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Abstract: This study investigated the interplay between transforming growth factor beta (TGF-β1/T1
and TGF-β3/T3), and sex hormone receptors using our 3D in vitro cornea stroma model. Primary
human corneal fibroblasts (HCFs) from healthy donors were plated in transwells at 106 cells/well
and cultured for four weeks. HCFs were supplemented with stable vitamin C (VitC) and stimulated
with T1 or T3. 3D construct proteins were analyzed for the androgen receptor (AR), progesterone
receptor (PR), estrogen receptor alpha (ERα) and beta (ERβ), luteinizing hormone receptor (LHR),
follicle-stimulating hormone receptor (FSHR), gonadotropin-releasing hormone receptor (GnRHR),
KiSS1-derived peptide receptor (KiSS1R/GPR54), and follicle-stimulating hormone subunit beta
(FSH-B). In female constructs, T1 significantly upregulated AR, PR, ERα, FSHR, GnRHR, and KiSS1R.
In male constructs, T1 significantly downregulated FSHR and FSH-B and significantly upregulated
ERα, ERβ, and GnRHR. T3 caused significant upregulation in expressions PR, ERα, ERβ, LHR,
FSHR, and GNRHR in female constructs, and significant downregulation of AR, ERα, and FSHR
in male constructs. Semi-quantitative Western blot findings present the interplay between sex
hormone receptors and TGF-β isoforms in the corneal stroma, which is influenced by sex as a
biological variable (SABV). Additional studies are warranted to fully delineate their interactions and
signaling mechanisms.

Keywords: cornea; corneal stroma; corneal fibrosis; sex hormone receptors; TGF-β1; TGF-β3; 3D
in vitro model; SABV

1. Introduction

The human cornea, the transparent outer layer of the eye, provides protection to the in-
ner contents of the eye and supplies two-thirds of its refractive power [1–5]. Corneal trauma
occurring from injury and/or disease [6–10] can significantly disrupt the corneal struc-
ture and homeostasis, leading to scarring and vision impairments [6,10–14]. The complex
healing process that is initiated [14,15] post-injury is orchestrated by the corneal stromal
resident cells, termed keratocytes, which differentiate into myofibroblasts, proliferate, and
migrate into the open wound site [3,9,10,16,17]. This leads to improper extracellular matrix
(ECM) deposition, corneal fibrosis, and ultimately impaired vision [3,10,16,17]. Corneal
transplantation [18–20] remains the most effective treatment to restore the injured cornea.
Studies report high success rates of full thickness corneal transplantation (80% to ~96%),
with up to 20% [18,21,22] post-operative (post-op) complications. Other complications
include donor cornea rejection, cataract formation, and vascularization [18,23,24]. Sex
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as a biological variable (SABV) in the context of corneal fibrosis and its treatment(s) is
largely unexplored.

The presence of sex hormones in the cornea has been previously reported [25–29],
as well as in the aqueous and vitreous humors of the eye [26,27]. A study conducted by
Suzuki et al. [29] reported the presence of estrogen receptor-α (ERα), estrogen receptor-
β (ERβ), and the progesterone receptor (PR) in the human cornea, suggesting that sex
hormones affect the biological functions in the cornea. We recently reported the effects of
estrone and estriol on the human corneal stroma ECM, and highlighted the differences
between healthy and keratoconic stromal cell origin [28]. Other receptors, such as the
luteinizing hormone receptor (LHR) and follicle-stimulating hormone receptor (FSHR),
are also expressed by human corneal stroma [27], suggesting that the human cornea may
be able to produce hormones in situ as well as respond to hormonal imbalances, thereby
influencing localized cellular/molecular signaling. Despite the presence of sex hormone
receptors in the human corneal [5,25,27–29], their role in corneal homeostasis remains
unclear [26].

Transforming growth factor-beta (TGF-β) isoforms have been correlated with fi-
brosis in numerous organs and tissues [9,30–33], as well as the human cornea [34–37].
TGF-β is able to modulate tissue/cell functions [38] through its three main isoforms:
TGF-β1 (T1), TGF-β2 (T2), and TGF-β3 (T3). Briefly, T1 was the first member to be
identified in the TGF-β family [39]. In the cornea, it was discovered to be produced by
several cell types, including corneal epithelial cells [30]. T1 also drives stromal keratocyte
differentiation into active myofibroblasts, leading to ECM remodeling at the wounded
site [40]. Meanwhile, T3 is thought to be an anti-fibrotic modulator, despite sharing
highly similar peptide structures with T1 and T2 (70–80% homologies) [41–43]. To-date,
T1 and T2 are known to induce corneal fibrosis [9,11,13,39,44,45], while T3 is known
for its anti-fibrotic impact [9,11,13,26,31,39,44–50]. Outside of fibrosis, a deficiency in
TGF-β has been associated with numerous pathological conditions, such as autoimmune
diseases [51], atherosclerosis [52], and defective wound repair [38,53]. An overexpression
of TGF-β has been linked to immunopathologies [54,55], including cancer [38,56].

The objective of the current study was to investigate the novel interactions between
corneal stroma hormone receptors and T1/T3 isoforms, using an established 3D self-
assembled ECM in vitro model. Further, we highlight the potential SABV impact in the
system described.

2. Results
2.1. Androgen Receptor (AR) and Progesterone Receptor (PR)

Protein expressions for AR and PR were investigated in 3D human corneal fibroblast
(HCF) constructs stimulated with T1 or T3. Overall AR expression was significantly
upregulated with T1 compared to T3, but not compared to controls (Figure 1A). Overall PR
expression was significantly upregulated with both T1 and T3 stimulation, when compared
to controls (Figure 1B). No differences were observed between T1 and T3 (Figure 1B).

Related to SABV, stimulation with T1 in female 3D HCFs (HCF-Fs) led to the significant
upregulation of AR when compared to both controls and T3 (Figure 2A). In male 3D HCFs
(HCF-Ms), T3 led to the significant downregulation of AR expression compared to controls
(Figure 2B). PR expression in HCF-Fs was significantly upregulated in both T1 and T3,
when compared to controls. The PR in HCF-Fs stimulated with T3 was significantly higher
when compared to T1 (Figure 2C). Interestingly PR expression in HCF-Ms was not impacted
by T1 or T3, compared to controls (Figure 2D). PR expression, however, was significantly
upregulated with T3, as compared to T1 (Figure 2D). Corresponding Western blot images
are shown in Figure S1.

SABV data stratification showed the upregulation of ERα expression in HCF-Fs by
both T1 and T3 when compared to controls (Figure 4A). In HCF-Ms, ERα was significantly
upregulated with T1 but downregulated with T3 (Figure 4B). Furthermore, HCF-Ms ERα
expression was significantly downregulated by T3 when compared to T1 (Figure 4B).
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Notably, in HCF-Fs, ERβ modulation by T1/T3 was very similar to ERα (Figure 4A),
showing significant upregulation by T1 and T3 (Figure 4C). In HCF-Ms, ERβ expression
was significantly upregulated by T1 but not affected by T3 (Figure 4D). Corresponding
Western blot images are shown in Figure S2.

2.2. Estrogen Receptor Alpha (ERα) and Estrogen Receptor Beta (ERβ)

The overall expression of ERα was significantly upregulated with T1 (Figure 3A),
whereas ERβ expression was significantly upregulated with T3 only (Figure 3B), when
compared to controls.
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Figure 1. AR and PR protein expression with control, T1, and T3 stimulation on 3D HCF constructs. 
(A) Overall AR expression with T1 and T3 stimulation when compared to controls. (B) Overall PR 
expression with T1 and T3 stimulation when compared to controls. * = p < 0.05; ** = p < 0.01. 

  

Figure 1. AR and PR protein expression with control, T1, and T3 stimulation on 3D HCF constructs.
(A) Overall AR expression with T1 and T3 stimulation when compared to controls. (B) Overall PR
expression with T1 and T3 stimulation when compared to controls. * = p < 0.05; ** = p < 0.01.
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Figure 2. AR and PR protein expression with control, T1, and T3 stimulation between HCF-Fs
and HCF-Ms. (A) HCF-Fs AR expression for T1 and T3 stimulation when compared to controls.
(B) HCF-Ms AR expression stimulated with T1 and T3 when compared to controls. (C) HCF-Fs
PR expression with T1 and T3 stimulation when compared to control. (D) HCF-Ms PR expression
with T1 and T3 stimulation when compared to controls. * = p < 0.05; ** = p < 0.01; *** = p < 0.001;
**** = p < 0.0001.
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Overall ERβ expression with T1 and T3 stimulation when compared to controls. * = p < 0.05. 

  

Figure 3. Overall ERα and ERβ protein expression with control, T1, and T3 stimulation on 3D HCF
constructs. (A) Overall ERα expression with T1 and T3 stimulation when compared to controls.
(B) Overall ERβ expression with T1 and T3 stimulation when compared to controls. * = p < 0.05.
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T3 led to the significant upregulation of the overall LHR expression compared to 
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T1 and T3, when compared to controls (Figure 5B), whereas FSHR expression was not 
impacted by either one of the TGF-β isoforms (Figure 5C). 

Figure 4. ERα and ERβ protein expression with control, T1, and T3 stimulation between HCF-Fs
and HCF-Ms. (A) ERα expression change with T1 and T3 stimulation when compared to controls
for HCF-Fs. (B) ERα expression stimulated with T1 and T3 when compared to controls for HCF-Ms.
(C) ERβ expression with T1 and T3 stimulation compared to controls for HCF-Fs. (D) ERβ expres-
sion with T1 and T3 stimulation compared to controls for HCF-Ms. ** = p < 0.01; *** = p < 0.001;
**** = p < 0.0001.

2.3. Luteinizing Hormone Receptor (LHR), Gonadotropin-Releasing Hormone Receptor (GnRHR),
and Follicle-Stimulating Hormone Receptor (FSHR)

T3 led to the significant upregulation of the overall LHR expression compared to
controls (Figure 5A). Overall GnRHR expression was significantly upregulated by both
T1 and T3, when compared to controls (Figure 5B), whereas FSHR expression was not
impacted by either one of the TGF-β isoforms (Figure 5C).

Significant upregulation was observed in LHR, GnRHR, and FSHR in HCF-Fs stimu-
lated with both T1 and T3 (Figure 6A, Figure 6C, and Figure 6E, respectively). In HCF-Ms,
LHR was not modulated by T1 or T3 (Figure 6B), whereas GnRHR was significantly upreg-
ulated by T1, but downregulated by T3 when compared to its controls (Figure 6D). FSHR
expression in HCF-Ms showed significant downregulation when stimulated with T1 and
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T3, when compared to controls (Figure 6F). Corresponding Western blot images are shown
in Figure S3.
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(C) Overall FSHR expression when stimulated with T1 and T3 stimulation when compared to controls.
* = p < 0.05.
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The overall expressions of TRHR (Figure 7A) and KISS1R (Figure 7B) were not mod-
ulated by either T1 or T3. 

Figure 6. LHR, GnRHR, and FSHR protein expression with control, T1, and T3 stimulation between
HCF-Fs and HCF-Ms. (A) LHR expression with T1 and T3 stimulation compared to controls for
HCF-Fs. (B) LHR expression when stimulated with T1 and T3 compared to controls for HCF-Ms.
(C) GnRHR expression when stimulated with T1 and T3 when compared to controls for HCF-Fs.
(D) GnRHR expression when stimulated with T1 and T3 when compared to controls for HCF-Ms.
(E) FSHR expression when stimulated with T1 and T3 compared to controls for HCF-Fs. (F) FSHR
expression when stimulated with T1 and T3 when compared to controls for HCF-Ms. * = p < 0.05;
** = p < 0.01; *** = p < 0.001.
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2.4. Thyrotropin-Releasing Hormone Receptor (TRHR) and KiSS1-Derived Peptide Receptor
(KISS1R/GPR54)

The overall expressions of TRHR (Figure 7A) and KISS1R (Figure 7B) were not modu-
lated by either T1 or T3.
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When data were stratified based on sex, both TRHR (Figure 8A,B) and KISS1R
(Figure 8C,D) showed no significant changes following T1 or T3 stimulation, when com-
pared to controls. The significant upregulation of KISS1R HCF-Ms following T3 stimulation
was, however, observed when compared to T1 (Figure 8D). Corresponding Western blot
images are shown in Figure S4.
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Figure 8. TRHR and KISS1R protein expressions with control, T1, and T3 stimulation between
HCF-Fs and HCF-Ms. (A) TRHR expression when stimulated with T1 and T3 compared to controls
for HCF-Fs. (B) TRHR expression when stimulated with T1 and T3 compared to controls for HCF-Ms.
(C) KISS1R expression when stimulated with T1 and T3 compared to controls for HCF-Fs. (D) KISS1R
expression when stimulated with T1 and T3 compared to controls for HCF-Ms. * = p < 0.05.

2.5. G Protein Subunit Alpha Q (GNAQ), G Protein Subunit Alpha 11 (GNA-11), and G Protein
Alpha Stimulating (GNAS)

The overall expression of GNAQ was significantly upregulated with T3 when com-
pared to controls (Figure 9A). Both GNA11 and GNAS showed no changes when stimulated
with T1 or T3 (Figures 9B and 9C, respectively).
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Figure 9. Overall GNAQ, GNA11, and GNAS protein expressions with control, T1, and T3 stimulation
on 3D HCF constructs. (A) Overall GNAQ expression with T1 and T3 stimulation compared to
controls. (B) GNA11 overall expression stimulated with T1 and T3 compared to controls. (C) Overall
GNAS expression when stimulated with T1 and T3 compared to controls. * = p < 0.05.

We observed no significant changes in either sex (HCF-Ms and HCF-Fs) in the ex-
pressions of GNAQ (Figure 10A,B), GNA11 (Figure 10C,D), and GNAS (Figure 10E,F),
following T1/T3 stimulation. Corresponding Western blot images are shown in Figure S5.
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Figure 10. GNAQ, GNA11, and GNAS protein expression with control, T1, and T3 stimulation
between HCF-Fs and HCF-Ms. (A) GNAQ expression in HCF-Fs when stimulated with T1 and T3
compared to controls. (B) GNAQ expression in HCF-Ms when stimulated with T1 and T3 compared
to controls. (C) GNA11 expression in HCF-Fs when stimulated with T1 and T3 compared to controls.
(D) GNA11 expression when stimulated with T1 and T3 compared to controls in HCF-Ms. (E) GNAS
expression stimulated with T1 and T3 when compared to controls for HCF-Fs. (F) GNAS expression
for HCF-Ms when stimulated with T1 and T3 compared to controls.
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2.6. Follicle-Stimulating Hormone Subunit Beta (FSH-B)

Overall FSH-B expression showed no significant changes with any of the stimulations
tested here (Figure 11).
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Figure 11. Overall FSH-B protein expression with T1 and T3 stimulation on 3D HCF constructs when
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FSH-B expression was unaffected in HCF-Fs (Figure 12A). However, in HCF-Ms,
stimulation with T1 led to the significant downregulation of FSH-B when compared to both
controls and T3 (Figure 12B). Corresponding Western blot images are shown in Figure S6.
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3. Discussion

TFG-β is a major regulator of numerous cellular processes [57–61]. Disruption in
the TGF-β signaling pathway can lead to connective tissue disorders, cancer, and/or
fibrosis [57]. There are currently 33 known human TGF-β family polypeptides, including
the three TGF-β isoforms: T1, T2, and T3 [49,57,62]. TGF-β is found throughout the body,
including in the human cornea [9].

Recent studies have shown that inhibiting T1 can reduce fibrosis in the cornea [63–65].
Chang et al. investigated a potentially useful anti-fibrotic therapy in the cornea using
hypercapnic acidosis [63]. The authors observed that when the cells were grown under
hypercapnic acidosis conditions, alpha smooth muscle actin (α-SMA), collagen gel con-
traction, and T1 induced corneal fibroblast migration were suppressed, demonstrating
the potential of hypercapnic acidosis as an anti-fibrotic therapy [63]. Zahir-Jouzdani et al.
investigated the utilization of nanoparticles loaded with anti-fibrotic T1 siRNA as a po-
tential topical delivery system [64]. Their findings indicated that the delivery system was
able to suppress T1 platelet-derived growth factor (PDGF) genes and ECM deposition
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in isolated human corneal fibroblasts [64]. The nanoparticles were also able to inhibit
α-SMA and the proliferation and transformation of fibroblasts into myofibroblasts [64].

T3 inhibits fibrotic markers, tissue fibrosis, and scar formation [15]. Karamichos et al.
examined the effects of T1 and T3 [15] and observed increased expressions of type III collagen
and α-SMA in 3D HCF constructs treated with T1, with significant downregulation in con-
structs treated with T3 [15]. Their findings correlated with previous data [48], demonstrating
the anti-fibrotic effects of T3 treatment [15,48]. Guo et al. stimulated HCFs with T1 or T3
and harvested the cells after 4 h or 3 days [66]. The authors found that T3 upregulates the
Suppressor of Mothers against Decapentaplegic 7 (Smad7) and thrombospondin-1 (THBS1),
which promoted a non-fibrotic ECM in their 3D cell culture model [66]. The maintenance
of corneal transparency is a complex and precise process. Corneal wound healing requires
precise ECM secretion, deposition, and organization by the myofibroblasts [26].

SABV in the context of corneal wound healing is severely understudied. Tripathi et al.
investigated sex-based differences in corneal wound healing in New Zealand White rab-
bits [49], where no sex-based changes were observed in the mRNA or protein levels of α-
SMA, fibronectin (FN), Collagen-I (Col-I), and T1 [49], following topical alkali burns. Others
have looked into sex-based differences, such as sex hormones, in various species [29,67,68].
Some sex hormones and their receptors can be found in both sexes, but can vary in lev-
els depending on the sex [69–71]. Estrogen and its receptors have been studied in both
sexes, even though it was traditionally considered a female hormone [72,73]. Suzuki et al.
investigated the existence of estrogen receptors in the human cornea and observed the
expression of ERα and ERβ [29]. Additionally, Wickham et al. examined the mRNAs of
sex hormone receptors from rabbit eyes and found sex- and tissue-specific differences [67].
Other studies suggest that sex hormone changes such as menopause, menstrual cycles, and
pregnancy can likely influence the corneal stroma [26,67,74–76]. During the menstrual cycle,
hormone levels are known to fluctuate, including estrogen, which increases and decreases
twice throughout the cycle [77]. Estrogen rises in the mid-follicular phase and during the
mid-luteal phase. Estrogen decreases after ovulation and towards the end of the menstrual
cycle. When estrogen binds with its receptor, it can regulate different pathways, including
nuclear factor kappa B (NF-κB) [78], c-Jun N-terminal kinase (JNK) [78], and cytokines,
such as TGF-β [79]. Kanda et al. found that Smad3 may be involved in androgen-induced
mice wound healing, mediating signals from TGF-β, which does not occur in castrated
Smad3 null mice [68]. Conversely, estrogen stimulates Smad2/3 protein degradation, in-
hibiting TGF-β signaling [80]. In females, estrogen, progesterone, and androgens are able
to interact with most TGF-β superfamily members [80]. In males, the complex network of
BMP/TGF-β signaling is essential in their reproductive biology [80].

In our study, we investigated sex hormone expressions when treated with T1 and T3
using healthy corneal stromal cells (male and female donors). The overall objective was
to delineate the role of sex hormones and corneal fibrosis. Throughout our findings, we
identified higher expressions in many of the sex hormone receptors with T1 and T3 in
HCF-F, but found mostly suppressed expressions with T1 and T3 in HCF-M. The activation
of male sex hormone expressions (AR) in females and the activation of female sex hormone
expressions (ERα and ERβ) in males when treated with T1 indicate a complex regulation
of sex-specific hormones in the corneal fibrosis cascade. The present study is limited by
the fact that only one male and one female donor were examined. Thus, future studies are
warranted in order to fully understand the modulation of corneal sex hormone receptors in
the context of SABV.

In addition to looking into sex-specific hormones, we also investigated Guanine
nucleotide-binding proteins (G-proteins) [81–83]. Numerous studies have identified G-
proteins in different parts of the eye, but very little is known about the cornea [81–87]. The
actions of G-proteins enable the process of channeling signals through the cell surface to
the intracellular effectors [88]. During this process, the G-proteins transfer signals from
G-protein coupled receptors (GPCR), allowing the binding of agonists, which induces
the GPCRs into an active conformational state [88,89]. GGPCRs are involved heavily in
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human physiology and behavior, which includes hormones and neurotransmitters [89,90].
While the term “G-protein” is used in different formats, there are three G-protein subunits
(α, β, and γ) that are necessary in the interaction between the protein and associated
receptors [89,90]. However, due to the tight association between the β and γ subunits, they
are considered as one functional unit, making the known two functional subunits labeled
as Gα and Gβγ [89,90]. With the GPCRs’ development due to the active conformation,
the actions involving the G-protein signaling process increases [89]. While G-proteins are
involved in the regulation of many processes, such as protein synthesis and the transport
process [91], signaling pathways that are associated with G-proteins are usually involved
in cellular responses, including hormones, antigens, and variations in extracellular matrix
and cell-cell contacts [88]. Our studies revealed that the expression of the G-proteins and
receptors surprisingly showed minimal involvement in the linkage across the GnRHR
G-protein subunit family. However, between the correlations of the GnRHR subunit family,
GnRHR and GNA-11 were activated with T3 stimulation in females, while KISS1R and
FSHB were activated by T3 compared to T1 in males.

4. Materials and Methods
4.1. Ethical Consent

Cadaveric human corneas without a history of ocular or systemic disease were ob-
tained from the National Disease Research Interchange (NDRI; Philadelphia, PA, USA) and
de-identified prior to processing and analysis. The North Texas Regional Institutional Re-
view Board (#2020-030) reviewed and approved all studies herein. All research conducted
adhered to the tenets of the Declaration of Helsinki.

4.2. Cell Isolation, Cell Cultures, and ECM Assembly

Primary HCFs were isolated from a healthy 65-year-old male and a healthy 88-year-old
female donor for this study. Briefly, the corneal epithelium and endothelium were scraped
off from the corneas using a razor blade. The corneal stroma was then cut into ~2 × 2 mm
pieces and placed in T25 flasks, where they were allowed to adhere. The explants were then
cultured with complete media (Eagle’s Minimum Essential Medium (EMEM; CORNING,
Corning, NY, USA) containing 10% of fetal bovine serum (FBS; Atlanta Biologicals; Flowery
Branch, GA, USA) and 1% of Antibiotic-Antimycotic (AA; Life Technologies; Grand Island,
NY, USA)). All explants were grown to 80% confluence at 37 ◦C with 5% of CO2 before
further sub-culturing [92].

Three-dimensional constructs were generated by seeding HCFs in six-well plates with
polycarbonate inserts (CELLTREAT Scientific Products; Pepperell, MA, USA) at a density of
1 × 106 cells/well, as previously described [28,92]. All constructs were cultured in complete
EMEM with 10% FBS and 1% AA, supplemented by 0.5 mM of stable vitamin C (VitC;
2-O-α-D-glucopyranosyl-L ascorbic acid; Sigma, St. Louis, MO, USA) for 4 weeks. During
the 4 weeks in culture, all constructs were given fresh media every other day. As previously
optimized by our group, T1 and T3 were used at a concentration of 0.1 ng/mL [46,92–94].
The treatment groups were as follows: Controls: complete media + VitC-only; T1 group:
complete media + VitC + 0.1 ng/mL T1 (R&D Systems; Minneapolis, MN, USA); and T3
group: complete media + VitC + 0.1 ng/mL T3 (R&D Systems; Minneapolis, MN, USA).

4.3. Protein Extraction and Quantification

Protein extraction was performed on all constructs at 4 weeks, as previously de-
scribed [28,95]. Briefly, culture media were removed and constructs were washed twice
with cold 1X Phosphate Buffered Saline (PBS). Constructs were gently scraped from the
polycarbonate membranes and suspended in 1X immunoprecipitation buffer (50 mM
Tris, pH 8, 150 mM NaCl, 1% Triton X-100, 0.1% SDS, 1% sodium deoxycholate) (Abcam,
Cambridge, MA, USA) + 1% Proteinase Inhibitor (PI) cocktail (Sigma; St. Louis, MO,
USA), and incubated for 30 min at 4 ◦C. The samples were then centrifuged for 15 min at
12,000 RPM at 4 ◦C. The Pierce BCA protein assay kit (Pierce™ Bovine Serum Albumin
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standards (23208; ThermoFisher Scientific, Waltham, MA, USA)) was used to perform
protein quantification. A BioTek EPOCH2 microplate reader (BioTek; Winooski, VT, USA)
was utilized for absorbance measurements and calculations [28].

4.4. Western Blot

All samples were normalized to equal protein concentrations before denaturing and
being added to the Precast Novex 4–20% Tris Glycine Mini Gels (Life Technologies; Carls-
bad, CA, USA) for gel electrophoresis. The gels were transferred using iBlot2 Nitrocellulose
transfer stacks and incubated at room temperature in a fluorescence blocking solution for
1 h [28]. The blocking solution was then removed and the membranes were incubated
overnight with rocking at 4 ◦C, with the following primary antibodies: Rabbit Polyclonal
to GnRHR (ab183079, Abcam, Cambridge, MA, USA) at 1:500, Rabbit Polyclonal to LHR
(ab125214, Abcam, Cambridge, MA, USA) at 1:250, Rabbit Polyclonal to FSHR (ab75200,
Abcam, Cambridge, MA, USA) at 1:250, Rabbit Polyclonal to AR (ab3510, Abcam, Cam-
bridge, MA, USA) at 1:500, Rabbit Polyclonal to PR (ab191138, Abcam, Cambridge, MA,
USA) at 1:500, Rabbit Polyclonal to ERα (ab75635, Abcam, Cambridge, MA, USA) at 1:500,
Rabbit Polyclonal to ERβ (ab3576, Abcam, Cambridge, MA, USA) at 1:500, Goat Polyclonal
to GNAS (ab101736, Abcam, Cambridge, MA, USA) at 1:500, Rabbit Polyclonal to TRHR
(ab72179, Abcam, Cambridge, MA, USA) at 1:250, Rabbit Monoclonal to FSH-B (ab150425,
Abcam, Cambridge, MA, USA) at 1:500, Mouse Monoclonal to GNAQ (H00002776-M04,
ThermoFisher Scientific, Waltham, MA, USA) at 1:250, Rabbit Polyclonal to KISS1R/GPR54
(NBP2-16724, ThermoFisher Scientific, Waltham, MA, USA) at 1:500, Mouse Monoclonal
to GAPDH (ab184578, Abcam, Cambridge, MA, USA) at 1:1000, and Rabbit Polyclonal
at GNA11 (PA5-76678, ThermoFisher Scientific, Waltham, MA, USA) at 1:250, conjugated
with Biotium CF®647 (92218,Thermo Scientific; Waltham, MA, USA). The membranes were
washed three times with Tris Buffered Saline (Thermo Fisher Scientific; Waltham, MA USA)
and Tween 20 (Sigma; St. Louis, MO, USA) (TBST) and incubated at room temperature with
their respective secondary antibodies (AlexaFluor 488 [a32731TR, ThermoFisher Scientific,
Waltham, MA, USA], AlexaFluor 568 [ab133273, Abcam, Cambridge, MA, USA], AlexaFluor
647 [a331571, ThermoFisher Scientific, Waltham, MA, USA], AlexaFluor 680 [ab175776,
Abcam, Cambridge, MA, USA], and AlexaFluor 750 [ab175738, Abcam, Cambridge, MA,
USA]) for 1 h at room temperature. The membranes were washed three times with TBST,
imaged using iBright 1500 (Invitrogen; Thermo Fisher Scientific, Waltham, MA, USA),
and analyzed using iBright Analysis 5.0.1 Software (Invitrogen; Thermo Fisher Scientific,
Waltham, MA, USA). All data were normalized to the GAPDH housekeeping (Figure S7)
values and the averages were plotted (mean ± SEM). Representative Western blot images
are included in the Supplementary Materials.

4.5. Statistical Analysis

All experiments were repeated at least three times and statistical analyses were per-
formed using GraphPad Prism 9.3.0 software. Significance was assessed by one-way
ANOVA where p < 0.05 was considered statistically significant.

5. Conclusions

These observations have revealed a link between sex-dependent regulations of G-
proteins and sex hormone receptors in the development of corneal fibrosis. These data
are novel and could provide novel diagnostic opportunities and therapeutic targets that
could ultimately be used for the treatment of corneal fibrosis. Future in vivo studies are
warranted in order to validate these targets before further development. The role of G-
proteins and sex hormone-related signaling cascades could indeed provide invaluable
diagnostic insights into sex-driven corneal fibrogenesis.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms241713635/s1.
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