05)	Means (α =	
	Buccal	Blood
Mean	773.7875	1165.7115
Variance	51689.2947	50811.3592
Observations	16	16
Pearson Correlation	0.5816	
Hypothesized Mean		
Difference	0	
df	15	
t Stat	-7.5701	
P(T<=t) one-tail	8.4429E-07	
t Critical one-tail	1.7531	
P(T<=t) two-tail	1.6886E-06	
t Critical two-tail	2.1314	

Table A1 Paired t-test Data for Peak Height with Respect to Locus.

Table B ANOVA for Peak Height Data with Respect to Dye Color.

ANOVA: Two	-Factor Without	Replication ($\alpha = 0.05)$			
SUMMARY	Count	Sum	Average	Variance	St. Dev.	
Blue_6-FAM	2	2423.3428	1211.6714	122146.6613	349.4949	
Green_VIC	2	1651.9274	825.9637	95669.5035	309.3049	
Yellow_NED	2	1799.9105	899.9553	79060.9451	281.1778	
Red_PET	2	1959.7780	979.8890	14794.6041	121.6331	
Buccal	4	3166.8073	791.7018	27512.8700	165.8700	
Blood	4	4668.1514	1167.0379	38329.2208	195.7785	
Source of						
Variation	SS	df	MS	F	P-value	F crit
Dyes	167608.8201	3	55869.6067	5.6024	0.0954	9.2766
Sample Sets	281754.2618	1	281754.2618	28.2532	0.0130	10.1280
Error	29917.45227	3	9972.4841			
Total	479280.5341	7				

t-Test: Paired Two Sample f	For Means ($\alpha =$	0.05)
	Buccal	Blood
Mean	734.0887	1069.7832
Variance	21353.6662	743.1052
Observations	3	3
Pearson Correlation	0.2018	
Hypothesized Mean		
Difference	0	
df	2	
t Stat	-4.0621	
P(T<=t) one-tail	0.0278	
t Critical one-tail	2.9200	
P(T<=t) two-tail	0.0556	
t Critical two-tail	4.3027	

Table B1 Paired t-test for Peak Height Data with Respect to Dye Color.

ANOVA: Two-Fac	tor With	out Replica	ation ($\alpha = 0$.05)		
SUMMARY	Count	Sum	Average	Variance	St. Dev.	
D8S1179	2	1.8041	0.9020	0.0000	0.0042	
D21S11	2	1.8504	0.9252	0.0000	0.0021	
D7S820	2	1.8080	0.9040	0.0000	0.0005	
CSF1PO	2	1.8493	0.9247	0.0001	0.0119	
D3S1358	2	1.8658	0.9329	0.0011	0.0336	
TH01	2	1.8496	0.9248	0.0000	0.0058	
D13S317	2	1.8403	0.9201	0.0000	0.0011	
D16S539	2	1.8322	0.9161	0.0000	0.0020	
D2S1338	2	1.7796	0.8898	0.0004	0.0197	
D19S433	2	1.8450	0.9225	0.0000	0.0021	
vWA	2	1.8047	0.9024	0.0004	0.0206	
TPOX	2	1.8651	0.9325	0.0001	0.0073	
D18S51	2	1.8087	0.9044	0.0003	0.0168	
AMEL	2	1.7720	0.8860	0.0014	0.0369	
D5S818	2	1.8204	0.9102	0.0003	0.0168	
FGA	2	1.8365	0.9183	0.0000	0.0042	
Buccal	16	14.5836	0.9115	0.0002	0.0144	
Blood	16	14.6482	0.9155	0.0005	0.0216	
Source of						
Variation	SS	df	MS	F	P-value	F crit
Loci	0.0061	15	0.0004	1.5145	0.2154	2.4034
Sample Sets	0.0001	1	0.0001	0.4864	0.4962	4.5431
Error	0.0040	15	0.0003			
Tradal	0.0102	21				
Total	0.0102	31				

Table C ANOVA for Peak Height Ratio Data with Respect to Locus.

t-Test: Paired Two Sample fo	or Means ($\alpha =$	0.05)
	Buccal	Blood
Mean	0.9115	0.9155
Variance	0.0002	0.0005
Observations	16	16
Pearson Correlation	0.2213	
Hypothesized Mean		
Difference	0	
df	15	
t Stat	-0.6974	
P(T<=t) one-tail	0.2481	
t Critical one-tail	1.7531	
P(T<=t) two-tail	0.4962	
t Critical two-tail	2.1314	

Table C1 Paired t-test for Peak Height Ratio Data with Respect to Locus.

Table D ANOVA for Peak Height Ratio Data with Respect to Dye Color.

ANOVA: Two-I	Factor Without	Replication	$\cos (\alpha = 0.05)$			
					St.	
SUMMARY	Count	Sum	Average	Variance	Dev.	
Blue_6-FAM	2	1.8280	0.9140	1.1360E-05	0.0034	
Green_VIC	2	1.8335	0.9168	8.6939E-05	0.0093	
Yellow_NED	2	1.8309	0.9154	1.2740E-07	0.0004	
Red_PET	2	1.8096	0.9048	2.8009E-05	0.0053	
Buccal	4	3.6455	0.9114	7.9849E-06	0.0028	
Blood	4	3.6564	0.9141	8.7621E-05	0.0094	
Source of					<i>P</i> -	
Variation	SS	$d\!f$	MS	F	value	F crit
Dyes	0.0002	3	5.84775E-05	1.5750	0.3590	9.2766
Sample Sets	1.5051E-05	1	1.5051E-05	0.4054	0.5696	10.1280
Error	0.0001	3	3.71282E-05			
				-		
Total	0.0003	7				

t-Test: Paired Two Sample	e for Means ($\alpha = 0$.	05)
	Buccal	Blood
Mean	0.9134	0.9113
Variance	0.0001	1.1945E-05
Observations	3	3
Pearson Correlation Hypothesized Mean	0.4009	
Difference	0	
df	2	
t Stat	0.3438	
P(T<=t) one-tail	0.3819	
t Critical one-tail	2.9200	
P(T<=t) two-tail	0.7638	
t Critical two-tail	4.3027	

Table D1 Paired t-test for Peak Height Ratio Data with Respect to Dye Color.

ANOVA: Ty	vo-Factor Wi	thout Replication	on ($\alpha = 0.05$)			
SUMMARY	Count	Sum	Average	Variance	Std. Dev.	
D8S1179	2	31782.4948	15891.2474	6619759.7569	2572.8894	
D21S11	2	28322.1978	14161.0989	12434646.0863	3526.2794	
D7S820	2	34609.6589	17304.8294	14642897.9015	3826.6040	
CSF1PO	2	33224.8605	16612.4302	83901702.3543	9159.7872	
D3S1358	2	23175.8683	11587.9342	3876504.5046	1968.8841	
TH01	2	13069.8623	6534.9311	5480924.3290	2341.1374	
D13S317	2	22118.1017	11059.0508	9700942.3883	3114.6336	
D16S539	2	28657.1578	14328.5789	56863504.7636	7540.7894	
D2S1338	2	24588.7168	12294.3584	44218432.0566	6649.6941	
D19S433	2	19563.6264	9781.8132	4501523.2801	2121.6794	
vWA	2	23995.2498	11997.6249	8959908.2942	2993.3106	
TPOX	2	22743.4000	11371.7000	25766334.2345	5076.0550	
D18S51	2	25993.5470	12996.7735	20888933.9224	4570.4413	
AMEL	2	33966.9099	16983.4550	2412137.9275	1553.1059	
D5S818	2	29534.3889	14767.1944	485528.4780	696.7987	
FGA	2	22887.4332	11443.7166	8932747.3364	2988.7702	
Buccal	16	166194.7475	10387.1717	8919845.5921	2986.6111	
Blood	16	252038.7265	15752.4204	13234488.9814	3637.9237	
Source of						
Variation	SS	df	MS	F	P-value	F crit
Loci	2.529E+08	15	1.6861E+07	3.1854	0.015775965	2.4034
Sample Set	2.303E+08	1	2.3029E+08	43.5055	8.4967E-06	4.5431
Error	7.940E+07	15	5.2933E+06			
Total	5.626E+08	31				

Table E ANOVA for Peak Area Data with Respect to Locus.

t-Test: Paired Two Sample for Mea	$ns \ (\alpha = 0.05)$	
	Buccal	Blood
Mean	1.0142E+04	1.5622E+04
Variance	8.5225E+06	1.3888E+07
Observations	15	15
Pearson Correlation	5.1909E-01	
Hypothesized Mean Difference	0	
df	14	
t Stat	-6.3663	
P(T<=t) one-tail	0.0000	
t Critical one-tail	1.7613	
P(T<=t) two-tail	1.7500E-05	
t Critical two-tail	2.1448	

Table E1 Paired t-test for Peak Area Data with Respect to Locus.

Table F ANOVA for Peak Area Data with Respect to Dye Color.

ANOVA: Two	-Factor Witho	ut Replication	$(\alpha = 0.05)$			
SUMMARY	Count	Sum	Average	Variance	St. Dev.	
Blue_6-FAM	2	31984.8030	15992.4015	22766162.3940	4771.3900	
Green_VIC	2	22321.9414	11160.9707	18688568.6620	4323.0277	
Yellow_NED	2	23073.9558	11536.9779	13618842.2859	3690.3716	
Red_PET	2	28796.2440	14398.1220	3049301.5614	1746.2249	
Buccal	4	42813.4934	10703.3733	6543040.9048	2557.9368	
Blood	4	63363.4508	15840.8627	5992373.8506	2447.9326	
Source of						
Variation	SS	df	MS	F	P-value	F crit
Dye	3.2271E+07	3	1.0757E+07	6.0486	0.0868	9.2766
Sample Set	5.2788E+07	1	5.2788E+07	29.6822	0.0121	10.1280
Error	5.3353E+06	3	1.7784E+06			
Total	9.0394E+07	7				

Table F1 Paired t-test for Peak Area Data with Respect to Dye Col

t-Test: Paired Two Sample for Means ($\alpha = 0.05$)						
	Buccal	Blood				
Mean	10064.9914	14665.7224				
Variance	7369372.0483	702831.8538				
Observations	3	3				
Pearson Correlation	0.9811					
Hypothesized Mean Difference	0					
df	2					
t Stat	-4.1960					
P(T<=t) one-tail	0.0262					
t Critical one-tail	2.9200					
P(T<=t) two-tail	0.0524					
t Critical two-tail	4.3027					

ANOVA: Two-Factor Without Replication ($\alpha = 0.05$)						
SUMMARY	Count	Sum	Average	Variance	St. dev	
D8S1179	2	1.8128	0.9064	3.4190E-04	0.0265	
D21S11	2	1.8145	0.9072	3.1842E-04	0.0263	
D7S820	2	1.8164	0.9082	3.5250E-04	0.0266	
CSF1PO	2	1.8161	0.9081	3.2650E-04	0.0264	
D3S1358	2	1.8155	0.9077	3.3198E-04	0.0267	
TH01	2	1.8168	0.9084	3.3063E-04	0.0262	
D13S317	2	1.8157	0.9079	3.5343E-04	0.0269	
D16S539	2	1.8160	0.9080	3.4931E-04	0.0265	
D2S1338	2	1.8162	0.9081	3.9683E-04	0.0268	
D19S433	2	1.8182	0.9091	3.7366E-04	0.0259	
vWA	2	1.8204	0.9102	3.5256E-04	0.0246	
TPOX	2	1.8217	0.9109	3.5011E-04	0.0238	
D18S51	2	1.8235	0.9117	3.2208E-04	0.0224	
AMEL	2	1.8252	0.9126	3.2184E-04	0.0212	
D5S818	2	1.8265	0.9132	3.3023E-04	0.0222	
FGA	2	1.8280	0.9140	3.0218E-04	0.0215	
Buccal	16	14.3429	0.8964	6.4818E-06	0.0025	
Blood	16	14.7605	0.9225	4.7342E-06	0.0008	
Source of						
Variation	SS	df	MS	F	P-value	F crit
Loci	0.0002	15	1.0832E-05	28.1919	2.7867E-08	2.4034
Sample Set	0.0054	1	0.0054	14180.5452	9.6919E-24	4.5431
Error	5.763E-06	15	3.8422E-07			
				<u>.</u>		
Total	0.0056	31				

Table G ANOVA for Peak Area Ration with Respect to Locus.

t-Test: Paired Two Sample for Means ($\alpha = 0.05$)								
r in the second s								
	Ducad	Dlagd						
	Виссаі	Blood						

Table G1 Paired t-test for Peak Area Ratio with Respect to Locus.

	Buccal	Blood
Mean	0.8966	0.9227
Variance	6.2027E-06	4.3550E-06
Observations	15	15
Pearson Correlation	0.9365	
Hypothesized Mean		
Difference	0	
df	14	
t Stat	-111.3904	
P(T<=t) one-tail	2.4205E-22	
t Critical one-tail	1.7613	
P(T<=t) two-tail	4.8411E-22	
t Critical two-tail	2.1448	

Table H ANOVA for Peak Area Ratio Data with Respect to Dye Color.

ANOVA: Two-Factor Without Replication ($\alpha = 0.05$)						
SUMMARY	Count	Sum	Average	Variance	St. Dev	
Blue_6-FAM	2	1.8149	0.9075	0.0003	0.0265	
Green_VIC	2	1.8160	0.9080	0.0004	0.0266	
Yellow_NED	2	1.8209	0.9105	0.0003	0.0242	
Red_PET	2	1.8266	0.9133	0.0003	0.0217	
Buccal	4	3.5872	0.8968	8.1754E-06	0.0029	
Blood	4	3.6913	0.9228	6.1188E-06	0.0005	
Source of						
Variation	SS	$d\!f$	MS	F	P-value	F crit
Dye	4.233E-05	3	1.4111E-05	76.9620	0.0025	9.2766
Sample Set	1.354E-03	1	1.3535E-03	7382.2849	3.4751E-06	10.1280
Error	5.500E-07	3	1.8335E-07			
Total	1.396E-03	7				

Table H1 Paired t-test for Peak Area Ratio Data with Respect to Dye Color.

t-Test: Paired Two Sample for Means ($\alpha = 0.05$)						
	Buccal	Blood				
Mean	0.8976	0.9236				
Variance	8.8270E-06	5.2992E-06				
Observations	3	3				
Pearson Correlation	0.9935					
Hypothesized Mean						
Difference	0					
df	2					
t Stat	-61.6216					
P(T<=t) one-tail	0.0001					
t Critical one-tail	2.9200					
P(T<=t) two-tail	2.6325E-04					
t Critical two-tail	4.3027					

APPENDIX B

The tables that are in this appendix are the same as the ones in Appendix A. The only difference is that these tables include the calculations for the three buccal profiles that were recovered and the paired bloodstains that match those buccal samples.

Table A. Average Peak Height, Peak Height Ratio, Standard Deviation and Variance with

Buccal		Avg.		Std. Dev.		Var.
Samples	Avg. PH	PHR	Std. Dev. PH	PHR	Var. PH	PHR
D8S1179	1204.7849	90.09%	813.8003	0.0718	6.6227E+05	0.0052
D21S11	955.0811	92.74%	566.5206	0.0419	3.2095E+05	0.0018
D7S820	1025.7368	90.42%	664.1285	0.1177	4.4107E+05	0.0139
CSF1PO	656.8276	91.68%	465.8553	0.0564	2.1702E+05	0.0032
D3S1358	841.7368	90.99%	464.0442	0.0547	2.1534E+05	0.0030
TH01	422.3118	92.81%	293.9756	0.0526	8.6422E+04	0.0028
D13S317	661.9061	91.84%	399.4692	0.7902	1.5958E+05	0.0130
D16S539	619.2619	91.83%	393.4540	0.0439	1.5481E+05	0.0019
D2S1338	481.6722	87.69%	344.0674	0.0818	1.1838E+05	0.0067
D19S433	760.0604	92.39%	423.3391	0.0449	1.7922E+05	0.0020
vWA	825.7045	91.84%	522.6213	0.0535	2.7313E+05	0.0029
TPOX	560.5961	92.84%	404.3082	0.0462	1.6347E+05	0.0021
D18S51	650.1848	89.10%	476.8387	0.0816	2.2738E+05	0.0067
AMEL	1084.7391	90.71%	606.0767	0.0408	3.6733E+05	0.0017
D5S818	988.5956	90.71%	588.5598	0.0580	3.4640E+05	0.0034
FGA	613.6335	91.46%	361.2010	0.0443	1.3047E+05	0.0020
Across Sample						
set	768.2629	91.17%	600.3572	0.0694	2.9946E+05	0.0048

Respect to Loci for Buccal Samples.

Table A1.	Table A.	Average Pea	k Height.]	Peak Height	Ratio, Star	idard Deviation and

			Std. dev	Std. Dev.		
Blood Samples	PH	PHR	PH	PHR	Var. PH	Var. PHR
D8S1179	1500.4194	90.55%	683.4299	0.0490	4.6708E+05	0.0024
D21S11	1340.2419	93.50%	624.7027	0.0299	3.9025E+05	0.0009
D7S820	1456.9942	93.03%	850.8127	0.0358	7.2388E+05	0.0013
CSF1PO	1528.4740	93.31%	1003.3207	0.0273	1.0067E+06	0.0007
D3S1358	1050.8480	95.50%	664.6696	0.0329	4.4179E+05	0.0011
TH01	707.2824	96.13%	415.9574	0.0302	1.7302E+05	0.0009
D13S317	1000.7303	93.15%	539.3789	0.8008	2.9093E+05	0.0011
D16S539	1352.6272	92.86%	779.6494	0.0303	6.0785E+05	0.0009
D2S1338	1096.0000	90.35%	644.6985	0.0646	4.1564E+05	0.0042
D19S433	1051.8077	94.34%	482.1367	0.0290	2.3246E+05	0.0008
vWA	1175.3086	92.36%	640.4919	0.0463	4.1023E+05	0.0021
TPOX	1073.7468	93.74%	620.7451	0.0466	3.8532E+05	0.0022
D18S51	1094.8564	91.59%	594.7609	0.0441	3.5374E+05	0.0019
AMEL	1231.5948	96.79%	594.2771	0.0320	3.5317E+05	0.0010
D5S818	1051.2337	93.30%	473.2088	0.0430	2.2393E+05	0.0018
FGA	909.7487	93.15%	430.0633	0.0349	1.8495E+05	0.0012
Across sample						
set	1162.1976	93.10%	678.3612	0.0426	4.6017E+05	0.0018

Variance with Respect to Loci for Bloodstains.

Table A2. Average	Peak Area.	Peak Area	Ratio. Standard	Deviation and	Variance with	h
						-

		Avg.	Std. Dev.	Std. Dev.		Var.
Buccal Samples	Avg. PA	PAR	PA	PAR	Var. PA	PAR
D8S1179	1.41E+04	89.53%	1.01E+04	0.0741	1.03E+08	0.0055
D21S11	1.18E+04	93.81%	7.61E+03	0.0412	5.79E+07	0.0017
D7S820	1.42E+04	92.92%	9.69E+03	0.0487	9.38E+07	0.0024
CSF1PO	1.02E+04	92.43%	7.69E+03	0.0537	5.91E+07	0.0029
D3S1358	1.03E+04	90.51%	6.10E+03	0.0546	3.72E+07	0.0030
TH01	4.91E+03	92.28%	3.54E+03	0.0560	1.25E+07	0.0031
D13S317	9.03E+03	93.74%	5.64E+03	0.0457	3.18E+07	0.0021
D16S539	8.94E+03	92.56%	6.04E+03	0.0475	3.65E+07	0.0023
D2S1338	7.56E+03	89.28%	5.78E+03	0.0744	3.34E+07	0.0055
D19S433	8.37E+03	92.80%	5.18E+03	0.0454	2.69E+07	0.0021
vWA	1.00E+04	91.40%	6.72E+03	0.1150	4.51E+07	0.0132
TPOX	7.74E+03	92.02%	5.96E+03	0.0563	3.55E+07	0.0032
D18S51	9.81E+03	90.63%	7.69E+03	0.0750	5.92E+07	0.0056
AMEL	1.60E+04	91.18%	9.97E+03	0.0426	9.94E+07	0.0018
D5S818	1.44E+04	91.04%	9.51E+03	0.0533	9.05E+07	0.0028
FGA	9.41E+03	92.20%	5.97E+03	0.0444	3.57E+07	0.0020
Across Sample						
Set	1.03E+04	91.78%	7.76E+03	0.0629	6.03E+07	0.0040

Respect to Loci for Buccal Samples.

Table A3. Average Area, Peak Area Ratio, Standard Deviation and Variance with Respect

		Avg.	Std. Dev.	Std. Dev.		
Bloodstains	Avg. PA	PAR	PA	PAR	Var. PA	Var. PAR
D8S1179	1.774E+04	92.03%	7.889E+03	0.0435	6.224E+07	1.89E-03
D21S11	1.658E+04	95.11%	7.390E+03	0.0278	5.461E+07	7.74E-04
D7S820	2.004E+04	94.52%	1.137E+04	0.0277	1.293E+08	7.69E-04
CSF1PO	2.318E+04	94.32%	1.483E+04	0.0281	2.199E+08	7.92E-04
D3S1358	1.290E+04	95.29%	8.030E+03	0.0353	6.448E+07	1.24E-03
TH01	8.160E+03	96.00%	4.766E+03	0.0297	2.271E+07	8.81E-04
D13S317	1.327E+04	94.24%	6.934E+03	0.0300	4.808E+07	8.99E-04
D16S539	1.951E+04	94.21%	1.083E+04	0.0303	1.173E+08	9.16E-04
D2S1338	1.703E+04	92.07%	9.925E+03	0.0551	9.851E+07	3.03E-03
D19S433	1.126E+04	94.34%	5.007E+03	0.0781	2.507E+07	6.10E-03
vWA	1.413E+04	93.51%	6.587E+03	0.0398	4.339E+07	1.58E-03
TPOX	1.500E+04	94.22%	9.404E+03	0.0455	8.843E+07	2.07E-03
D18S51	1.623E+04	93.07%	8.308E+03	0.0354	6.901E+07	1.25E-03
AMEL	1.799E+04	97.93%	8.614E+03	0.0179	7.419E+07	3.22E-04
D5S818	1.529E+04	94.05%	6.778E+03	0.0393	4.594E+07	1.54E-03
FGA	1.353E+04	94.30%	5.781E+03	0.0327	3.342E+07	1.07E-03
Across sample						
set	1.568E+04	94.09%	9.273E+03	0.0421	8.600E+07	1.77E-03

to Loci for Bloodstains.

T-LL D A	D			· · · · · · · · · · · · · · · · · · ·
I ADIE K AVER	'AGE PEAK HEIGN	E Peak Height Kan/) Standard Deviation	i ana variance with
\mathbf{I} able $\mathbf{D}_{\mathbf{i}}$ \mathbf{I} \mathbf{I}	aze i can iicizii	is I can iicieilit inati		
		/		

Respect to Dye Color for Buccal Samples.

Buccal		Avg.	Std. Dev.	Std. Dev.		
Samples	Avg. PH	PHR	PH	PHR	Var. PH	Var. PHR
Blue_6-FAM	960.6076	91.23%	148.2081	0.0328	2.998E+10	3.888E-05
Green_VIC	605.3778	91.03%	63.8550	0.3277	2.344E+09	2.095E-05
Yellow_NED	699.1365	91.54%	53.5693	0.0171	2.466E+09	4.809E-06
Red_PET	895.6561	90.96%	136.6034	0.0091	1.720E+10	8.208E-07

Table B1. Average Peak Height, Peak Height Ratio, Standard Deviation and Variance with

		Avg.	Std.	Std. Dev.		
Bloodstains	Avg. PH	PHR	Dev.(PH)	PHR	Var. PH	Var. PHR
Blue_6-FAM	1456.5324	92.60%	171.1559	0.0097	3.053E+10	6.108E-07
Green_VIC	1041.4976	93.60%	137.4838	0.3408	2.690E+10	2.037E-06
Yellow_NED	1098.9299	93.01%	70.7869	0.0084	6.208E+09	4.001E-07
Red_PET	1064.1924	94.41%	85.1325	0.0057	7.753E+09	1.854E-07

Respect to Dye Color for Bloodstains.

Table B2. Average Peak Area, Peak Area Ratio, Standard Deviation and Variance with Respect

to Dye Color.

		Avg.	Std. Dev.	Std. Dev.		Var.
Buccal Samples	Avg. PA	PAR	PA	PAR	Var. PA	PAR
Blue_6-FAM	1.26E+04	92.17%	8.78E+03	0.0544	7.84E+07	0.0031
Green_VIC	8.15E+03	91.67%	5.42E+03	0.0557	3.03E+07	0.0032
Yellow_NED	8.98E+03	91.71%	6.39E+03	0.0729	4.17E+07	0.0060
Red_PET	1.33E+04	91.47%	8.49E+03	0.0468	7.52E+07	0.0022

Table B3. Average Peak Area, Peak Area Ratio, Standard Deviation and Variance with

Respect to Dye Color for Bloodstains.

		Avg.	Std. Dev.	Std. Dev.		
Bloodstains	Avg. PA	PAR	PA	PAR	Var. PA	Var. PAR
Blue_6-FAM	1.938E+04	93.99%	1.037E+04	0.0318	1.165E+08	1.057E-03
Green_VIC	1.417E+04	94.36%	8.097E+03	0.0360	7.021E+07	1.394E-03
Yellow_NED	1.415E+04	93.78%	7.327E+03	0.0497	5.648E+07	2.750E-03
Red_PET	1.560E+04	95.43%	7.058E+03	0.0300	5.119E+07	9.792E-04

ANOVA: Two-Factor Without Replication ($\alpha = 0.05$)						
SUMMARY	Count	Sum	Average	Variance	Std. Dev.	
D8S1179	2	2705.2043	1352.6022	43699.8518	209.0451	
D21S11	2	2295.3230	1147.6615	74174.4419	272.3499	
D7S820	2	2482.7310	1241.3655	92991.4484	304.9450	
CSF1PO	2	2185.3016	1092.6508	379883.7253	616.3471	
D3S1358	2	1892.5848	946.2924	21863.7284	147.8639	
TH01	2	1129.5941	564.7971	40604.1181	201.5046	
D13S317	2	1662.6364	831.3182	57400.9395	239.5849	
D16S539	2	1971.8891	985.9446	268912.3420	518.5676	
D2S1338	2	1577.6722	788.8361	188699.3093	434.3953	
D19S433	2	1811.8681	905.9341	42558.2297	206.2965	
vWA	2	2001.0131	1000.5066	61111.4875	247.2074	
TPOX	2	1634.3430	817.1715	131661.8110	362.8523	
D18S51	2	1745.0411	872.5206	98866.4030	314.4303	
AMEL	2	2316.3340	1158.1670	10783.2979	103.8427	
D5S818	2	2039.8293	1019.9147	1961.7637	44.2918	
FGA	2	1523.3822	761.6911	43842.1009	209.3851	
Buccal	16	12352.8335	772.0521	51847.3376	227.7001	
Blood	16	18621.9140	1163.8696	50583.4614	224.9077	
Source of						
Variation	SS	df	MS	F	P-value	F crit
Loci	1.2056E+06	15	8.0374E+04	3.6440	0.0085	2.4034
Sample Set	1.2282E+06	1	1.2282E+06	55.6829	2.00738E-06	4.5431
Error	3.3085E+05	15	2.2056E+04			
Total	2.7646E+06	31				

Table C. ANOVA for Peak Height Data with Respect to Locus.

t-Test: Paired Two Sample for Means ($\alpha = 0.05$)							
	Buccal	Blood					
Mean	772.0521	1163.8696					
Variance	51847.3376	50583.4614					
Observations	16	16					
Pearson Correlation	0.5694						
Hypothesized Mean Difference	0						
df	15						
t Stat	-7.4621						
P(T<=t) one-tail	1.0037E-06						
t Critical one-tail	1.7531						
P(T<=t) two-tail	2.0074E-06						
t Critical two-tail	2.1314						

Table C1. Paired t-test for Peak Height Data with Respect to Locus.

Table D. ANOVA for Peak Height Data with Respect to Dye Color.

ANOVA: Two-Factor Without Replication ($\alpha = 0.05$)							
SUMMARY	Count	Sum	Average	Variance	Std. Dev.		
Blue_6-FAM	2	2417.1400	1208.5700	122970.6800	350.6718		
Green_VIC	2	1646.8753	823.4377	95100.2444	308.3833		
Yellow_NED	2	1798.0663	899.0332	79917.3745	282.6966		
Red_PET	2	1959.8485	979.9242	14202.2449	119.1732		
Buccal	4	3160.7779	790.1945	27537.1885	165.9433		
Blood	4	4661.1522	1165.2881	38257.0242	195.5940		
Source of							
Variation	SS	$d\!f$	MS	F	P-value	F crit	
Dye	1.6658E+05	3	5.5527E+04	5.4085	0.0996	9.2766	
Sample Set	2.8139E+05	1	2.8139E+05	27.4080	0.0136	10.1280	
Error	3.0800E+04	3	1.0267E+04				
Total	478773.0036	7					

t-Test: Paired Two Sample for Means ($\alpha = 0.05$)							
	Buccal	Blood					
Mean	790.1945	1165.2881					
Variance	2.7537E+04	3.8257E+04					
Observations	4	4					
Pearson Correlation	0.6972						
Hypothesized Mean Difference	0						
df	3						
t Stat	-5.2353						
P(T<=t) one-tail	0.0068						
t Critical one-tail	2.3534						
P(T<=t) two-tail	0.0136						
t Critical two-tail	3.1824						

Table D1. Paired t-test for Peak Height Data with Respect to Dye Color.

ANOVA: Two-Factor Without Replication ($\alpha = 0.05$)						
SUMMARY	Count	Sum	Average	Variance	Std. Dev.	
D8S1179	2	1.8064	0.9032	0.0000	0.0033	
D21S11	2	1.8624	0.9312	0.0000	0.0054	
D7S820	2	1.8345	0.9173	0.0003	0.0184	
CSF1PO	2	1.8499	0.9250	0.0001	0.0115	
D3S1358	2	1.8648	0.9324	0.0010	0.0319	
TH01	2	1.8895	0.9447	0.0006	0.0235	
D13S317	2	1.8500	0.9250	0.0001	0.0092	
D16S539	2	1.8468	0.9234	0.0001	0.0073	
D2S1338	2	1.7804	0.8902	0.0004	0.0188	
D19S433	2	1.8673	0.9337	0.0002	0.0138	
vWA	2	1.8420	0.9210	0.0000	0.0037	
TPOX	2	1.8658	0.9329	0.0000	0.0064	
D18S51	2	1.8069	0.9034	0.0003	0.0176	
AMEL	2	1.8750	0.9375	0.0019	0.0430	
D5S818	2	1.8400	0.9200	0.0003	0.0183	
FGA	2	1.8461	0.9231	0.0001	0.0119	
					0.0000	
Buccal	16	14.5913	0.9120	0.0002	0.0141	
Blood	16	14.9365	0.9335	0.0003	0.0177	
Source of						
Variation	SS	df	MS	F	P-value	F crit
Loci	0.0059	15	0.0004	3.4094	0.0116	2.4034
Sample Set	0.0037	1	0.0037	32.2301	4.3897E-05	4.5431
Error	0.0017	15	0.0001			
Total	0.0114	31				

Table E. ANOVA for Peak Height Data Ratio with Respect to Locus.

Table E1. Paired t-test for Peak Height Ratio Data with Respect to Locus.

t-Test: Paired Two Sample for Means ($\alpha = 0.05$)							
	Buccal	Blood					
Mean	0.9120	0.9335					
Variance	0.0002	0.0003					
Observations	16	16					
Pearson Correlation	0.5606						
Hypothesized Mean Difference	0						
df	15						
t Stat	-5.6772						
P(T<=t) one-tail	2.1949E-05						
t Critical one-tail	1.7531						
P(T<=t) two-tail	4.3897E-05						
t Critical two-tail	2.1314						

Table F. ANOVA for Peak Height Ratio Data with Respect to Dye Color.

ANOVA: Two-Factor Without Replication ($\alpha = 0.05$)							
					Std.		
SUMMARY	Count	Sum	Average	Variance	Dev.		
Blue_6-FAM	2	1.8383	0.9192	9.3194E-05	0.0097		
Green_VIC	2	1.8463	0.9231	0.0003	0.0181		
Yellow_NED	2	1.8455	0.9227	0.0001	0.0104		
Red_PET	2	1.8537	0.9269	0.0006	0.0244		
Buccal	4	3.6477	0.9119	6.7514E-06	0.0026		
Blood	4	3.7362	0.9340	6.2143E-05	0.0079		
Source of Variation	SS	$d\!f$	MS	F	P-value	F crit	
Dye	5.968E-05	3	1.989E-05	0.4060	0.7607	9.2766	
Sample Set	0.0010	1	0.0010	19.9905	0.0208	10.1280	
Error	0.0001	3	4.900E-05				
				-			
Total	0.0012	7					

t-Test: Paired Two Sample for Means ($\alpha = 0.05$)							
	Buccal	Blood					
Mean	0.9119	9.3404E-01					
Variance	0.0000	6.2143E-05					
Observations	4	4					
Pearson Correlation	-0.7105						
Hypothesized Mean Difference	0						
df	3						
t Stat	-4.4711						
P(T<=t) one-tail	0.0104						
t Critical one-tail	2.3534						
P(T<=t) two-tail	0.0208						
t Critical two-tail	3.1824						

Table F1. Paired t-test for Peak Height Ratio Data with Respect to Dye Color.

ANOVA: Two-Factor Without Replication ($\alpha = 0.05$)								
SUMMARY	Count	Sum	Average	Variance	Std. Dev			
D8S1179	2	3.188E+04	1.594E+04	6.466E+06	2542.9224			
D21S11	2	2.835E+04	1.417E+04	1.159E+07	3404.3468			
D7S820	2	3.424E+04	1.712E+04	1.708E+07	4133.0432			
CSF1PO	2	3.337E+04	1.668E+04	8.435E+07	9184.3689			
D3S1358	2	2.320E+04	1.160E+04	3.375E+06	1837.2197			
TH01	2	1.307E+04	6.534E+03	5.289E+06	2299.7250			
D13S317	2	2.230E+04	1.115E+04	8.970E+06	2994.9547			
D16S539	2	2.844E+04	1.422E+04	5.583E+07	7471.7186			
D2S1338	2	2.459E+04	1.229E+04	4.490E+07	6700.6483			
D19S433	2	1.963E+04	9.814E+03	4.161E+06	2039.7797			
vWA	2	2.413E+04	1.206E+04	8.540E+06	2922.2979			
TPOX	2	2.274E+04	1.137E+04	2.634E+07	5132.5724			
D18S51	2	2.603E+04	1.302E+04	2.061E+07	4540.0323			
AMEL	2	3.400E+04	1.700E+04	1.944E+06	1394.4207			
D5S818	2	2.970E+04	1.485E+04	3.986E+05	631.3661			
FGA	2	2.294E+04	1.147E+04	8.504E+06	2916.2183			
Buccal	16	1.668E+05	1.042E+04	8.855E+06	2975.7820			
Blood	16	2.518E+05	1.574E+04	1.331E+07	3648.2371			
Source of Variation	SS	df	MS	F	P-value	F crit		
Loci	2.502E+08	15	1.668E+07	3.0418	0.0193	2.4034		
Sample Set	$2.\overline{261E+08}$	1	2.261E+08	41.2282	1.1513E-05	4.5431		
Error	8.226E+07	15	5.484E+06					
Total	5.586E+08	31						

Table G. ANOVA for Peak Area Data with Respect to Locus.

t-Test: Paired Two Sample for Means ($\alpha = 0.05$)							
	Buccal	Blood					
Mean	1.0423E+04	1.5739E+04					
Variance	8.8553E+06	1.3310E+07					
Observations	16	16					
Pearson Correlation	0.5157						
Hypothesized Mean Difference	0						
df	15						
t Stat	-6.4209						
P(T<=t) one-tail	5.7563E-06						
t Critical one-tail	1.7531						
P(T<=t) two-tail	1.1513E-05						
t Critical two-tail	2.1314						

Table G1. Paired t-test for Peak Height Data with Respect to Locus.

Table H. ANOVA for Peak Area Data with Respect to Dye Color.

ANOVA: Two-Facto	or Without Re	eplication (α =	= 0.05)			
SUMMARY	Count	Sum	Average	Variance	Std. Dev.	
Blue_6-FAM	2	3.196E+04	1.598E+04	2.320E+07	4.816E+03	
Green_VIC	2	2.232E+04	1.116E+04	1.815E+07	4.261E+03	
Yellow_NED	2	2.313E+04	1.157E+04	1.339E+07	3.659E+03	
Red_PET	2	2.888E+04	1.444E+04	2.714E+06	1.647E+03	
Buccal	4	4.297E+04	1.074E+04	6.538E+06	2.557E+03	
Blood	4	6.331E+04	1.583E+04	6.083E+06	2.466E+03	
Source of						
Variation	SS	$d\!f$	MS	F	P-value	F crit
Dye	3.213E+07	3	1.071E+07	5.6050	0.0953	9.2766
Sample Set	5.172E+07	1	5.172E+07	27.0677	0.0138	10.1280
Error	5.732E+06	3	1.911E+06			
Total	8.958E+07	7				

Table 111, I difed t-test for I can Area Data with Respect to Dye Color	Table	H1.	Paired	t-test	for	Peak	Area	Data	with	Res	pect t	o D	ve (Color.
---	-------	-----	--------	--------	-----	------	------	------	------	-----	--------	-----	------	--------

t-Test: Paired Two Sample for Means ($\alpha = 0.05$)							
	Buccal	Blood					
Mean	1.074E+04	1.583E+04					
Variance	6.538E+06	6.083E+06					
Observations	4	4					
Pearson Correlation	0.6977						
Hypothesized Mean Difference	0						
df	3						
t Stat	-5.2027						
P(T<=t) one-tail	6.900E-03						
t Critical one-tail	2.3534						
P(T<=t) two-tail	1.380E-02						
t Critical two-tail	3.1824						

ANOVA: Two-Factor Without Replication ($\alpha = 0.05$)								
SUMMARY	Count	Sum	Average	Variance	Std. Dev.			
D8S1179	2	1.8156	0.9078	3.1261E-04	0.0177			
D21S11	2	1.8892	0.9446	8.4212E-05	0.0092			
D7S820	2	1.8744	0.9372	1.2734E-04	0.0113			
CSF1PO	2	1.8675	0.9338	1.7765E-04	0.0133			
D3S1358	2	1.8580	0.9290	1.1458E-03	0.0338			
TH01	2	1.8828	0.9414	6.9026E-04	0.0263			
D13S317	2	1.8798	0.9399	1.2337E-05	0.0035			
D16S539	2	1.8677	0.9338	1.3572E-04	0.0117			
D2S1338	2	1.8136	0.9068	3.8944E-04	0.0197			
D19S433	2	1.8713	0.9357	1.1846E-04	0.0109			
vWA	2	1.8491	0.9246	2.2285E-04	0.0149			
TPOX	2	1.8624	0.9312	2.4247E-04	0.0156			
D18S51	2	1.8370	0.9185	2.9915E-04	0.0173			
AMEL	2	1.8912	0.9456	2.2765E-03	0.0477			
D5S818	2	1.8509	0.9254	4.5338E-04	0.0213			
FGA	2	1.8649	0.9325	2.2073E-04	0.0149			
Buccal	16	14.6832	0.9177	1.8090E-04	0.0134			
Blood	16	15.0920	0.9432	2.0051E-04	0.0142			
Source of Variation	SS	$d\!f$	MS	F	P-value	F crit		
Loci	0.0040	15	2.6890E-04	2.3899	0.0511	2.403		
Sample Set	0.0052	1	5.2212E-03	46.4053	5.8706E-06	4.543		
Error	0.0017	15	1.1251E-04					
				-				
Total	0.0109	31						

Table I. ANOVA for Peak Area Data Ratio with Respect to Locus.

1 a D C 11, $1 a H C C C C C C C C C C C C C C C C C C$	Table I1.	Paired t-	test for Peak	Area Ratio	Data with Res	pect to Dye Color.
---	-----------	-----------	---------------	------------	---------------	--------------------

t-Test: Paired Two Sample for Means ($\alpha = 0.05$)									
	Buccal	Blood							
Mean	0.9177	0.9432							
Variance	1.8090E-04	2.0051E-04							
Observations	16	16							
Pearson Correlation	0.4106								
Hypothesized Mean Difference	0								
df	15								
t Stat	-6.8121								
P(T<=t) one-tail	2.9353E-06								
t Critical one-tail	1.7531								
P(T<=t) two-tail	5.8706E-06								
t Critical two-tail	2.1314								

Table J. ANOVA for Peak Area Ratio Data with Respect to Dye Color.

ANOVA: Two-Factor Without Replication ($\alpha = 0.05$)								
					Std.			
SUMMARY	Count	Sum	Average	Variance	Dev.			
Blue_6-FAM	2	1.8617	0.9308	1.6558E-04	0.0129			
Green_VIC	2	1.8604	0.9302	3.6115E-04	0.0190			
Yellow_NED	2	1.8549	0.9275	2.1521E-04	0.0147			
Red_PET	2	1.8690	0.9345	7.8143E-04	0.0280			
Buccal	4	3.6703	0.9176	8.7644E-06	0.0030			
Blood	4	3.7757	0.9439	5.3282E-05	0.0073			
Source of Variation	SS	df	MS	F	P-value	F crit		
Rows	5.01752E-05	3	1.6725E-05	0.3690	0.7827	9.2766		
Columns	1.3874E-03	1	1.3874E-03	30.6124	0.0116	10.1280		
Error	1.3596E-04	3	4.5322E-05					
				-				
Total	1.5735E-03	7						

Table J1	. Paired	t-test for	Peak Area	Ratio Data	with Res	pect to D	ye Color.
----------	----------	------------	------------------	-------------------	----------	-----------	-----------

t-Test: Paired Two Sample for Means ($\alpha =$								
0.05)								
	1							
	Buccal	Blood						
Mean	0.9176	0.9439						
Variance	8.7644E-06	5.3282E-05						
Observations	4	4						
Pearson Correlation	-0.6617							
Hypothesized Mean Difference	0							
df	3							
t Stat	-5.5328							
P(T<=t) one-tail	5.8176E-03							
t Critical one-tail	2.3534							
P(T<=t) two-tail	0.0116							
t Critical two-tail	3.1824							

 Table K. Summary Table for All Data with Recovered Profiles.

	p-value		Chi-Squared
	(ANOVA)	p-value (paired t-test)	Value
PH-Locus	2.0074E-06	2.0074E-06	1.0000000
PH-Dye	1.3563E-02	1.3563E-02	0.9994033
PHR-Locus	4.3897E-05	4.3897E-05	1.0000000
PHR-Dye	2.0848E-02	2.0848E-02	0.9999970
PA-Locus	1.1513E-05	1.1513E-05	1.0000000
PA-Dye	1.3799E-02	1.3799E-02	0.9992310
PAR-Locus	5.8706E-06	5.8706E-06	1.0000000
PAR-Dye	1.1635E-02	1.1635E-02	0.9999994
$(\alpha = 0.05)$			

APPENDIX C

BD Microtainer[®] Contact-Activated Lancet

QUICK REFERENCE CARD

Identify the desired puncture site, (shaded area) and make sure it is properly cleansed according to your facility's established procedures.

Twist off tab to break the seal and discard.

Position safety lancet firmly against puncture site as illustrated. Hold safety lancet between fingers.

To activate, **press** safety lancet firmly against the puncture site. Do not remove the device from the site until an audible click is heard.

Place at least 3-5 drops of blood onto collector.

Discard safety lancet into an approved sharps container.

APPENDIX D

How to Use the Buccal DNA Collector

A. Handle Base B. Collection Paper C. Slider Cover

NOTE: Please read and follow instructions.

- · If you are assisting in collection of sample, please read and follow steps 1 thru 6.
- · If you are self-collecting, you are the subject in steps 2 thru 5.

Step 1

Remove the Buccal DNA Collector from the pouch. holding the handle at the base. Move Slider Cover back if necessary to fully expose the Collection Paper.

Step 2

Instruct the subject to hold the Buccal DNA Collector and put thumb on the area marked "Thumb" on the back of the Collector.

The subject does not need gloves to collect their own sample.

Step 3

Instruct the subject to open mouth and place the white Collection Paper side flat against inside of cheek.

Step 4

With Collection Paper pressed against inside of cheek, ask subject to drag it firmly toward lips and out of mouth.

(This motion is similar to the "popping" of the cheek with a finger that children do.)

Step 5

Repeat this action 7 more times. DO NOT rub Collector back and forth against cheek. It is not a toothbrush.

NOTE: It is important for collection personnel to observe subject pressing **Collection Paper flat against** cheek and dragging it across and bulging the cheek out during collection.

Step 6

Push the Slider Cover forward towards the tip of the Collector, covering the Collection Paper.

Step 7

Place one of the enclosed barcode labels onto area A (Handle Base) of the **Buccal DNA Collector**

APPENDIX E

The procedure that is contained in this Appendix was created for the lab that this project

was performed in. The only modification that would be needed per lab would be how to access

any high throughput worksheets or excel files.

Manual AmpFLSTR[®] Identifiler[®] Direct PCR Amplification Kit Setup Using Buccal DNA Collector Samples

Purpose: To manually prepare amplifications of DNA samples collected by Buccal DNA Collector by using AmpFLSTR[®] Identifiler[®] Direct PCR Amplification Kit.

Equipment and Supplies

- Centrifuge, vortex
- Heat block
- Pipettors and pipette tips (aerosol barrier)
- 96-well plates and base supports
- Buccal DNA Collector samples
- Blank paper (negative control)

- 1.5mL or 2mL microcentrifuge tubes
- GeneAmp[®] PCR System 9700
- Harris Punch (1.0mm or 1.2mm)
- Cutting mat
- Strip Caps

Safety

Gloves, lab coats and eye protection must be worn during this procedure.

Reagents

- Ethanol (70%)
- Bode PunchPrepTM Solution
- Control DNA 9947A (2.0ng/µL)
- ddH₂O
- AmpFLSTR[®] Identifiler[®] Direct Master Mix
- AmpFLSTR[®] Identifiler[®] Direct Primer Set

Procedure

A. DNA Extraction

Note: The Buccal DNA Collector will be used for both buccal and blood samples. Processing of these sample types needs to be performed on separate plates since amplification parameters are different.

1. Clean 1.2mm Harris Punch and cutting mat with 70% ethanol.

Note: The protocol has been validated for both 1.0mm and 1.2mm punches for buccal samples.

Note: Use one disposable Harris Punch per plate; one Harris Punch can punch approximately 90 samples.

Add 2µL of Bode PunchPrep[™] Solution to each sample well for a maximum of 4 columns.

Note: The effects of evaporation have been observed when processing a full plate.

Note: The positive and negative control wells are empty at this step.

3. Punch a disc from each Buccal DNA Collector sample and dispense into individual wells of 96-well plate.

Note: The reagent blank well should contain a disc from an unused Buccal DNA Collector and 2µL of Bode PunchPrep[™] Solution.

Note: If possible, punch disc from Regions I or II on the Buccal DNA Collector (Figure 1). Optimal performance has been obtained from these regions.

Figure 1:Regions of Buccal DNA Collector

4. Visually confirm the presence of the disc in the Bode PunchPrep[™] Solution.

Note: Use a clean pipette tip to submerge disc in Bode PunchPrep[™] Solution, if necessary.

- 5. Seal columns with strip caps.
- 6. Repeat steps 2-5 until plate is complete.
- 7. Incubate in heat block at 70°C for 20 minutes.
- 8. Centrifuge for 20 seconds at approximately 3100 rpm.

B. Positive Control and Negative Control Preparation

1. For a 1.2mm punch, add 2μ L of 9947A to the positive control well(s).

Note: If using a 1.0mm punch, add 1.5μ L of 9947A and 0.5μ L of ddH₂O to the positive control well(s).

2. Add 2μ L of ddH₂O to the negative control well(s).

C. Master Mix Calculations and Preparation

- 1. Launch the Y:\ network drive and open the folder "R&D Worksheets."
- 2. Open the Excel file "Manual Identifiler Direct Amplification Setup."

Enter the number of samples to be setup for amplification in the specified cell. The spreadsheet will automatically populate all "Sample #" cells and calculate the volume needed for each component.

Total volume of reagent	Volume of specified reagent needed per sample	Number of samples (<i>N</i>)	*Pipetting overage factor
----------------------------	---	--------------------------------------	---------------------------------

Master Mix for Identifiler Direct

Reagent	Vol. per Sample (µL)	Total Volume (µL)
AmpFLSTR [®] Identifiler [®] Direct Master Mix	12.5	137.5
AmpFLSTR [®] Identifiler [®] Direct Primer Set	12.5	137.5

(Example, N = 10)

*Pipetting overage factor = 1.1

- 3. Allow reagents to equilibrate to room temperature.
- 4. Vortex for 3 seconds and centrifuge briefly.
- 5. Dispense 25μ L of the reaction mix into each well.
- 6. Seal plate with strip caps.
- 7. Centrifuge at 3000 rpm for 20 seconds.

8. Amplify the samples inGeneAmp[®] PCR System 9700

D. Thermal Cycling Parameters

- 1. Buccal
 - a. Select program for 26 cycles.

Note: Select program for 27 cycles for a 1.0mm punch.

Note: Verify parameters.

Identifiler Direct				
Number of cycles	Temperature	Time (min:sec)		
HOLD	95°C	11:00		
1.2mm: 26	94°C	0:20		
CYCLES 1.0mm:	59°C	2:00		
27 CYCLES	72°C	1:00		
HOLD	60°C	25:00		
HOLD	4°C	00		

- b. Enter $27\mu L$ for the reaction volume.
- c. Select START.
- d. After the run is complete, samples can be electrophoresed or stored 14 days at 4°C.

2. Blood

a. Select program for 25 cycles.

Note: Verify parameters.

Identifiler Direct				
Number of cycles	Temperature	Time (min:sec)		
HOLD	95°C	11:00		
	94°C	0:20		
1.2mm: 25	59°C	2:00		
CICLES	72°C	1:00		
HOLD	60°C	25:00		
HOLD	4°C	∞		

- b. Enter $27\mu L$ for the reaction volume.
- c. Select START.
- d. After the run is complete, samples can be electrophoresed or stored 14 days at 4°C.

References

- 1. Bode PunchPrep[™] Instructions, Instructions for Use with the AmpFLSTR[®] Identifiler[®] Direct Amplification Kit.
- Applied Biosystems AmpFLSTR[®] Identifiler[®] Direct PCR Amplification Kit User Guide, Part Number 4415125 Rev. C, 10/2009.

REFERENCES

- 1. The DNA ProKids Project. http://www.dna-prokids.org/?page_id=3
- 2. Bode Buccal DNA CollectorTM Using AmpFLSTR[®] Identifiler[®] Direct. 2009. Bode Technology. Lorton VA.

http://www.bodetech.com/solutions/collection-products/buccal-dna-collection-system/dnacollection-kits.

3. Park, Su., Kim, Jong., Yang, Young., and Lee, Seung. *Direct STR Amplification from Whole Blood and Blood- or Saliva-Spotted FTA_ without DNA Purification*. J Forensic Sci, March 2008, Vol. 53, No. 2; 335-341.

4. Vitha, Stanislav, Yoder, David. *High Throughput Processing of DNA Samples on FTA Paper* for PCR Analysis. <u>http://microscopy.tamu.edu/lab-protocols/protocols-</u>

<u>FTA_paper_processing.pdf</u>.

5. Fujita, Yoshihiko, Kubo, Shin-ichi. *Application of FTA® Technology to Extraction of Sperm* DNA from Mixed Body Fluids Containing Semen. Legal Medicine, 2006, Vol. 8; 43–47

6. Wang, Dennis., Chang, Chien-Wei., Oldroyd, Nicola., Hennessy, Lori. *Direct Amplification of STRs From Blood or Buccal Cell Samples*. Forensci Sci. Int. 2009, Series 2; 113–114.

7. AmpFLSTR[®] Identifiler[®] Direct PCR Amplification Kit User Guide. 2009, Applied

Biosystems, Life Technologies Corp. Foster City, CA.

Wilson, C., *Microbial Food Contamination*. 2008, CRC Press, Taylor and Francis Group.
 Boca Raton, FL.

9. Kim, S., Labbe, R., Ryu, S., *Inhibitory Effects of Collagen on the PCR for Detection of Clostridium Perfringens*. Appl. Environ. Microbial. 2000, 66(3):1213-1215.