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ABSTRACT 

There are times when biological evidence has too low of quality or quantity of human DNA 

to provide enough information for human identification (HID). However, nucleic acids from the 

human skin microbiome are sources of genetic material that may be useful for HID. The studies in 

this dissertation test the hypothesis that specific single nucleotide polymorphisms (SNPs) of 

selected human skin microorganisms can be used to attribute an unknown microbiome sample to 

an individual.  

The first study investigated how Wright’s fixation index (FST) can be used to select 

potentially informative SNPs for HID. SNPs with high estimated FST were ascertained in three 

different ways to examine three distinct hypotheses. The hypotheses focused on testing whether a 

high FST, increased taxonomic abundance, and/or using a predetermined panel would be the most 

effective for HID. Classification accuracies ranged from 88 – 95%, and the method using the most 

taxa possible performed the best. Results from the study support that using genetic distance to 

select informative markers from the human skin microbiome for HID was viable. The 

predetermined panel only achieved an 88% accuracy, although it would be the most applicable of 

the tested method for forensic case work.   

The second study focused on using FST estimations to select SNPs abundant in 51 

individuals sampled at three body sites in triplicate for HID. The most common SNPs (present in 

≥ 75% of the samples) which had FST estimates ≥ 0.1 were used with least absolute shrinkage and 



 
 

selection operator (LASSO) to select a list of informative SNPs for HID. The final list (i.e., 

hidSkinPlex+) contains 365 SNPs and achieved a 95% classification accuracy on 459 samples. 

The hidSkinPlex+ lays the foundation for a targeted sequencing panel that can be used to further 

study the stability and specificity of human skin microorganism SNPs for HID applications. 
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repeat (STR). On the left shows five different sequences with one nucleotide change at a 
SNP of interest (blue indicates differences). On the right demonstrates how a STR can have 
a range of allelic states (blue highlights repeating region).  
 
Figure 2. The amplification/copying of targeted regions of double-stranded DNA using 
polymerase chain reaction (PCR). The original DNA molecule is denatured into two 
strands. Primers, also referred to as oligonucleotides, are short segments of single-stranded 
DNA that were designed to anneal with the flanking region of a specific area of DNA in a 
sample. Once primers are annealed with the complementary DNA in a sample, the region 
is copied by an enzymatic process using DNA polymerase. This process results in 
amplification, also known as replication, of the original template, with each new molecule 
containing one new and one old strand of DNA. Then each strand of the DNA can serve as 
a template to make another new copy. The denaturation, annealing, and amplification steps 
typically occur 25 – 40, times depending on the quality of DNA.  PCR results in an 
exponential number of DNA copies being produced. 
 
Figure 3. Examples of an ideal result and stochastic effects that can occur when low 
amounts of DNA are amplified with PCR. (A) Represents the ideal result for a heterozygote 
profile, i.e., two different alleles are apparent, where allele 1 and allele 2 are balanced peaks 
(i.e., similar heights). In the other 3 diagrams, stochastic variations are 
 
displayed which could result in an incorrect allele call if no additional information is 
available. Panel B is an example of an imbalance of two peaks resulting in uncertainty of 
whether it is heterozygote or a potential mixture. Panel C is an example of a heterozygote 
that appears as a homozygote due to allele drop-out (i.e., pseudo-homozygote). Panel D is 
an example of allele drop-in, with an allele present that is not from the donor and could be 
misinterpreted as a mixture of two individuals.  
 
Figure 4. The 16S rRNA gene with commonly used forward (F) and reverse (R) primers. 
The greyed-out regions labeled V1 – V9 indicate the nine hypervariable regions in the 16S 
rRNA gene. Previous work focusing on the skin microbiomes for potential forensic 
applications have used a variety of primers (represented by black arrows) to target specific 
areas of the 16S rRNA gene (8, 15-18).  
 
Figure 5. Microbial DNA can be characterized by 16S rRNA gene sequencing, whole 
genome sequencing (WGS), or targeted genome sequencing (TGS). The initial processing 
steps of a sample will be similar for all sequencing strategies. The choice of approach is 
dependent on the intended use of the microbial information and how it will be applied. 
Operational taxonomic units (OTU) for 16S rRNA gene sequencing are used to group  
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closely related microorganisms in a sample, based on a similarity threshold (usually  
97%). Microorganisms can also be classified by comparing the results of 16S rRNA gene 
sequencing to databases of known microorganisms. 
 
Figure 6. A cartoon depicting hypothetical FST values for two populations.  The small blue 
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populations have the same frequency (FST=0) or have no alleles in common (FST=1). FST 
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considered moderate genetic differentiation (44).  FST values > 0.15 may be referred to as 
a large differentiation between two populations (44, 45). 
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Supervised learning uses training data with labels (herein, individuals) which can be used 
predict the outcome of future datasets. Unsupervised learning is a type of machine learning 
where the data are not labeled (i.e., the algorithm does not know the data associations) and 
the model tries to determine natural clusters or associations.  
 
Figure 8.  An example of a hard margin linear SVM. The algorithm finds the optimal 
hyperplane to separate data from two individual’s independent variables (in the above, FST 
estimates for SNPs between the two individuals) (represented as X and O) in different 
classes. The SVM algorithm finds the points closest to the line for both classes, called 
support vectors. The distance between the line and the support vectors is calculated, called 
the margin. The objective of a hard margin linear SVM is to identify the hyperplane with 
the maximum margin width.  

 
Figure 9.  k-fold cross-validation (kCV) provides a statistical model with all the training 
data except one data point. Each round of kCV partitions the dataset into two subsets of 
data, one subset for training and one subset for validation (held out data). Held out samples 
are used for prediction and the remaining observations are used learn a predictive model. 
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Figure 1. Training data set matrices showing rank #1 (black) and #2 (gray) for 
classification. The three matrices are labeled with the nucleotide selection method (i.e., per 
marker, overall, or selected) used at the top of the individual graphs. The three selection 
methods chose SNPs with the highest-ranking FST estimates. The overall method optimized 
250 SNPs for the pairwise comparison, per marker method optimized 5 SNPs per marker, 
and selected had a set of 150 SNPs that were common in the training data set. The x-axis 
lists all samples with the individual number and replicates (S0## =  
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individual number, R# = replicate number). The y-axis lists the possible groups, i.e., 
individuals, a sample could be classified.  
 
Figure 2. Test data set matrices showing rank #1(black) and #2 (gray) for classification of 
samples for the three methods of selecting the highest-ranking SNPs based on their FST 
estimation. The top matrix is the overall method, which chose the 250 highest SNPs in any 
given pairwise comparison. The second matrix shows the per marker method using training 
set optimized parameters of 5 SNPs per marker in a pairwise comparison. The bottom 
matrix shows the selected method that had 150 prechosen SNPs that were common and 
had the highest-ranking FST estimates in the training data set.  

 
Figure 3. Comparisons of S028_R3 that were incorrectly classified as S036. A) A quantile-
quantile plot of FST estimates for sample S028_R3 compared to individual S036. The 
distribution of FST estimates between S028 (y-axis) and S036 (x-axis) and from comparing 
S028_R3 to other technical replicates. The FST estimates were computed for SNPs that 
were orthologous in at least two samples. The main diagonal represents S028 and S036 
having equal values of FST estimates. Points below the main diagonal represent a greater 
differentiation between S036 and S028, while points above the diagonal show greater 
differentiation within S028. B) Shows the first sample in the graph labeled on the x-axis 
and the second sample on the y-axis with the number of reads plotted for the SNPs. The 
ticks on the x and y-axis show the density of the corresponding area on the graph to provide 
clarity about the density of plotted points. Overall, S028_R3 had less read coverage for 
SNPs in common with S036 than with S028. C) A boxplot of the FST estimates for each 
pairwise comparison. The distribution of FST estimates for the 36 markers S036 and S028 
had in common tend to have higher FST for sample comparisons within S028 than between 
S036.  
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Figure 1. The average FST estimate and the sample size in the hidSkinPlex. The figure on 
the left shows the distribution of the average FST for all nucleotide positions in the 
hidSkinPlex. The figure on the right shows the percentage of nucleotide positions in which 
FST can be estimated.  
 
Figure 2. The average FST estimate and the sample size of the reduced list of 1,344 
candidate SNPs from the training data set. The figure of the left shows the distribution of 
the average FST estimated for the SNP candidate list. The figure on the right shows the 
distribution of SNPs contained in the top 75% of pairwise comparisons.  
 
Figure 3. Classification results for training and test data sets and the number of samples 
missing SNPs. The x-axis indicates the number of missing SNPs for a given sample. The  
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y-axis shows training and test data sets partitioned into the correct (white) and incorrect 
(gray) classification groups.  
 

CHAPTER IV: Discussion 

Figure 1. Four markers from hidSkinPlex are shown that could be redesigned into smaller 
amplicons for hidSkinPlex+. Each line contains the accession number, species, the original 
marker length from the hidSkinPlex panel, and then the marker is represented by a black 
line. The numbers flanking the line indicate nucleotide positions in the genome and SNPs 
from the hidSkinPlex+ are represented as triangles. Primers can be designed to capture the 
marked SNPs in smaller amplicons, where the vertical dashed lines indicate potential sites 
for primer design. While most markers from the hidSkinPlex will be reduced in length, 
some markers, such as the last marker highlighted at the bottom of the figure, will be kept 
the same size.  

  



6 
 

LIST OF TABLES 

CHAPTER III: Determining informative microbial single nucleotide polymorphisms for human 
identification 
 

Table 1. The classification accuracy at different body sites in the training data set.  

Table 2. The classification accuracy at different body sites in the test data set.  

Table 3. The classification accuracy at different body sites for hidSkinPlex+.  

 

  



7 
 

CHAPTER I 

Supplemental Evidence for  
Human Identification 



8 
 

Skin Microbiome for Human Identification 

Forensic genetics focuses on the identification of the source of unknown biological 

evidence from a crime scene using only nanograms or picograms of deoxyribonucleic acid (DNA). 

DNA profiling has been referred to as the 'gold standard in forensic science' (1), but DNA profiling 

does not always provide enough information to attribute evidence to a single individual. 

Identifying an unknown donor primarily involves comparing an evidence sample to a known 

reference sample with a defined set of short tandem repeats (STRs). STRs are microsatellites that 

consist of repeating nucleotide sequences or motifs and STRs are often targeted for human 

identification (HID; Figure 1) (2). The highly polymorphic nature of STRs allows for 

individualization of a person (or only a few persons) based on the difference in the number of 

copies of the repeating sequences. As the number of STR loci typed increases, so does the power 

of discrimination, where the power of discrimination is related to the probability of randomly 

selecting two people with the same STR profile. When a complete profile is obtained the 

discrimination power is extremely high. 

 

 

Figure 1. A comparison of a single nucleotide polymorphism (SNP) and a short tandem repeat 
(STR). On the left shows five different sequences with one nucleotide change at a SNP of interest 
(blue indicates differences). On the right demonstrates how a STR can have a range of allelic states 
(blue highlights repeating region).  
 
 

Currently, 100 picograms (pg) (approximately the genomic equivalent of 16-17 cells) are 

considered the lower limit of input DNA needed to potentially obtain a complete profile for 

comparison of an unknown sample to a reference (2). However, in a forensic setting, biological 

Single Nucleotide Polymorphism (SNP) Short Tandem Repeat (STR) 
ACAAGTTT ACGATAGATAGATAGATAGATATT (GATA)5 
ACAACTTT ACGATAGATAGATAGATA----TT (GATA)4 
ACAAATTT ACGATAGATAGATA--------TT (GATA)3 
ACAATTTT ACGATAGATA------------TT (GATA)2 
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evidence can be highly degraded and/or have low amounts of DNA which can make it difficult to 

obtain a complete STR profile for HID.  Even with 200 to 1,000 pg of input DNA, there are times 

when the DNA is fragmented or has lesions that prevent primers from binding and amplifying the 

STR of interest (2, 3). Primers are a short targeted single stranded DNA sequences that are used in 

the polymerase chain reaction (PCR; Figure 2). PCR is an enzymatic reaction that amplifies pieces 

of DNA. First, the original strand of DNA is denatured. Second, the complementary primers anneal 

with the targeted DNA. Third, amplification, i.e., copying, the strand of DNA occurs. A single 

cycle of PCR includes all three steps. The enzymatic reaction allows for a single copy or several 

copies of targeted DNA region to be replicated (i.e., amplified or copied) into millions of copies.  
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While many researchers are studying improved methods of detection and analysis, at times 

there may not be enough human DNA in biological evidence to obtain useful results. There are 

many laboratory-based approaches to attempt to improve the outcome of analysis of low quantity 
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and quality DNA, such as extraction and preparation methods including sample concentration, 

increased PCR cycle number, whole-genome amplification (prior to targeted amplification), post-

PCR purification and increased injection times during capillary electrophoresis (CE) (for review 

see (4)). All of these methods, however, have shortcomings that include decreased reproducibility 

due to stochastic effects such as heterozygote imbalance and allele drop-in and drop-out, any of 

which can make interpretation difficult (Figure 3) (4).  

 

 

Figure 3. Examples of an ideal result and stochastic effects that can occur when low amounts of 
DNA are amplified with PCR. (A) Represents the ideal result for a heterozygote profile, i.e., two 
different alleles are apparent, where allele 1 and allele 2 are balanced peaks (i.e., similar heights). 
In the other 3 diagrams, stochastic variations are displayed which could result in an incorrect allele 
call if no additional information is available. Panel B is an example of an imbalance of two peaks 
resulting in uncertainty of whether it is heterozygote or a potential mixture. Panel C is an example 
of a heterozygote that appears as a homozygote due to allele drop-out (i.e., pseudo-homozygote). 
Panel D is an example of allele drop-in, with an allele present that is not from the donor.  
 

 
There are other extra-nuclear sources of DNA to complement STRs for HID. One such 

source is mitochondrial DNA (mtDNA), which has a high copy number (several hundreds or 

thousands of copies) per cell (5). This increased copy number allows for easier detection of 

mtDNA than nDNA (nuclear DNA) in low quantity samples. While mtDNA provides a high copy 
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alternative to STR testing (i.e., nDNA markers), mtDNA has limited discrimination power 

because, unlike autosomal STRs, the entire mtDNA genome is a single haploid non-recombining 

marker. All individuals from the same maternal line have the same mtDNA profile, given that no 

de novo mutations have occurred in the timeframe. For example, in the absence of de novo 

mutations, a grandmother, mother, daughter, and their immediate male and female descendants all 

have the same mtDNA profile, making them indistinguishable based on this marker. There is a 

need for another source of DNA for HID that is high copy number and has high discriminatory 

power.  

The human skin microbiome is a potential source for targeted DNA analysis that can enable 

the identification of a donor of biological evidence found at a crime scene using specific and 

sensitive markers of microorganisms that are shed from the skin (6-8). Being able to predict the 

contributor of a microbial profile shed from the skin allows for additional DNA evidence to support 

traditional DNA analysis methods for HID. It has been estimated that the human microbiome 

contains over 100 trillion microbes, which is 1:1 for all human cells and is perhaps ten times greater 

than the number of human nucleated cells (6, 7). An individual sheds approximately 30 

microorganisms for every one squamous epithelial cell (9), therefore it is likely that people shed 

more microbial cells than human cells when they come in contact with items or other people (as 

suggested by Schmedes et al. (37)). The human microbiome is abundant, potentially allowing for 

targeted sequencing of key microorganisms of interest for HID in a forensic context.  

 

Past Research in HID Using the Skin Microbiome 

Initially, microbial genomics was not practical due to the challenge of sequencing 

microbial genomes. In 1995, Fleischmann et al. (11) sequenced the first whole microbial genome, 
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Haemophilus influenza.  It took 13 months and cost almost one million dollars to sequence the 1.8 

million base pairs (bp) of the H. influenza genome. By 2010 only 239 microbial genomes had been 

sequenced with 178 fully annotated microbial genomes being publicly available (12). However, 

by late 2021, over 19,000 complete microbial genomes had been sequenced and annotated with 

over 149,000 genomes either finished or in draft phase on Integrated Microbial Genomes and 

Microbiomes’ website 1. This substantial increase in the number of sequenced genomes is due in 

large part to the advent of massively parallel sequencing (MPS). MPS is a high throughput DNA 

(as well as ribonucleic acid (RNA)) sequencing technology that allows for many markers to be 

analyzed from multiple samples at one time. Currently, most of the microbial forensic community 

uses sequencing of the universal bacterial gene 16S ribosomal RNA (16S rRNA) gene for human 

and biological fluid identification from microbes present in the sample. Targeted 16S rRNA gene 

sequencing has continued to be used even with current day MPS advances because of relatively 

low cost and the substantial data on microbial taxonomic composition and phylogenetic diversity 

(13, 14). 

 

 

Figure 4. The 16S rRNA gene with commonly used forward (F) and reverse (R) primers. The 
greyed-out regions labeled V1 – V9 indicate the nine hypervariable regions in the 16S rRNA gene. 
Previous work focusing on the skin microbiomes for potential forensic applications have used a 

 
1 https://img.jgi.doe.gov/cgi-bin/m/main.cgi?section=ImgStatsOverview 
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variety of primers (represented by black arrows) to target specific areas of the 16S rRNA gene (8, 
15-18).  

 

Sequencing the Skin Microbiome 

Many forensic studies have used 16S rRNA gene sequencing to investigate the taxonomic 

microbial differences of individuals for HID with mixed results. Although 16S rRNA gene 

sequencing is a standard marker for inferences on microbial taxonomy, there are several limitations 

to using 16S rRNA gene sequencing, or for that matter any single genetic marker, for certain high-

resolution applications such as HID. These limitations include insufficient resolution at the species 

and strain level (19-21), copy number variation (22), inaccurate phylogenetic predictions (23), 

sample preparation bias (24-26) and PCR bias (27). An alternative to 16S rRNA gene sequencing 

is whole genome sequencing (WGS) which assays the entire genome of a microorganism and, in 

theory, allows for all the microorganisms in a sample to be sequenced (Figure 5) (11). While WGS 

may provide more comprehensive genome coverage and potential species/strain resolution, there 

are limitations with this approach as well, such as incomplete and stochastic coverage of the 

genome(s), differences in reliability and accuracy between sequencing platforms, preparation and 

analysis bias, lower sample throughput, and higher sequencing cost compared to 16S rRNA gene 

sequencing (28, 29). An alternative that may exploit the best features of 16S rRNA gene 

sequencing and WGS is targeted genome sequencing (TGS), which allows for coverage of more 

markers than 16S rRNA gene sequencing providing more information with less genome coverage 

than WGS (Figure 5). TGS (herein refers to a multiple, but limited number of specific targets) 

provides greater read depth and less stochastic effects than WGS for the targeted regions of 

interest. While TGS has limitations, as do all methods, its advantages are greater diversity than a 



15 
 

single marker system and more robust read depth for the targeted markers than WGS. Using TGS 

with a panel containing specific markers can increase prediction accuracy of unknown samples. 

 

 

Figure 5. Microbial DNA can be characterized by 16S rRNA gene sequencing, whole genome 
sequencing (WGS), or targeted genome sequencing (TGS). The initial processing steps of a sample 
will be similar for all sequencing strategies. The choice of approach is dependent on the intended 
use of the microbial information and how it will be applied. Operational taxonomic units (OTU) 
for 16S rRNA gene sequencing are used to group closely related microorganisms in a sample, 
based on a similarity threshold (usually 97%). Microorganisms can also be classified by comparing 
the results of 16S rRNA gene sequencing to databases of known microorganisms.  
 

Development of hidSkinPlex 

The hypothesis that the human microbiome could be a useful target for forensics HID is 

supported to various degrees. Initial studies investigating the uniqueness of the human skin 

microbiome suggest that there are more unique species between individuals within a body site than 

within individuals between body sites (15, 17, 18, 30-33). Nonporous items/surfaces (phone, 
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keyboard, mouse, desk, etc.) handled by an individual can be linked back to the person that most 

often handles the item (8, 18, 31, 32, 34, 35). Additionally, species level differences between 

individuals have been observed by body location, suggesting that the skin microbiome may also 

be used to determine what part of the body encountered an item (33, 34, 36, 37). The resident taxa 

of the skin microbiome have been used to predict the human host for samples from nonporous 

surfaces and clothes an individual has worn (32, 34, 38-40). 

When crimes occur, it can take days to weeks, if not longer, to obtain a reference sample 

from a person of interest for comparison to evidence collected from a crime scene. If there is an 

extended time between the crime where the unknown sample was deposited and the collection of 

a reference sample, the composition and genetic signatures may and likely will change to some 

degree. Thus, the stability of microbial markers over some lapsed time should be considered. Oh 

et al. (36) provided data on this parameter with the first shotgun whole genome metagenomics 

dataset with spatial and temporal sampling of the skin microbiome. The structure and stability of 

the skin microbiome were evaluated at 17 body sites at three different time points (up to three 

years), and the skin microbiome was found to be largely stable in that timeframe. Schmedes et al. 

(37) developed the hidSkinPlex based on (36), selecting markers that were stable and personally 

identifying.  The hidSkinPlex was developed using two different taxonomic approaches: 

presence/absence or nucleotide diversity. Presence/absence was used to determine if a target region 

was present in a sample, and nucleotide diversity measured the strain-level heterogeneity of an 

individual’s skin microbiome population. These two summary statistics were used to select 

specific regions of microbes that most contributed to the correct classification of an unknown 

sample to the individual from which it was collected (37). Using these taxonomic approaches 

Schmedes at al. (37) were able to design the hidSkinPlex which is a TGS sequencing panel that 
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contains 286 markers that are relatively stable and abundant on the human skin, providing a new 

avenue of genetic testing for HID. 

 

Previous Methods for Human Identification with hidSkinPlex  

The hidSkinPlex, a TGS panel, contains 286 selected markers (ranging from family, genus, 

and species level), which are contained in the microbial reference database of MetaPhlAn2 (37, 

41). Schmedes et al. (37) designed the hidSkinPlex and used taxonomic approaches for HID. In 

(37), eight individuals were sampled at three body-sites in triplicate. Then the samples were 

sequenced with the hidSkinPlex. An average of 94% classification accuracy for host identification 

and 86% accuracy predicting the body site location of the sample were achieved (37). The 

classification accuracies for all samples collected (n=72; eight individuals, three body sites in 

triplicate), depending on body site and number of markers used for classification, ranged from 54.2 

to 100%, indicating improvement is still needed to increase classification accuracy for the 

hidSkinPlex markers for HID (37).  

Woerner et al. (10) used phylogenetic distance or genetic diversity to analyze samples 

collected from 51 individuals for three body sites in triplicate that had been sequenced with the 

hidSkinPlex panel. The classification accuracies varied from 53.6% on average for phylogenetic 

distance (patristic distance) and 71.7% on average for genetic diversity (Euclidean distance) (10). 

While the results of Woerner et al. (10) perhaps suggest that the patristic distance may be ill-suited 

for the application of HID, there are a variety of distance functions which may be better suited for 

attribution. Woerner et al. (10) demonstrated that a sample which was misclassified and attributed 

to a non-donor by both the phylogenetic and taxonomic methods could be better classified using 

Wright’s fixation index (FST) (see below). Woerner et al. showed using FST in a misclassified 
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instance that there were many more markers with low FST values (≤ 0.2) between the sample and 

its misclassified source than between the same sample and its technical replicate. There were also 

less markers with high FST values (>0.2) between the same pairing, suggesting a different and 

perhaps more powerful way to predict the human host from microbial signatures.  

 

Wright’s Fixation Index 

The fixation index, most commonly referred to as FST, is one of the most common methods 

used to quantify genetic differentiation between populations (42). In the studies herein, FST was 

estimated from a sample of a single individual’s skin microbiome (herein referred to as a 

population), as compared to another individual. FST reflects the probability that two alleles drawn 

randomly from a subpopulation are identical by descent (i.e., whether a segment of DNA shared 

by two or more microbes was inherited from a recent common ancestor) (Figure 6) (42). FST can 

be estimated by calculating the number of pairwise differences within populations compared to 

between populations (the population being the skin microbiome from an individual). Hudson et al. 

(43) proposed calculating FST as: FST = 1-(Hw/Hb), where Hw is the mean number of pairwise 

differences within a population, and Hb is the mean number of pairwise differences between two 

populations (43).  
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Figure 6. A cartoon depicting hypothetical FST values for two populations.  The small blue and 
red circles represent alleles and the black circles around them represent distinct populations. Two 
populations showing extreme values of FST when alleles in the two populations have the same 
frequency (FST=0) or have no alleles in common (FST=1). FST values <0.05 may be considered little 
genetic differentiation while 0.05-0.15 may be considered moderate genetic differentiation (44).  
FST values > 0.15 may be referred to as a large differentiation between two populations (44, 45). 

 

New Method to Select Markers from the Skin Microbiome for HID 

FST has been used to select AIMs in human populations. AIMs have large differences in 

allele frequencies between human populations, and these differences have been used to estimate 

the ancestry of an individual (46).  The same principle of AIMs may be applied to microbial HID. 

In this context, FST may provide insight into whether two microbial alleles are identical by descent 

and as such high FST microbial markers (e.g., SNPs) may provide information on whether or not 

two DNA samples show recent common ancestry (because they are derived from the same person) 

or if their similarities are likely due to chance. Additionally, SNPs allow for analysis of genetic 

differences between individuals’ core stable microorganisms versus relying on the abundance of 
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specific taxa. With the development of a set of specific genetic markers, it may be possible to 

determine the frequency of certain alleles in the population allowing for a more precise 

identification of taxa present on an individual. If successful, selecting SNPs with high 

discriminatory power from the previously designed hidSkinPlex (37) panel should allow for the 

reduction of the number of markers needed, allowing for increased accuracy and decreased 

amplicon size. Additionally, the targeted panel would allow for more cost-effective investigation 

into the allele frequencies in different human populations (i.e., based on geographical location, 

lifestyle, and health) and determine the stability of the markers over time. With the addition of 

microbial profiling for HID there can be another source of DNA to accurately identify sources of 

biological evidence to support criminal investigations.  

 

Machine Learning 

Machine learning, also referred to as statistical learning, is a branch of computer science 

and mathematics wherein algorithms are trained to learn from data and identify patterns. There are 

two broad categories of machine learning, supervised and unsupervised learning. Supervised 

methods are used for prediction and are provided with input (independent variables) and output 

(dependent variables) data together, while unsupervised methods are provided with just input data 

(Figure 7). Supervised learning methods were investigated in this project, particularly support 

vector machine (SVM) and regularized logistic regression. SVM is a natural binary classifier 

where the algorithm creates a hyperplane (in two-dimensional space, a line) to separate the data 

into classes (Figure 8). SVM can be extended to a multiclass classification problem by using a 

one-versus-one approach wherein a binary SVM is learned for each pair of classes and predictions 

are combined to give the final predicted class. Another approach used in this study was regularized 
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logistic regression. Logistic regression is used to predict the probability and category of a 

dependent variable. Herein, the provided independent variables were the allele frequencies of 

SNPs as identified from select sites in the hidSkinPlex. Logistic regression can be regularized with 

the least absolute shrinkage and selection operator (LASSO, L1 regularization) or the Ridge (L2 

regularization) to help reduce model complexity. Regularization in this context constrains the 

coefficients, reducing their sum of squares (in the case of Ridge) or reducing the sum of their 

absolute values (in the case of LASSO), and thus the model learned is simpler. When a model has 

less complexity it is also less likely to overfit, meaning that predictions on previously unseen data 

may tend to be more accurate. Additionally, LASSO tends to reduce the coefficients of 

uninformative independent variables to zero. As such, LASSO can be used simultaneously to 

perform prediction and to select a small number of markers to inform this prediction. In 

conjunction with LASSO, k-fold cross-validation (kCV) may be used while training algorithms. 

kCV leaves 1/k points out of the data set and then uses the held-out points to estimate how 

accurately the model predicts the expected outcome (Figure 9). All proposed machine learning 

methods have the potential to increase HID accuracy using the human skin microbiome. 

Specifically, regularized logistic regression has the ability to select a reduced number of SNPs 

needed for accurate attribution of a sample for further investigation of HID using the skin 

microbiome. 
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Figure 7. Flow chart showing the different categories of machine learning methods. Supervised 
learning uses training data with labels (herein, individuals) which can be used predict the outcome 
of future datasets. Unsupervised learning is a type of machine learning where the data are not 
labeled (i.e., the algorithm does not know the data associations) and the model tries to determine 
natural clusters or associations. 
 

 

Figure 8.  An example of a hard margin linear SVM. The algorithm finds the optimal hyperplane 
to separate data from two individual’s independent variables (in the above, FST estimates for SNPs 
between the two individuals) (represented as X and O) in different classes. The SVM algorithm 
finds the points closest to the line for both classes, called support vectors. The distance between 
the line and the support vectors is calculated, called the margin. The objective of a hard margin 
linear SVM is to identify the hyperplane with the maximum margin width. 

Machine 
Learning

Supervised
Develop predictive 

model based on both 
input and output data

Classification

Regression

Unsupervised
Group and interpret data 
based only on input data

Clustering

Association

Dimensionality
Reduction
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Figure 9.  k-fold cross-validation (kCV) provides a statistical model with all the training data 
except one data point. Each round of kCV partitions the dataset into two subsets of data, one subset 
for training and one subset for validation (held out data). Held out samples are used for prediction 
and the remaining observations are used learn a predictive model. The procedure is then repeated 
by selecting a new sample and repeating the procedure until all observations have a prediction. 
 

Research Question 

While past research has provided valuable information for HID using the skin microbiome, 

using taxonomic differences between individuals has fallen short of consistently attributing an 

unknown sample to the person from which the sample was derived. Using genetic differences may 

provide more useful information to accurately identify the host of a skin microbiome sample. The 

goal for this proposed research project is to develop an improved targeted MPS panel which targets 

discriminatory SNPs from abundant microorganisms in the human skin microbiome for HID 

purposes.  

This project will employ three technical replicates for three body sites per individual (n = 

51 individuals). All possible comparisons of an individual’s samples to every other sample in the 

data set was performed to determine which SNPs produce the highest classification accuracies 

when evaluated by supervised machine learning. The primary goals of this project are to use the 

hidSkinPlex data on 51 individuals to identify robust single nucleotide markers, reduce 
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misclassification rates, and lay the foundation for bioinformatic analyses of unidentified human 

skin microbiome samples.  

 In the dissertation herein, results and findings from two studies are described. Chapter 2, 

“Population informative markers selected using Wright’s fixation index and machine learning 

improves human identification using the skin microbiome” (Sherier AJ, Woerner AE, Budowle B. 

2021. Appl. Environ. Microbiol. 87:20), describes how leveraging genetic variants in stable 

microorganisms may provide a promising approach to microbial HID. This study used SVM to 

classify skin microbiome samples collected the non-dominant hand in triplicate from each of 51 

individuals. Three methods for selecting SNPs with high FST estimates for classification of samples 

were performed. The first method, known as the overall method, selected a number of the highest-

ranked SNPs (based on FST estimates) between two individuals using SVM for classification. The 

second method, known as the per marker method, focused on selecting several SNPs from each 

marker common between two individuals. The final method, known as the selected method, 

determined a single list of SNPs with high mean FST estimates that were common to most samples 

used in the training data set. Then SVM was used to determine the sample’s human host.  The 

resulting classifications from the SVM provided accuracies for each method. The per marker 

method had the highest accuracy at 95%, but the overall and selected methods still performed well 

at 92% and 88% accuracies, respectively. Determining a subset of SNPs contained within the 

hidSkinPlex that were successful lays the foundation for a redesigned targeted sequencing panel 

for HID.  

  Chapter 3, “Determining informative microbial single nucleotide polymorphisms for 

human identification” (Sherier AJ, Woerner AE, Budowle B. Submitted to Appl. Environ. 

Microbiol.), describes how LASSO was used to determine a reduced number of SNPs for 
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classifying skin microbiome samples to their hosts. Using the same 51 individuals sampled at three 

body sites (foot, manubrium, and hand) in triplicate, a reduced number of SNPs for potential HID 

was determined. A full list of nucleotide positions and their mean FST values were determined to 

select a reduced set of SNPs (FST mean estimate ≥ 0.1 and in greater than 75% of samples). LASSO 

was then used to determine a final list of 365 SNPs that could be used for human identification 

and provided 95% classification accuracy for 459 samples. Having a predetermined list of SNPs 

to use for HID provides an avenue for additional research into population allele frequencies and 

the overall stability of selected SNPs.  

 The studies comprising this body of work provide a new method for differentiating 

individuals based on informative SNPs from the skin microbiome. The resulting SNP panel can be 

used for studying the strengths and limitations of skin microbiome profiling for forensic HID. 

Future studies will focus on evaluating the new panel, referred to as hidSkinPlex+, on a larger 

sample size, assessing the stability of the SNPs over time, performance of the panel on mock case 

samples, and interpretation guidelines for using the reduced hidSkinPlex+. While the research 

contained in this dissertation focuses on using machine learning for HID, it may not be the desired 

approach for casework. After the markers in hidSkinPlex+ are more defined, traditional methods 

of interpretation for genetic data may be applied. More traditional methods may include using 

statistical analysis to determine the frequency of the genotype observed in the population allowing 

for probability (likelihood) calculations.    
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ABSTRACT Microbial DNA, shed from human skin, can be distinctive to its host and thus help 

individualize donors of forensic biological evidence. Previous studies have utilized single locus 

microbial DNA markers (e.g., 16S rRNA) to assess the presence/absence of personal microbiota 

in an effort to profile human hosts. However, since the taxonomic composition of the microbiome 

is in constant fluctuation, this approach may not be sufficiently robust for human identification 

(HID). Multi-marker approaches may be more robust. Additionally, genetic differentiation, rather 

than taxonomic distinction, may be more individualizing. To this end, the non-dominant hands of 

51 individuals were sampled in triplicate (n = 153). They were analyzed for markers in the 

hidSkinPlex, a multiplex panel comprising candidate markers for skin microbiome profiling. 

Single nucleotide polymorphisms (SNPs) with the highest FST estimates were then selected for 

predicting donor identity using a support vector machine (SVM) learning model. Three different 

SNP selection criteria were employed: SNPs with the highest-ranking FST estimates 1) common 

between any two samples regardless of markers present (termed overall); 2) each marker common 

between samples (termed per marker); and 3) common to all samples used to train the SVM 

algorithm for HID (termed selected). The SNPs chosen based on criteria for overall, per marker 

and selected methods resulted in an identification accuracy of 92.00%, 94.77%, and 88.00%, 

respectively. The results support that estimates of FST, combined with SVM, can notably improve 

forensic HID via skin microbiome profiling.  

 

  



34 
 

IMPORTANCE There is a need for additional genetic information to help identify the source of 

biological evidence found at a crime scene. The human skin microbiome is a potentially abundant 

source of DNA that can enable the identification of a donor of biological evidence. With microbial 

profiling for human identification, there will be an additional source of DNA to identify individuals 

as well as to exclude individuals wrongly associated with biological evidence, thereby improving 

the utility of forensic DNA profiling to support criminal investigations.  
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Introduction  

Determining the source of DNA evidence from a crime scene is the primary goal of forensic 

genetics. Identifying the molecular profile of a donor typically involves comparing short tandem 

repeat (STR) markers from an unknown sample(s) with a reference sample from a person(s) of 

interest. STRs are highly polymorphic, thus providing high powers of discrimination. However, 

forensic genetic evidence can often be degraded and/or contain low amounts of human DNA, 

making it difficult at times to obtain even a partial STR profile for human identification (HID).  

When an incomplete (or partial) STR profile is obtained, the discrimination power is reduced 

substantially. In such cases, there is a need for considering alternative approaches to assist in 

criminal investigations. 

The human microbiome provides a promising alternative source of DNA that could 

supplement forensic human DNA analyses. Microbial cells outnumber their human counterparts 

by a ratio of 10:1 (though when considering all human cells, the ratio is estimated to be 1:1) (1, 2). 

Indeed, the skin microbiome is an abundant source of microbes, with an estimated ~10,000 

bacteria/cm2 (3). In contrast, human nuclear DNA (nDNA) is far less abundant on a per copy basis. 

For example, Schmedes et al. (4) swabbing a similar area of the skin obtained a quantity of human 

DNA that was equivalent to four diploid cells. In contrast, the DNA of the human skin microbiome 

from the same extract provided sufficient information for identification of the donor of the sample 

(4).  

The 16S ribosomal RNA (rRNA) marker has traditionally been used in the context of 

human microbiome profiling. The human skin microbiome has been characterized for multiple 

individuals and multiple body sites using 16S rRNA sequencing demonstrating that the human 

skin microbiome is a potential source of trace evidence (5-14), but there still is need for 
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improvement. These studies have focused on the taxonomic diversity of specific microbial species 

to determine the relationship between an unknown sample and its potential donor. However, 

previous studies have had varying success rates for HID and were typically based on a small 

number of samples (i.e., < 15 individuals) (15-18). The limited success of these investigations 

could be attributed to their reliance on the presence/absence (or quantitation) of specific microbes 

as evidence for a “match” between an unknown sample and a reference sample. Environmental 

interactions and temporal shifts are common phenomena in microbiomes (19). Specifically, 

microbes from the skin can also be shared and exchanged between cohabiting and non-cohabitating 

individuals when they come in contact with each other or items (9, 20-22). Moreover, several 

studies have also claimed that 16S rRNA lacks the necessary phylogenetic resolution for HID (6, 

9, 16, 23-27). All the above suggest that the taxonomic and phylogenetic constitution of 

microbiome is in constant fluctuation, and that using presence/absence of specific microbial taxa 

as evidence of a match could be limiting or possibly misleading. 

However, a better system possibly consists of identifying discriminatory skin microbial 

features in which stability decays minimally over time. Consequently, recent work has focused on 

targeting a number of stable taxon-specific markers to improve accuracy of HID (4, 28, 29). Oh et 

al. (28) completed one of the first whole genome sequence studies of the human skin microbiome 

for multiple body sites, providing detailed information about abundant and stable microorganisms. 

The hidSkinPlex (4), for example, is a multiplex panel based on the data of Oh et al. (28) and 

includes 286 markers, ranging from the level of the genus to subspecies of 22 different microbial 

clades. The markers were selected based on their abundance and temporal stability (up to three 

years) as well as their prevalence across body sites (4, 28). Using specific stable markers with a 

wide phylogenetic range allows for the selection of specific features from the skin microbiome 
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that may improve HID. For example, the markers chosen by Schmedes et al. (4) were able to 

achieve accuracies with a range of 54.00% - 100.00% using presence/absence and nucleotide 

diversity with two machine learning methods, albeit with a limited sample size.  

Ancestry informative markers (AIM) regularly used in human bio-ancestry studies 

commonly have high FST estimates (30, 31), wherein a few high FST markers are first mined from 

genomes and then used to predict population groups. A promising approach to identifying human 

hosts could use measures of genetic differentiation, specifically the F-statistics (for example the 

Fixation Index also known as FST) (32) for assessing microbial populations. FST can be estimated 

by evaluating orthologous SNPs in two different skin microbiome populations (i.e., skin 

microbiome samples from different individuals). FST estimates could provide insight into whether 

the alleles of a marker observed between microbial populations are identical by descent, allowing 

for better discrimination between microbial populations, which in turn may improve the accuracy 

of associating a skin microbiome sample with its respective human host.  

Previously Woerner et al. (29) estimated FST values between two sample populations: a 

sample that was incorrectly associated with another host. Their work showed that even though the 

central value (i.e., mean) FST would also lead to an incorrect classification, the use of high FST 

SNPs would lead to the correct classification. However, the Woerner et al. study was only a proof-

of-concept because only two samples were analyzed, and classification of the hosts based on the 

FST estimations was not performed. In this current study, a novel approach to accurately associate 

skin microbiota to their respective hosts is described. The non-dominant hands of 51 individuals 

were sampled in triplicate, and the DNA was analyzed using the hidSkinPlex panel. FST estimates 

were then computed using SNPs found across the sequenced markers to assess genetic 

differentiation between inter-and intra-individual microbiome populations. A select number of 
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SNPs displaying the highest FST estimates were chosen applying three different approaches: those 

with the highest-ranking FST estimates 1) common between any two samples regardless of 

taxonomy (termed overall); 2) per common marker between samples (forcing a more uniform 

distribution on taxonomy, termed per marker); and 3) markers common to all samples that are 

used to train the subsequent machine learning algorithm (termed selected). Each approach focused 

on a specific hypothesis to determine if using the overall highest-ranking SNPs, maximizing taxa, 

or a common selected panel could increase classification accuracy of unknown skin microbiome 

samples. These SNPs were used as data points for classification by a support vector machine 

(SVM) learning approach. The predictive capabilities of the SVM to match samples to their human 

hosts were compared across all three methods of SNP selection.  

 

Results 

FST estimations for skin microbiome samples. As previously, described in Woerner et 

al. (29), 51 individuals’ non-dominant hands were sampled in triplicate and analyzed for the 

markers in the hidSkinPlex panel. The samples were split into training (n = 26 individuals in 

triplicate) and test data (n = 25 individuals in triplicate) sets. A total of ~69 million quality-

controlled reads with a mean of 893,355 (SD = 362,436) per sample remained after read 

preprocessing for the training set. The test data set had a total of ~72 million mapped reads with 

an average of 964,161 (SD = 418,058) mapped reads per sample. FST was estimated over all pairs 

of individuals for every orthologous nucleotide in the hidSkinPlex within the training and test data 

sets. 

After estimating FST for all pairwise comparisons that had at least 1x read coverage, the 

average number of nucleotides with an FST estimate greater than zero for each pairwise comparison 
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in the training data set was 24,809 (SD = 8,502; 2,590 min to 52,459 max) (Table S1). The test 

data set had a mean of 22,789 (SD = 9,657) for single nucleotide positions with a FST estimate 

greater than zero. When analyzing FST estimates for all pairs, only 236 markers of the 286 markers 

in the hidSkinPlex were seen in at least two samples being compared from the training data set. 

As a reminder, each marker in the hidSkinPlex is associated with some level of microbial 

taxonomy (e.g., stably present in Cutibacterium acnes at the species level). The reduced number 

of markers were only from eight species and one family. With one species, Corynebacterium 

pseudogenitalium, only seen in one comparison of two samples with both samples collected from 

the same individual (Table S2).  

SVM analysis of training data set. SVMs are natural binary classifiers, and for the 

purposes of this study, each person is considered as a separate class. SVMs can be extended to 

multiclass classification by using one-versus-one (OvO) decomposition, wherein a classifier is 

built for each pair of classes (individuals). OvO classifiers were created using SNPs, selected based 

on high-ranking FST estimates, specific to the pair of individuals. The multi-class classification 

was estimated by using a simple tally of votes (see Methods). Parameter optimization included 

varying the number of SNPs, the minimum number of reads and the SVM cost (C), and the best 

combination of parameters were identified for each SNP selection method. The best combination 

was selected from the training data based on classification accuracy with a tie-breaking rule using 

the mean prediction accuracy.  

The three methods of selecting SNPs with the highest-ranking FST estimates were termed 

overall, per marker, and selected. While all three methods focused on the SNPs with the highest-

ranking FST estimations, each method varied on the number of markers and SNPs used to classify 

an unknown sample. The variation in the three methods were developed to answer distinct 
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hypotheses about how SNP selection methods affect HID and to determine which method had the 

highest accuracy, as assessed in the test data set. The overall method tested whether accuracies can 

be increased by selecting the highest-ranking SNPs, regardless of the markers present. The overall 

method selected SNPs with the highest-ranking FST estimates in each pair of samples (although it 

could lead to less diverse distribution of taxa). The per marker method tested whether maximizing 

the number of taxa used for classification could increase classification accuracy, even if doing so 

relied on SNPs with lower FST estimates. The per marker method selected the SNPs with the 

highest-ranking FST in each orthologous marker in a pair of samples. The selected method tested 

whether using SNPs that were common to all samples in the training data, used to train the SVM, 

could be used to increase accuracy of identification. The selected method relied on a predetermined 

number of common SNPs, which had high-ranking FST estimations for all comparisons in the 

training data set. Each selection method was then compared under different parameter values (i.e., 

the number of SNPs, minimum sequence reads, and SVM cost) using a customized SVM approach 

designed specifically for HID (see Methods).   

Overall Method. The overall FST selection focused on choosing the highest FST SNPs for 

each pairwise comparison (i.e., 500, 1,000, or 2,000; note with this method that some of the 

highest-ranking SNPs had FST estimates close to zero). The number of selected high-ranking SNPs 

was tested with all possible combinations of minimum reads and SVM cost (i.e., the C 

hyperparameter). The data training set compared the accuracy of 75 parameter combinations, and 

12 combinations performed best, classifying 76 out of 78 samples correctly, yielding a 97.44% 

accuracy (Table S3A). Using the highest prediction probability to break the tie of the 12 options, 

the 500 SNPs with the highest FST estimations, minimum read depth of 250, and SVM cost of 1 

were the optimal parameters. The two incorrectly classified samples were S028_R3 and S029_R2 
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(Figure 1), which had some of the lowest number of markers (mean ± SD) (S028_R3 120.80 ± 

0.47, S029_R2 152.00 ± 11.91) and SNPs (S028_R3 823.50 ± 131.28; S029_R2 1059.00 ± 144.45) 

for analysis among the training set samples. The mean number of markers for the overall method 

with the training data set was 146.20 (SD = 15.72), and the mean number of SNPs was 1,036.00 

(SD = 160.25). The mean number of taxa seen was only 3.89 (SD = 0.86).  

 

 

Figure 1. Training data set matrices showing rank #1 (black) and #2 (gray) for classification. The 
three matrices are labeled with the nucleotide selection method (i.e., per marker, overall, or 
selected) used at the top of the individual graphs. The three selection methods chose SNPs with 
the highest-ranking FST estimates. The overall method optimized 250 SNPs for the pairwise 
comparison, per marker method optimized 5 SNPs per marker, and selected had a set of 150 SNPs 
that were common in the training data set. The x-axis lists all samples with the individual number 
and replicates (S0## = individual number, R# = replicate number). The y-axis lists the possible 
groups, i.e., individuals, a sample could be classified.  
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Applying the optimized parameters to the test data set (n = 25 samples in triplicate) yielded 

a classification accuracy of 92.00% (69/75) with classification error of the model likely between 

2.99% and 16.60% with 95% confidence (R package exactci (33)) (Figure 2). The test data set for 

the overall method assayed a larger number of markers (152.10 ± 14.16)) but had fewer SNPs 

(1,026.00 ± 166.89)) on average when compared to the training set. While six samples were 

incorrectly classified, four of the incorrect classifications involved S014 and S042. The other two 

incorrectly classified samples S044 and S046 ranked as #1 (Figure 2).  

 

Figure 2. Test data set matrices showing rank #1(black) and #2 (gray) for classification of samples 
for the three methods of selecting the highest-ranking SNPs based on their FST estimation. The top 
matrix is the overall method, which chose the 250 highest SNPs in any given pairwise comparison. 
The second matrix shows the per marker method using training set optimized parameters of 5 SNPs 
per marker in a pairwise comparison. The bottom matrix shows the selected method that had 150 
prechosen SNPs that were common and had the highest-ranking FST estimates in the training data 
set.  
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Per Marker Method.  The per marker method focused on the highest-ranking FST estimates 

within each marker to achieve the largest taxonomic diversity possible. With the per marker 

approach up to a specified number of SNPs with the highest-ranking FST estimates (i.e., 5, 10, or 

25) were selected per orthologous marker in a pair of samples. The per marker approach allowed 

for the widest variety of taxa (5.11 ± 1.15) and the largest number of markers (151.40 ± 27.98) to 

be used for classification with the training data. There was a total of 75 parameter combinations, 

and 11 parameter combinations provided the same highest prediction accuracy (Table S3B). Using 

5 SNPs per marker with a minimum read depth threshold of 250 and a SVM cost of 10 yielded the 

highest accuracy and the highest mean confidence prediction. Each SVM analysis for the 

optimized parameters for the per marker method had a mean of 1,650.00 SNPs per SVM 

classification (SD = 309.15). The per marker training set generated a 97.44% accuracy with only 

two misclassifications out of 78 samples. S028_R3 and S029_R2 were also incorrectly classified 

samples with the overall method (Figure 1).  

Using the optimized parameters, five SNPs with the highest-ranking FST estimates per 

marker, 250 read minimum, and a SVM cost of 10, the test data set produced an accuracy of 

94.70%, with classification error between 1.47% to 13.11% (binomial 95% confidence interval). 

Four samples were classified incorrectly out of 75 (Figure 2). All four comparisons were from two 

samples, S014_R1/R2 and S042_R2/R3. One sample in the test data set, S014_R3, had a three-

way tie, based on votes, with three potential candidates, S014, S042, and S044. S014 was ranked 

#1 of potential candidates because it had the highest mean prediction accuracy out of the three 

possible choices.  All three replicates for S014 had S044 ranked #1 or #2. Additionally, S044 was 

classified correctly, but it had a close association with S014 and S042 with those two classes 
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ranked #2 and #3 for S044. Having the same classes ranked highly for S014, S042, and S044 is of 

particular interest because S042_R2 was classified as S014, indicating that they could have 

potentially arisen from the same host, a potential sample mix-up, or close relationship of the hosts.  

Selected Method. The selected method used predetermined SNPs for analysis (i.e., 50 to 

2,000). The number of SNPs were selected based on the number of the markers in the hidSkinPlex 

and their base pair length. The different number of SNPs chosen for the selected method was 

determined based on the maximum number of SNPs (~2,000) used in the previous two methods 

that had the highest classification accuracy. Out of 175 parameter combinations, ten combinations 

yielded the highest accuracy of 98.70%. The optimized parameters for selected FST were 150 high 

FST SNPs, a minimum of 500 reads, and a SVM cost of 1,000 (Table S3C). The 150-common 

SNPs represented 22 markers, one family and two species (Propionibacteriaceae, Cutibacterium 

acnes, and Cutibacterium humerusii) from the hidSkinPlex. The selected method had a training 

accuracy of 98.70%, with only one sample incorrectly classified. The incorrectly classified sample, 

S028_R3, was also incorrectly identified with the other two selection methods. The difference in 

the selected method was that S028_R3 ranked #2 based on its votes, and S006 was ranked as #1 

by votes (Figure 1) and was a notable change in the rank of the correct group classification for 

S028_R3 which changed from rank ten (in per marker and overall methods) to rank two. In the 

training data set, S028 R3 had a mean of 43.94 markers (SD = 0.42) for all possible pair of 

comparisons.   

When the test data set was evaluated with the parameters of 150 SNPs with the highest-

ranking FST estimates from the training data set, 500 minimum reads, and a cost of 1,000 for the 

selected FST method, the accuracy decreased to 88.00% with a classification error of 5.63% to 

21.56%. Only 66 out of 75 samples were correctly classified. Of the 11 incorrectly classified 
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samples: three belonged to S014, three to S042, two to S017, two to S044, and one to S045 (Figure 

2). Individuals S042 and S045 did not have as many SNPs in their replicates, 146.90 ± 4.33 and 

140.10 ± 1.85 across all replicates, respectively, when compared to other individuals, which may 

have impacted classification. However, missing data alone cannot explain the decreased accuracy 

with the selected method as other replicate sample pairs did not contain all 150 specified SNPs 

and were classified correctly.  

 For the training data set the difference in methods and parameters only resulted in 1.26% 

(or one sample) difference in classification accuracy, but the goal of the training data set is to find 

the parameter combinations that result in the highest accuracy. Testing the optimized parameters 

on the test data set provides a better indication of how the method and optimized parameters 

perform on unknown data. The classification accuracy results of the three methods ranged from 

88.00% - 94.00% but accuracy rates are not significantly different (McNemar's chi-square test, 

Table S4). All three methods had issues determining the correct classification for samples from 

S014 and S042, but the selected method also had difficulty correctly associating S017, S044, and 

S045. While the selected method performed better than the other methods on the training data, it 

was the method predicted to most likely be overfit due to SNPs being chosen based on their 

presence in the training data set.   

Study of Misclassified Sample. In this study, a misclassification was considered any 

unknown sample that was assigned to an incorrect individual. In essence, this error assumes the 

analysis achieves uniqueness which may not be realistic with these data. Thus, a misclassification 

may not be a true error. More studies with refined markers/SNPs and larger sample sizes are 

needed to determine the host resolution of the system. Plausible explanations were sought as to 

why one sample was consistently misclassified in the training data set before the optimized 
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parameters were used with the test data set. In the overall and selected methods, S028_R3 was 

classified as S036 (full rankings Table S5). S028_R3, which only had a total of 16 votes (per 

marker and overall methods), out of the potential 25 votes, ranking it number ten on the list of 

potential donors, was the only sample in the training data set that did not have the actual contributor 

ranked in the top three of potential candidates. For the selected method, S028_R3 was ranked #2 

and had 24 votes, while S006 was ranked #1. When compared to S036, S028_R3 had much lower 

read coverage S036 for the markers that are orthologous between samples. S028_R3 had the fewest 

markers in common when estimating FST compared to any other sample that was analyzed. The 

reduced amount of data available for classification may be associated with individual S028_R3 

having low read depth coverage or no reads for the SNPs of interest (Figure 3B).  

 

 

Figure 3. Comparisons of S028_R3 that were incorrectly classified as S036. A) A quantile-
quantile plot of FST estimates for sample S028_R3 compared to individual S036. The distribution 
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of FST estimates between S028 (y-axis) and S036 (x-axis) and from comparing S028_R3 to other 
technical replicates. The FST estimates were computed for SNPs that were orthologous in at least 
two samples. The main diagonal represents S028 and S036 having equal values of FST estimates. 
Points below the main diagonal represent a greater differentiation between S036 and S028, while 
points above the diagonal show greater differentiation within S028. B) Shows the first sample in 
the graph labeled on the x-axis and the second sample on the y-axis with the number of reads 
plotted for the SNPs. The ticks on the x and y-axis show the density of the corresponding area on 
the graph to provide clarity about the density of plotted points. Overall, S028_R3 had less read 
coverage for SNPs in common with S036 than with S028. C) A boxplot of the FST estimates for 
each pairwise comparison. The distribution of FST estimates for the 36 markers S036 and S028 had 
in common tend to have higher FST for sample comparisons within S028 than between S036.  
 

 The test data also had samples that were incorrectly classified by all three methods. 

Specifically, the samples from S014 and S042 were often classified as S044, S046, or to each 

other. While some of the highest-ranking FST estimates are higher between S014 and S042, overall, 

there were more SNPs with high FST estimates within the individual than between individuals. For 

all replicates of S014, there did not tend to be any notable differences in the reads between selected 

SNPs. For S042_R2 and R3, the incorrect classifications may be due to S042_R3 having low read 

coverage for selected SNPs.  

 

Discussion 

 This study investigated the potential of selecting high FST markers to improve HID using 

the skin microbiome. Previous work with the hidSkinPlex using presence/absence or nucleotide 

diversity with nearest neighbor or normalized logistic regression achieved accuracy rates between 

54.20% – 100.00% when classifying eight individuals with samples from three body sites collected 

in triplicate (4). Woerner et al. (11) expanded the number of individuals to 51 and sampled from 

the non-dominant hand in triplicate; using the same panel they achieved accuracies of 78.00% and 

83.70% using phylogenetic distance or nucleotide diversity, respectively, for classification with 

nearest neighbor machine learning approaches. There was a decrease in classification accuracy 
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classification when the sample size was increased to 51 individuals compared to the eight samples 

in Schmedes et al. (4). The study herein re-analyzed the same sequence data as in Woerner et al. 

(11) with a novel method for SNP selection based on FST estimates and SVM and achieved higher 

accuracies (p-value = 0.03, chi-squared test, comparing the most accurate approaches in both 

studies). The accuracies of the three FST SNP selection methods also have increased accuracies 

compared to any of the previous studies using the targeted hidSkinPlex sequence data.  

Three methods for selecting the highest-ranking FST estimations were used to assess how 

SNPs from the skin microbiome may be chosen for HID. All three methods of selecting 

informative SNPs had high classification accuracies. The per marker method achieved the highest 

accuracy (94.70%) which indicates that inclusion of more taxa potentially could increase 

classification accuracies. The per marker method allowed for the broadest selection of markers 

and SNPs in common in each single pairwise comparison, resulting in the method's higher 

accuracy. The overall method performed well with a 92.00% accuracy even though the number of 

SNPs used for analysis was less than the per marker method.  While the selected method had the 

lowest accuracy of 88.00%, even though it initially had the highest training accuracy at 98.70%, 

the method still showed that a predetermined panel of chosen SNPs potentially could include or 

exclude a particular individual as the donor of a sample. An additional increase in accuracy might 

be achieved if minimum requirements were implemented to remove poor-quality samples. The 

results of this study provide support that using high-ranking FST estimates to select SNPs with 

SVM increased accuracies of classification to 94.70% and can potentially be used in a similar 

fashion as AIM are in human populations analyses.  

The investigation into S028_R3 in the training data and S042_R3 in the test data set 

suggested that low read coverage and low diversity of a sample might impact classification 
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accuracy. If one of the three replicates from an individual has low read coverage and/or low 

diversity, the ability to correctly classify other replicates from the same individual may be 

impacted. Perhaps implementing minimum thresholds for analyzing a sample may eliminate poor 

quality samples from being searched. Additional research on potential minimum requirements, 

such as overall read coverage and depth and the number of total SNPs, may reduce the number of 

false positives (or for now better stated as adventitious hits). For the test data set, individual S014 

and S042 were incorrectly classified in all three methods of SNP selection. Individuals S014 and 

S042 were also incorrectly classified to some degree by Woerner et al. (29) for both classification 

methods tested in their study. This observation suggests that replicates of individuals S014 and 

S042 may have been switched, contamination may have occurred during handling or processing, 

and/or that these individuals share a genetically and taxonomically similar microbiome. It is also 

possible that the SNPs selected for distinction individuals still need refinement and/or that 

thresholds for minimum data requirements need to be considered further. Additionally, studies 

need to be performed to determine why a few high FST SNPs could impact incorrect classification 

when the data as a whole support the correct classification.  

Although the performance decreased with the test set, the selected method is of particular 

interest in that it provides a pre-determined set of SNPs to be used in every classification of the 

unknown samples. For the optimized parameter of 150 SNPs there were only two species and one 

family level marker represented, which were Cutibacterium acnes, Cutibacterium humerusii, and 

Propionibacteriaceae. These two species and one family level marker are common and abundant 

on the human skin and often have multiple subspecies or strains within individuals (28). The 

decrease in accuracy from 98.70% in the training data to 88.00% in the test data is most likely due 

to overfitting, both in the SNP ascertainment and in the SVM model itself. With more data for 
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training, it may be possible to adjust the pre-determined SNPs, but some level of overfitting will 

likely persist. A pre-determined panel would allow for the redesign of the hidSkinPlex to reduce 

the number and size of the markers in the panel with a potential increase in assay robustness.  

Using FST estimates permitted selection of SNPs to be input into an SVM model. With a 

refined MPS targeted skin microbiome panel it will also be possible to further investigate how the 

SNPs of specific microorganisms change due to environment, health-status, and other external 

factors. Additionally, refinement of informative SNPs may provide an increase in the accuracy to 

include or exclude an individual as a potential contributor of a microbiome sample. The human 

skin microbiome has the potential to be supportive evidence to more traditional DNA evidence for 

law enforcement.  

 

MATERIAL AND METHODS 

Samples. Targeted sequence data from samples originally described in Woerner et al. (29) 

were used in this study. Briefly, skin swabs from 51 individuals were collected in triplicate from 

the non-dominant hand (Hp) of each individual (n = 153, replicates R1, R2, and R3). These samples 

were then analyzed using the hidSkinPlex, a targeted genome sequencing panel (4) drawn from 

the MetaPhlAn2 database (34). This panel targets 22 clades, with genus to subspecies level 

information, comprising 286 markers that were determined to be abundant and relatively stable on 

the human skin (35). The University of North Texas Health Science Center Institutional Review 

Board approved the collection and analyses of these samples.  

Sequence data and analysis. All fastq files from the MiSeq were trimmed with cutadapt 

(36) to remove bases with a quality score less than 20 and reads less than 50 bases long as described 

in Woerner et al. (29). MetaPhlAn2 (34) was used to align sequence reads to the MetaPhlAn2 
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reference database. Samtools (37) was used to calculate read depth and coverage, and generate 

base pileups for each aligned marker in the hidSkinPlex panel.  

Computation, Statistics and FST estimation. All statistics were performed in the R (v. 

3.4.2) (38) or Python programming languages (v. 2.7.17, Python Software Foundation, 

https://www.python.org/) with plots created by ggplot2 (39).  Welch two-sample t-tests and 

McNemar’s chi-squared test were performed using the stats package (38). Hudson et al. (40) 

proposed estimating FST as FST = 1-(Hw/Hb), where Hw is the mean number of pairwise differences 

within a population, and Hb is the mean number of pairwise differences between two populations 

(40). FST was estimated for all relevant nucleotide positions with a read depth minimum of one, it 

is worth noting that FST is only defined when Hb > 0 and that a minimum read depth parameter 

was optimized in the machine learning approach. When estimating FST the two samples (i.e., two 

populations) must each have at least one orthologous SNP being compared and have >1x read 

depth for the analysis (for example sample A at SNP position 25 has 2 read of A, and sample B 

has 2 read of C) an additional read depth parameter was optimized during the analysis of the 

training data set. Then a three-fold cross validation holding out one of the technical replicates was 

performed.  

Machine learning strategy. A training set was used to optimize the linear support vector 

machine (SVM) C hyper-parameter, as well as a threshold on a maximum number of SNPs and 

minimum read depth. The test data set is used to determine how the SVM performed on unseen 

data. The training data set comprises 26 samples in triplicate (S001 – S012 and S025 – S037, where 

S0## represents an individual), and the test data set consists of 25 samples (S013 – S024 and S038 

– S051).  
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The SVM approach embeds the distance (FST) between two individuals relative to a single 

query point into the Cartesian coordinate system. The embedding begins by considering four 

samples, two samples for each class (a class represents two samples from the same individual) and 

selecting the highest-ranking SNPs for each sample compared to the “unknown” sample. While 

embedding distances in the Cartesian coordinate system is not in general possible without error or 

loss, it is possible to use distance with a binary classifier when the distance is constrained to a 

single (query) point. A further benefit of the approach is it can be trained only on comparable data, 

in this case SNPs, between just the two samples and the query, in contrast to requiring the presence 

of each SNP in all samples. This allows the SVM to handle dropout in a way that avoids imputation 

and uses the variants to separate two individuals based on their common microbes.  

Each comparison between two samples (one of them being the unknown data point), 

selected the highest-ranking FST estimates (i.e., SNPs) based on the selection method (i.e., overall, 

per marker, or selected). After SNP selection, a matrix with the four samples (rows) and the 

selected SNPs (columns) was formed. If any SNP was not present in the other (up to three) 

comparisons, because it was not present as a high-ranking SNP, it was filled in with the FST 

estimate from the original data that met the minimum read requirement. Missing data was filled in 

with zero. FST values for common markers for all four comparisons were input into an in-house 

SVM code that used LibSVM (v. 1.7-3) (41) (R package e1071) as a feature vector with two 

labeled classes and a single unlabeled sample. The unknown sample was then provided as a vector 

of zeros as an additional feature vector to represent FST estimates of the unknown sample when 

compared to itself.  The SVM provided a prediction about which of the two potential classes the 

unknown sample belonged and provided a percentage representing the SVM’s confidence in its 

prediction. Each time the SVM made a classification to a particular class, the class was given a 
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vote of one. The total votes were tallied at the end. The total number of votes for each class was 

then used to rank the classes of the unknown sample.  

Three approaches to select SNPs for analysis were developed to determine which method 

would provide the highest accuracy. Each method of high FST selection focused on a distinct 

approach to provide insight into whether the number of highest-ranking FST estimates increases 

classification accuracy or a common set of markers would more effectively improve accuracy of 

unknown sample prediction. The first approach, overall, selected either up to 500, 1,000, or 2,000 

SNPs with the highest-ranked FST estimates across all markers, but not from any specific marker, 

to determine the minimum number of SNPs that could be used and still provide accurate 

classification. The second method, FST per marker, selected either 5, 10, or 25 SNPs contained 

within a marker with the highest-ranking FST per each marker common between the two 

populations that were compared. The third method, called selected FST, used all FST estimates with 

reads greater than 10 from the training samples to select SNPs that were seen most often in pairwise 

comparisons and had the highest-ranking FST estimates. The number of SNPs selected with the 

highest-ranking FST estimates were set at 50 to 2,000. The selected method chose SNPs by 

arranging FST estimates in descending order for each marker seen in all pairwise comparison in the 

training data set. All three selection methods were optimized under the objective of maximizing 

classification accuracy.  

Parameter optimization. Three parameters were varied for all SVM models. The three 

parameters were the number of SNPs with the highest-ranking FST estimates in a pairwise 

comparison, the minimum reads at each SNP compared, and the cost (C-parameter) for the linear 

SVM. The number of SNPs selected with the highest-ranking FST estimates depended on which 

method was used, i.e., FST per marker, overall FST, and selected FST. A minimum read depth 
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threshold was assessed with each approach, and the thresholds were: 10, 100, 250, 500, or 1,000. 

Cost, the degree of misclassification allowed in the SVM, was set at 0.1, 1, 10, 100, or 1,000. The 

selection of optimal parameters for each FST selection method was evaluated by looking at the 

number of times each possible combination of all three parameters was used to predict 78 unknown 

samples with SVM. The accuracy was determined by the number of times that the unknown sample 

was predicted correctly (i.e., the highest rank).  
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DATA AVAILABILITY 

Custom R and Python scripts can be accessed at 

https://github.com/CardiShire/PopulationInformativeMarkers. 
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SUPPLEMENTAL  

Table S1. The range of nucleotides and variants seen in each sample comparison for the training 
data set. FST estimations were calculated for each nucleotide in common between two samples 
(Individual A and Individual B). Then all FST values greater than 0 (FST > 0) were used to calculate 
the minimum, median, mean, and maximum. Additionally, the number of FST estimates higher than 
0.10, 0.25, and 0.50 were determined for each comparison. S0## represents an individual, and R# 
represents the replicate.  
 

Marker SNP Position Species Marker Length 
gi|295129529|ref|NC_014039.1|:c1439020-1438442 111 Cutibacterium_acnes 579 
gi|295129529|ref|NC_014039.1|:c1439020-1438442 120 Cutibacterium_acnes 579 
gi|295129529|ref|NC_014039.1|:c1439020-1438442 149 Cutibacterium_acnes 579 
gi|295129529|ref|NC_014039.1|:c1439020-1438442 162 Cutibacterium_acnes 579 
gi|295129529|ref|NC_014039.1|:c1439020-1438442 169 Cutibacterium_acnes 579 
gi|295129529|ref|NC_014039.1|:c1439020-1438442 369 Cutibacterium_acnes 579 
gi|365961730|ref|NC_016511.1|:2485446-2486162 325 Cutibacterium_acnes 717 
gi|387502364|ref|NC_017535.1|:c1339878-1339075 597 Cutibacterium_acnes 804 
gi|395203690|ref|NZ_AFAM01000005.1|:c52756-52631 103 Cutibacterium_humerusii 126 
gi|395203690|ref|NZ_AFAM01000005.1|:c52756-52631 113 Cutibacterium_humerusii 126 
gi|395203690|ref|NZ_AFAM01000005.1|:c52756-52631 114 Cutibacterium_humerusii 126 
gi|395203690|ref|NZ_AFAM01000005.1|:c52756-52631 120 Cutibacterium_humerusii 126 
gi|395203690|ref|NZ_AFAM01000005.1|:c52756-52631 121 Cutibacterium_humerusii 126 
gi|395203690|ref|NZ_AFAM01000005.1|:c52756-52631 71 Cutibacterium_humerusii 126 
gi|395203690|ref|NZ_AFAM01000005.1|:c52756-52631 98 Cutibacterium_humerusii 126 
gi|395203690|ref|NZ_AFAM01000005.1|:c52756-52631 99 Cutibacterium_humerusii 126 
gi|335050601|ref|NZ_AFIK01000014.1|:3050-3691 449 Cutibacterium_acnes 642 
gi|335050601|ref|NZ_AFIK01000014.1|:315-1133 318 Cutibacterium_acnes 819 
gi|335050601|ref|NZ_AFIK01000014.1|:315-1133 517 Cutibacterium_acnes 819 
gi|335050796|ref|NZ_AFIK01000023.1|:c3954-3715 58 Cutibacterium_acnes 240 
gi|335051382|ref|NZ_AFIK01000053.1|:c36245-34977 462 Cutibacterium_acnes 1269 
gi|335051382|ref|NZ_AFIK01000053.1|:c36245-34977 595 Cutibacterium_acnes 1269 
gi|335051382|ref|NZ_AFIK01000053.1|:c36245-34977 657 Cutibacterium_acnes 1269 
gi|335051798|ref|NZ_AFIK01000065.1|:c4330-4001 192 Cutibacterium_acnes 330 
gi|335052272|ref|NZ_AFIK01000082.1|:c111360-110575 222 Cutibacterium_acnes 786 
gi|335052272|ref|NZ_AFIK01000082.1|:c111360-110575 390 Cutibacterium_acnes 786 
gi|335052272|ref|NZ_AFIK01000082.1|:c111360-110575 610 Cutibacterium_acnes 786 
gi|335052272|ref|NZ_AFIK01000082.1|:c111360-110575 700 Cutibacterium_acnes 786 
gi|335053104|ref|NZ_AFIL01000010.1|:c43071-42837 154 Cutibacterium_acnes 235 
gi|335053104|ref|NZ_AFIL01000010.1|:c43071-42837 209 Cutibacterium_acnes 235 
gi|335053104|ref|NZ_AFIL01000010.1|:c43071-42837 56 Cutibacterium_acnes 235 
gi|335053104|ref|NZ_AFIL01000010.1|:c43071-42837 79 Cutibacterium_acnes 235 
gi|335053207|ref|NZ_AFIL01000016.1|:c75436-75296 141 Cutibacterium_acnes 141 
gi|335053685|ref|NZ_AFIL01000030.1|:c58004-57372 146 Cutibacterium_acnes 633 
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gi|335053685|ref|NZ_AFIL01000030.1|:c58004-57372 307 Cutibacterium_acnes 633 
gi|335054110|ref|NZ_AFIL01000040.1|:4048-4263 133 Cutibacterium_acnes 216 
gi|335054110|ref|NZ_AFIL01000040.1|:4048-4263 89 Cutibacterium_acnes 216 
gi|335054139|ref|NZ_AFIL01000041.1|:c77880-77749 104 Cutibacterium_acnes 132 
gi|335054139|ref|NZ_AFIL01000041.1|:c77880-77749 57 Cutibacterium_acnes 132 
gi|335054139|ref|NZ_AFIL01000041.1|:c77880-77749 74 Cutibacterium_acnes 132 
gi|335054309|ref|NZ_AFIL01000044.1|:65842-65994 56 Cutibacterium_acnes 153 
gi|335054520|ref|NZ_AFIL01000051.1|:c25042-24929 71 Cutibacterium_acnes 114 
gi|335055047|ref|NZ_AFIL01000069.1|:c9632-8838 308 Cutibacterium_acnes 795 
gi|335055047|ref|NZ_AFIL01000069.1|:c9632-8838 453 Cutibacterium_acnes 795 
gi|335055047|ref|NZ_AFIL01000069.1|:c9632-8838 632 Cutibacterium_acnes 795 
gi|335055061|ref|NZ_AFIL01000070.1|:3643-4386 252 Cutibacterium_acnes 744 
gi|335055061|ref|NZ_AFIL01000070.1|:3643-4386 258 Cutibacterium_acnes 744 
gi|342211239|ref|NZ_AFUK01000001.1|:665124-666446 1042 Cutibacterium_acnes 1323 
gi|342211239|ref|NZ_AFUK01000001.1|:665124-666446 706 Cutibacterium_acnes 1323 
gi|342211239|ref|NZ_AFUK01000001.1|:665124-666446 824 Cutibacterium_acnes 1323 
gi|342211239|ref|NZ_AFUK01000001.1|:665124-666446 897 Cutibacterium_acnes 1323 
gi|342211239|ref|NZ_AFUK01000001.1|:665124-666446 924 Cutibacterium_acnes 1323 
gi|342211239|ref|NZ_AFUK01000001.1|:665124-666446 978 Cutibacterium_acnes 1323 
gi|342211239|ref|NZ_AFUK01000001.1|:c1255510-1255055 290 Cutibacterium_acnes 456 
gi|342211239|ref|NZ_AFUK01000001.1|:c1376325-1376110 101 Cutibacterium_acnes 216 
gi|342211239|ref|NZ_AFUK01000001.1|:c1715790-1715233 202 Cutibacterium_acnes 558 
gi|342211239|ref|NZ_AFUK01000001.1|:c1715790-1715233 311 Cutibacterium_acnes 558 
gi|342211239|ref|NZ_AFUK01000001.1|:c1845075-1844710 160 Cutibacterium_acnes 366 
gi|342211239|ref|NZ_AFUK01000001.1|:c1936798-1936352 249 Cutibacterium_acnes 447 
gi|552879811|ref|NZ_AXME01000001.1|:1088727-1089377 504 Cutibacterium_acnes 651 
gi|552879811|ref|NZ_AXME01000001.1|:1146402-1146932 165 Cutibacterium_acnes 531 
gi|552879811|ref|NZ_AXME01000001.1|:1286960-1287442 157 Cutibacterium_acnes 483 
gi|552879811|ref|NZ_AXME01000001.1|:1286960-1287442 204 Cutibacterium_acnes 483 
gi|552879811|ref|NZ_AXME01000001.1|:1286960-1287442 66 Cutibacterium_acnes 483 
gi|552879811|ref|NZ_AXME01000001.1|:1431752-1431913 59 Cutibacterium_acnes 162 
gi|552879811|ref|NZ_AXME01000001.1|:1431752-1431913 61 Cutibacterium_acnes 162 
gi|552879811|ref|NZ_AXME01000001.1|:1431752-1431913 92 Cutibacterium_acnes 162 
gi|552879811|ref|NZ_AXME01000001.1|:40840-41742 476 Cutibacterium_acnes 903 
gi|552879811|ref|NZ_AXME01000001.1|:49241-49654 219 Cutibacterium_acnes 414 
gi|552879811|ref|NZ_AXME01000001.1|:49241-49654 285 Cutibacterium_acnes 414 
gi|552879811|ref|NZ_AXME01000001.1|:49241-49654 303 Cutibacterium_acnes 414 
gi|552879811|ref|NZ_AXME01000001.1|:587256-587825 301 Cutibacterium_acnes 570 
gi|552879811|ref|NZ_AXME01000001.1|:587256-587825 32 Cutibacterium_acnes 570 
gi|552879811|ref|NZ_AXME01000001.1|:587256-587825 375 Cutibacterium_acnes 570 
gi|552879811|ref|NZ_AXME01000001.1|:587256-587825 507 Cutibacterium_acnes 570 
gi|552879811|ref|NZ_AXME01000001.1|:655649-655855 103 Cutibacterium_acnes 207 
gi|552879811|ref|NZ_AXME01000001.1|:655649-655855 57 Cutibacterium_acnes 207 
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gi|552879811|ref|NZ_AXME01000001.1|:655649-655855 58 Cutibacterium_acnes 207 
gi|552879811|ref|NZ_AXME01000001.1|:655649-655855 67 Cutibacterium_acnes 207 
gi|552879811|ref|NZ_AXME01000001.1|:655649-655855 77 Cutibacterium_acnes 207 
gi|552879811|ref|NZ_AXME01000001.1|:865400-865597 58 Cutibacterium_acnes 198 
gi|552879811|ref|NZ_AXME01000001.1|:990664-990933 147 Cutibacterium_acnes 270 
gi|552879811|ref|NZ_AXME01000001.1|:990664-990933 149 Cutibacterium_acnes 270 
gi|552879811|ref|NZ_AXME01000001.1|:990664-990933 197 Cutibacterium_acnes 270 
gi|552879811|ref|NZ_AXME01000001.1|:990664-990933 200 Cutibacterium_acnes 270 
gi|552879811|ref|NZ_AXME01000001.1|:990664-990933 89 Cutibacterium_acnes 270 
gi|552879811|ref|NZ_AXME01000001.1|:c1552174-1551533 256 Cutibacterium_acnes 642 
gi|552879811|ref|NZ_AXME01000001.1|:c1599141-1598893 66 Cutibacterium_acnes 249 
gi|552879811|ref|NZ_AXME01000001.1|:c1599141-1598893 69 Cutibacterium_acnes 249 
gi|552879811|ref|NZ_AXME01000001.1|:c1599141-1598893 93 Cutibacterium_acnes 249 
gi|552879811|ref|NZ_AXME01000001.1|:c1820429-1820292 53 Cutibacterium_acnes 138 
gi|552879811|ref|NZ_AXME01000001.1|:c1820429-1820292 67 Cutibacterium_acnes 138 
gi|552879811|ref|NZ_AXME01000001.1|:c1820429-1820292 69 Cutibacterium_acnes 138 
gi|552879811|ref|NZ_AXME01000001.1|:c1820429-1820292 76 Cutibacterium_acnes 138 
gi|552879811|ref|NZ_AXME01000001.1|:c2014536-2014075 411 Cutibacterium_acnes 462 
gi|552879811|ref|NZ_AXME01000001.1|:c2014536-2014075 414 Cutibacterium_acnes 462 
gi|552879811|ref|NZ_AXME01000001.1|:c2014536-2014075 417 Cutibacterium_acnes 462 
gi|552879811|ref|NZ_AXME01000001.1|:c2014536-2014075 423 Cutibacterium_acnes 462 
gi|552879811|ref|NZ_AXME01000001.1|:c2447430-2446870 136 Cutibacterium_acnes 561 
gi|552879811|ref|NZ_AXME01000001.1|:c2447430-2446870 396 Cutibacterium_acnes 561 
gi|552879811|ref|NZ_AXME01000001.1|:c2447430-2446870 495 Cutibacterium_acnes 561 
gi|552879811|ref|NZ_AXME01000001.1|:c31864-31571 165 Cutibacterium_acnes 294 
gi|552879811|ref|NZ_AXME01000001.1|:c31864-31571 98 Cutibacterium_acnes 294 
gi|552891898|ref|NZ_AXMG01000001.1|:1231251-1231871 144 Cutibacterium_acnes 621 
gi|552891898|ref|NZ_AXMG01000001.1|:1231251-1231871 168 Cutibacterium_acnes 621 
gi|552891898|ref|NZ_AXMG01000001.1|:1231251-1231871 172 Cutibacterium_acnes 621 
gi|552891898|ref|NZ_AXMG01000001.1|:1231251-1231871 336 Cutibacterium_acnes 621 
gi|552891898|ref|NZ_AXMG01000001.1|:1231251-1231871 357 Cutibacterium_acnes 621 
gi|552891898|ref|NZ_AXMG01000001.1|:1231251-1231871 369 Cutibacterium_acnes 621 
gi|552891898|ref|NZ_AXMG01000001.1|:1231251-1231871 409 Cutibacterium_acnes 621 
gi|552891898|ref|NZ_AXMG01000001.1|:1231251-1231871 416 Cutibacterium_acnes 621 
gi|552891898|ref|NZ_AXMG01000001.1|:1231251-1231871 438 Cutibacterium_acnes 621 
gi|552891898|ref|NZ_AXMG01000001.1|:1231251-1231871 474 Cutibacterium_acnes 621 
gi|552891898|ref|NZ_AXMG01000001.1|:1231251-1231871 90 Cutibacterium_acnes 621 
gi|552891898|ref|NZ_AXMG01000001.1|:1231251-1231871 93 Cutibacterium_acnes 621 
gi|552891898|ref|NZ_AXMG01000001.1|:1231251-1231871 99 Cutibacterium_acnes 621 
gi|552891898|ref|NZ_AXMG01000001.1|:1440218-1440469 42 Cutibacterium_acnes 252 
gi|552891898|ref|NZ_AXMG01000001.1|:1440218-1440469 56 Cutibacterium_acnes 252 
gi|552891898|ref|NZ_AXMG01000001.1|:1440218-1440469 68 Cutibacterium_acnes 252 
gi|552891898|ref|NZ_AXMG01000001.1|:1440218-1440469 79 Cutibacterium_acnes 252 
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gi|552891898|ref|NZ_AXMG01000001.1|:1440218-1440469 80 Cutibacterium_acnes 252 
gi|552891898|ref|NZ_AXMG01000001.1|:793445-793843 261 Cutibacterium_acnes 399 
gi|552891898|ref|NZ_AXMG01000001.1|:834824-835255 176 Cutibacterium_acnes 432 
gi|552891898|ref|NZ_AXMG01000001.1|:834824-835255 378 Cutibacterium_acnes 432 
gi|552891898|ref|NZ_AXMG01000001.1|:99114-99290 107 Cutibacterium_acnes 177 
gi|552891898|ref|NZ_AXMG01000001.1|:c1328090-1327596 314 Cutibacterium_acnes 495 
gi|552891898|ref|NZ_AXMG01000001.1|:c1328090-1327596 426 Cutibacterium_acnes 495 
gi|552891898|ref|NZ_AXMG01000001.1|:c1443707-1443105 144 Cutibacterium_acnes 603 
gi|552891898|ref|NZ_AXMG01000001.1|:c1443707-1443105 219 Cutibacterium_acnes 603 
gi|552891898|ref|NZ_AXMG01000001.1|:c1443707-1443105 327 Cutibacterium_acnes 603 
gi|552891898|ref|NZ_AXMG01000001.1|:c1443707-1443105 333 Cutibacterium_acnes 603 
gi|552891898|ref|NZ_AXMG01000001.1|:c1443707-1443105 339 Cutibacterium_acnes 603 
gi|552891898|ref|NZ_AXMG01000001.1|:c1443707-1443105 495 Cutibacterium_acnes 603 
gi|552891898|ref|NZ_AXMG01000001.1|:c1945194-1944973 111 Cutibacterium_acnes 222 
gi|552891898|ref|NZ_AXMG01000001.1|:c2126720-2126193 120 Cutibacterium_acnes 528 
gi|552891898|ref|NZ_AXMG01000001.1|:c2126720-2126193 126 Cutibacterium_acnes 528 
gi|552891898|ref|NZ_AXMG01000001.1|:c2126720-2126193 162 Cutibacterium_acnes 528 
gi|552891898|ref|NZ_AXMG01000001.1|:c2126720-2126193 166 Cutibacterium_acnes 528 
gi|552891898|ref|NZ_AXMG01000001.1|:c2126720-2126193 185 Cutibacterium_acnes 528 
gi|552891898|ref|NZ_AXMG01000001.1|:c2126720-2126193 237 Cutibacterium_acnes 528 
gi|552891898|ref|NZ_AXMG01000001.1|:c2126720-2126193 318 Cutibacterium_acnes 528 
gi|552891898|ref|NZ_AXMG01000001.1|:c2126720-2126193 388 Cutibacterium_acnes 528 
gi|552891898|ref|NZ_AXMG01000001.1|:c2126720-2126193 389 Cutibacterium_acnes 528 
gi|552891898|ref|NZ_AXMG01000001.1|:c2126720-2126193 390 Cutibacterium_acnes 528 
gi|552891898|ref|NZ_AXMG01000001.1|:c2312839-2311925 221 Cutibacterium_acnes 915 
gi|552891898|ref|NZ_AXMG01000001.1|:c2312839-2311925 281 Cutibacterium_acnes 915 
gi|552891898|ref|NZ_AXMG01000001.1|:c2312839-2311925 662 Cutibacterium_acnes 915 
gi|552891898|ref|NZ_AXMG01000001.1|:c2382295-2381897 120 Cutibacterium_acnes 399 
gi|552891898|ref|NZ_AXMG01000001.1|:c2382295-2381897 135 Cutibacterium_acnes 399 
gi|552891898|ref|NZ_AXMG01000001.1|:c2382295-2381897 140 Cutibacterium_acnes 399 
gi|552891898|ref|NZ_AXMG01000001.1|:c2382295-2381897 177 Cutibacterium_acnes 399 
gi|552891898|ref|NZ_AXMG01000001.1|:c2382295-2381897 201 Cutibacterium_acnes 399 
gi|552891898|ref|NZ_AXMG01000001.1|:c2382295-2381897 227 Cutibacterium_acnes 399 
gi|552891898|ref|NZ_AXMG01000001.1|:c2382295-2381897 234 Cutibacterium_acnes 399 
gi|552891898|ref|NZ_AXMG01000001.1|:c2382295-2381897 31 Cutibacterium_acnes 399 
gi|552891898|ref|NZ_AXMG01000001.1|:c2382295-2381897 354 Cutibacterium_acnes 399 
gi|552891898|ref|NZ_AXMG01000001.1|:c2382295-2381897 54 Cutibacterium_acnes 399 
gi|552891898|ref|NZ_AXMG01000001.1|:c2429318-2428110 657 Cutibacterium_acnes 1209 
gi|552891898|ref|NZ_AXMG01000001.1|:c2429318-2428110 696 Cutibacterium_acnes 1209 
gi|552891898|ref|NZ_AXMG01000001.1|:c2429318-2428110 702 Cutibacterium_acnes 1209 
gi|552895565|ref|NZ_AXMI01000001.1|:619555-620031 242 Cutibacterium_acnes 477 
gi|552895565|ref|NZ_AXMI01000001.1|:c14352-13837 235 Cutibacterium_acnes 516 
gi|552895565|ref|NZ_AXMI01000001.1|:c29469-28930 195 Cutibacterium_acnes 540 
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gi|552895565|ref|NZ_AXMI01000001.1|:c29469-28930 390 Cutibacterium_acnes 540 
gi|552895565|ref|NZ_AXMI01000001.1|:c443438-442323 127 Cutibacterium_acnes 1116 
gi|552895565|ref|NZ_AXMI01000001.1|:c443438-442323 135 Cutibacterium_acnes 1116 
gi|552895565|ref|NZ_AXMI01000001.1|:c443438-442323 144 Cutibacterium_acnes 1116 
gi|552895565|ref|NZ_AXMI01000001.1|:c443438-442323 271 Cutibacterium_acnes 1116 
gi|552895565|ref|NZ_AXMI01000001.1|:c443438-442323 456 Cutibacterium_acnes 1116 
gi|552895565|ref|NZ_AXMI01000001.1|:c443438-442323 468 Cutibacterium_acnes 1116 
gi|552896371|ref|NZ_AXMI01000002.1|:319095-319601 382 Cutibacterium_acnes 507 
gi|552896371|ref|NZ_AXMI01000002.1|:525312-525770 175 Cutibacterium_acnes 459 
gi|552896371|ref|NZ_AXMI01000002.1|:525312-525770 356 Cutibacterium_acnes 459 
gi|552896371|ref|NZ_AXMI01000002.1|:525312-525770 363 Cutibacterium_acnes 459 
gi|552896371|ref|NZ_AXMI01000002.1|:674988-675587 147 Cutibacterium_acnes 600 
gi|552896371|ref|NZ_AXMI01000002.1|:674988-675587 219 Cutibacterium_acnes 600 
gi|552896371|ref|NZ_AXMI01000002.1|:674988-675587 381 Cutibacterium_acnes 600 
gi|552896371|ref|NZ_AXMI01000002.1|:674988-675587 448 Cutibacterium_acnes 600 
gi|552896371|ref|NZ_AXMI01000002.1|:674988-675587 483 Cutibacterium_acnes 600 
gi|552896371|ref|NZ_AXMI01000002.1|:721564-722400 543 Cutibacterium_acnes 837 
gi|552896371|ref|NZ_AXMI01000002.1|:837080-837400 114 Cutibacterium_acnes 321 
gi|552896371|ref|NZ_AXMI01000002.1|:837080-837400 49 Cutibacterium_acnes 321 
gi|552896371|ref|NZ_AXMI01000002.1|:c671938-670697 220 Cutibacterium_acnes 1242 
gi|552896688|ref|NZ_AXMI01000003.1|:232201-232740 172 Cutibacterium_acnes 540 
gi|552896688|ref|NZ_AXMI01000003.1|:232201-232740 282 Cutibacterium_acnes 540 
gi|552896688|ref|NZ_AXMI01000003.1|:232201-232740 507 Cutibacterium_acnes 540 
gi|552896688|ref|NZ_AXMI01000003.1|:232201-232740 76 Cutibacterium_acnes 540 
gi|552897201|ref|NZ_AXMI01000004.1|:13568-14401 336 Cutibacterium_acnes 834 
gi|552897201|ref|NZ_AXMI01000004.1|:13568-14401 519 Cutibacterium_acnes 834 
gi|552897201|ref|NZ_AXMI01000004.1|:13568-14401 657 Cutibacterium_acnes 834 
gi|552897201|ref|NZ_AXMI01000004.1|:48085-48816 426 Cutibacterium_acnes 732 
gi|552897201|ref|NZ_AXMI01000004.1|:48085-48816 453 Cutibacterium_acnes 732 
gi|552897201|ref|NZ_AXMI01000004.1|:48085-48816 512 Cutibacterium_acnes 732 
gi|552897201|ref|NZ_AXMI01000004.1|:c102788-101976 172 Cutibacterium_acnes 813 
gi|552897201|ref|NZ_AXMI01000004.1|:c102788-101976 228 Cutibacterium_acnes 813 
gi|552897201|ref|NZ_AXMI01000004.1|:c102788-101976 300 Cutibacterium_acnes 813 
gi|552897201|ref|NZ_AXMI01000004.1|:c102788-101976 481 Cutibacterium_acnes 813 
gi|552897201|ref|NZ_AXMI01000004.1|:c102788-101976 486 Cutibacterium_acnes 813 
gi|552897201|ref|NZ_AXMI01000004.1|:c102788-101976 670 Cutibacterium_acnes 813 
gi|552897201|ref|NZ_AXMI01000004.1|:c231437-230883 118 Cutibacterium_acnes 555 
gi|552897201|ref|NZ_AXMI01000004.1|:c231437-230883 210 Cutibacterium_acnes 555 
gi|552897201|ref|NZ_AXMI01000004.1|:c231437-230883 219 Cutibacterium_acnes 555 
gi|552897201|ref|NZ_AXMI01000004.1|:c231437-230883 474 Cutibacterium_acnes 555 
gi|552897201|ref|NZ_AXMI01000004.1|:c231437-230883 54 Cutibacterium_acnes 555 
gi|552897201|ref|NZ_AXMI01000004.1|:c577292-575922 784 Cutibacterium_acnes 1371 
gi|552902020|ref|NZ_AXMK01000001.1|:c1228696-1228250 107 Cutibacterium_acnes 447 
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gi|552902020|ref|NZ_AXMK01000001.1|:c1228696-1228250 177 Cutibacterium_acnes 447 
gi|552902020|ref|NZ_AXMK01000001.1|:c1228696-1228250 284 Cutibacterium_acnes 447 
gi|552902020|ref|NZ_AXMK01000001.1|:c1228696-1228250 286 Cutibacterium_acnes 447 
gi|552902020|ref|NZ_AXMK01000001.1|:c1228696-1228250 337 Cutibacterium_acnes 447 
gi|552902020|ref|NZ_AXMK01000001.1|:c1228696-1228250 338 Cutibacterium_acnes 447 
gi|552902020|ref|NZ_AXMK01000001.1|:c1228696-1228250 89 Cutibacterium_acnes 447 
gi|422552858|ref|NZ_GL383469.1|:c216727-215501 1006 Cutibacterium_acnes 1227 
gi|422552858|ref|NZ_GL383469.1|:c216727-215501 777 Cutibacterium_acnes 1227 
gi|422552858|ref|NZ_GL383469.1|:c216727-215501 788 Cutibacterium_acnes 1227 
gi|422482616|ref|NZ_GL383714.1|:170052-170369 99 Cutibacterium_acnes 318 
gi|422500804|ref|NZ_GL383759.1|:c166532-166311 43 Cutibacterium_acnes 222 
gi|422500804|ref|NZ_GL383759.1|:c166532-166311 79 Cutibacterium_acnes 222 
gi|422500804|ref|NZ_GL383759.1|:c166532-166311 86 Cutibacterium_acnes 222 
gi|422500804|ref|NZ_GL383759.1|:c166532-166311 87 Cutibacterium_acnes 222 
gi|422496709|ref|NZ_GL383802.1|:56803-56916 35 Cutibacterium_acnes 114 
gi|422499020|ref|NZ_GL383811.1|:10443-11039 105 Cutibacterium_acnes 597 
gi|422499020|ref|NZ_GL383811.1|:10443-11039 255 Cutibacterium_acnes 597 
gi|422499020|ref|NZ_GL383811.1|:10443-11039 294 Cutibacterium_acnes 597 
gi|422499020|ref|NZ_GL383811.1|:10443-11039 408 Cutibacterium_acnes 597 
gi|422512600|ref|NZ_GL383846.1|:26161-26922 179 Cutibacterium_acnes 762 
gi|422512600|ref|NZ_GL383846.1|:26161-26922 202 Cutibacterium_acnes 762 
gi|422512600|ref|NZ_GL383846.1|:26161-26922 222 Cutibacterium_acnes 762 
gi|422512600|ref|NZ_GL383846.1|:26161-26922 228 Cutibacterium_acnes 762 
gi|422512600|ref|NZ_GL383846.1|:26161-26922 331 Cutibacterium_acnes 762 
gi|422512600|ref|NZ_GL383846.1|:26161-26922 385 Cutibacterium_acnes 762 
gi|422512600|ref|NZ_GL383846.1|:26161-26922 411 Cutibacterium_acnes 762 
gi|422512600|ref|NZ_GL383846.1|:26161-26922 485 Cutibacterium_acnes 762 
gi|422512600|ref|NZ_GL383846.1|:26161-26922 487 Cutibacterium_acnes 762 
gi|422512600|ref|NZ_GL383846.1|:26161-26922 522 Cutibacterium_acnes 762 
gi|422512600|ref|NZ_GL383846.1|:26161-26922 536 Cutibacterium_acnes 762 
gi|422512600|ref|NZ_GL383846.1|:26161-26922 565 Cutibacterium_acnes 762 
gi|422512600|ref|NZ_GL383846.1|:26161-26922 566 Cutibacterium_acnes 762 
gi|422512600|ref|NZ_GL383846.1|:26161-26922 584 Cutibacterium_acnes 762 
gi|422423570|ref|NZ_GL384259.1|:c300859-299957 310 Cutibacterium_acnes 903 
gi|422423570|ref|NZ_GL384259.1|:c300859-299957 371 Cutibacterium_acnes 903 
gi|422423570|ref|NZ_GL384259.1|:c300859-299957 484 Cutibacterium_acnes 903 
gi|422423570|ref|NZ_GL384259.1|:c300859-299957 498 Cutibacterium_acnes 903 
gi|422436532|ref|NZ_GL384462.1|:c297812-297150 489 Cutibacterium_acnes 663 
gi|422385765|ref|NZ_GL878448.1|:c80834-80607 183 Cutibacterium_acnes 228 
gi|422385765|ref|NZ_GL878448.1|:c80834-80607 33 Cutibacterium_acnes 228 
gi|422385765|ref|NZ_GL878448.1|:c80834-80607 45 Cutibacterium_acnes 228 
gi|422386402|ref|NZ_GL878455.1|:c805995-805537 178 Cutibacterium_acnes 459 
gi|422386402|ref|NZ_GL878455.1|:c805995-805537 435 Cutibacterium_acnes 459 



67 
 

gi|422386402|ref|NZ_GL878455.1|:c805995-805537 75 Cutibacterium_acnes 459 
gi|355707189|ref|NZ_JH376566.1|:1103467-1104744 444 Cutibacterium_acnes 1278 
gi|355707189|ref|NZ_JH376566.1|:1103467-1104744 520 Cutibacterium_acnes 1278 
gi|355707189|ref|NZ_JH376566.1|:1103467-1104744 530 Cutibacterium_acnes 1278 
gi|355707189|ref|NZ_JH376566.1|:1103467-1104744 552 Cutibacterium_acnes 1278 
gi|355707189|ref|NZ_JH376566.1|:1103467-1104744 678 Cutibacterium_acnes 1278 
gi|355707189|ref|NZ_JH376566.1|:1103467-1104744 705 Cutibacterium_acnes 1278 
gi|355707189|ref|NZ_JH376566.1|:1103467-1104744 940 Cutibacterium_acnes 1278 
gi|355707189|ref|NZ_JH376566.1|:1103467-1104744 948 Cutibacterium_acnes 1278 
gi|355707189|ref|NZ_JH376566.1|:1105369-1105965 540 Cutibacterium_acnes 597 
gi|355707189|ref|NZ_JH376566.1|:1105369-1105965 58 Cutibacterium_acnes 597 
gi|355707189|ref|NZ_JH376566.1|:1105369-1105965 65 Cutibacterium_acnes 597 
gi|355707189|ref|NZ_JH376566.1|:507019-507612 166 Cutibacterium_acnes 594 
gi|355707384|ref|NZ_JH376567.1|:190789-191232 169 Cutibacterium_acnes 444 
gi|355707384|ref|NZ_JH376567.1|:190789-191232 237 Cutibacterium_acnes 444 
gi|355707384|ref|NZ_JH376567.1|:251291-251998 417 Cutibacterium_acnes 708 
gi|355707384|ref|NZ_JH376567.1|:251291-251998 638 Cutibacterium_acnes 708 
gi|355707384|ref|NZ_JH376567.1|:251291-251998 66 Cutibacterium_acnes 708 
gi|355707384|ref|NZ_JH376567.1|:251291-251998 74 Cutibacterium_acnes 708 
gi|355707384|ref|NZ_JH376567.1|:251291-251998 84 Cutibacterium_acnes 708 
gi|355707384|ref|NZ_JH376567.1|:592116-592328 25 Cutibacterium_acnes 213 
gi|355707384|ref|NZ_JH376567.1|:c388018-387605 138 Cutibacterium_acnes 414 
gi|355707384|ref|NZ_JH376567.1|:c388018-387605 252 Cutibacterium_acnes 414 
gi|355707384|ref|NZ_JH376567.1|:c388018-387605 68 Cutibacterium_acnes 414 
gi|355707384|ref|NZ_JH376567.1|:c388018-387605 69 Cutibacterium_acnes 414 
gi|355708280|ref|NZ_JH376568.1|:c255689-255105 356 Cutibacterium_acnes 585 
gi|355708280|ref|NZ_JH376568.1|:c255689-255105 461 Cutibacterium_acnes 585 
gi|355708440|ref|NZ_JH376569.1|:c80380-79448 375 Cutibacterium_acnes 933 
gi|355708440|ref|NZ_JH376569.1|:c80380-79448 537 Cutibacterium_acnes 933 
gi|355708440|ref|NZ_JH376569.1|:c80380-79448 575 Cutibacterium_acnes 933 
gi|552875787|ref|NZ_KI515684.1|:459339-460115 103 Cutibacterium_acnes 777 
gi|552875787|ref|NZ_KI515684.1|:459339-460115 315 Cutibacterium_acnes 777 
gi|552875787|ref|NZ_KI515684.1|:c325537-325361 23 Cutibacterium_acnes 177 
gi|552875787|ref|NZ_KI515684.1|:c44215-43715 187 Cutibacterium_acnes 501 
gi|552875787|ref|NZ_KI515684.1|:c44215-43715 276 Cutibacterium_acnes 501 
gi|552875787|ref|NZ_KI515684.1|:c44215-43715 358 Cutibacterium_acnes 501 
gi|552875787|ref|NZ_KI515684.1|:c44215-43715 61 Cutibacterium_acnes 501 
gi|552875787|ref|NZ_KI515684.1|:c488989-488798 105 Cutibacterium_acnes 192 
gi|552875787|ref|NZ_KI515684.1|:c488989-488798 37 Cutibacterium_acnes 192 
gi|552875787|ref|NZ_KI515684.1|:c488989-488798 93 Cutibacterium_acnes 192 
gi|552875787|ref|NZ_KI515684.1|:c584270-583890 201 Cutibacterium_acnes 381 
gi|552875787|ref|NZ_KI515684.1|:c96934-96368 348 Cutibacterium_acnes 567 
gi|552875787|ref|NZ_KI515684.1|:c96934-96368 400 Cutibacterium_acnes 567 
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gi|552875787|ref|NZ_KI515684.1|:c96934-96368 517 Cutibacterium_acnes 567 
gi|552875787|ref|NZ_KI515684.1|:c96934-96368 518 Cutibacterium_acnes 567 
gi|552876418|ref|NZ_KI515685.1|:133418-133666 213 Cutibacterium_acnes 249 
gi|552876418|ref|NZ_KI515685.1|:187493-188140 183 Cutibacterium_acnes 648 
gi|552876418|ref|NZ_KI515685.1|:187493-188140 225 Cutibacterium_acnes 648 
gi|552876418|ref|NZ_KI515685.1|:187493-188140 261 Cutibacterium_acnes 648 
gi|552876418|ref|NZ_KI515685.1|:187493-188140 411 Cutibacterium_acnes 648 
gi|552876418|ref|NZ_KI515685.1|:187493-188140 548 Cutibacterium_acnes 648 
gi|552876418|ref|NZ_KI515685.1|:187493-188140 85 Cutibacterium_acnes 648 
gi|552876418|ref|NZ_KI515685.1|:225601-226386 159 Cutibacterium_acnes 786 
gi|552876418|ref|NZ_KI515685.1|:225601-226386 181 Cutibacterium_acnes 786 
gi|552876418|ref|NZ_KI515685.1|:225601-226386 636 Cutibacterium_acnes 786 
gi|552876418|ref|NZ_KI515685.1|:536580-547218 339 Cutibacterium_acnes 639 
gi|552876418|ref|NZ_KI515685.1|:536580-547218 453 Cutibacterium_acnes 639 
gi|552876418|ref|NZ_KI515685.1|:536580-547218 96 Cutibacterium_acnes 639 
gi|552876418|ref|NZ_KI515685.1|:c743399-743001 100 Cutibacterium_acnes 399 
gi|552876418|ref|NZ_KI515685.1|:c743399-743001 129 Cutibacterium_acnes 399 
gi|552876418|ref|NZ_KI515685.1|:c743399-743001 144 Cutibacterium_acnes 399 
gi|552876418|ref|NZ_KI515685.1|:c743399-743001 235 Cutibacterium_acnes 399 
gi|552876418|ref|NZ_KI515685.1|:c849089-848304 167 Cutibacterium_acnes 786 
gi|552876418|ref|NZ_KI515685.1|:c849089-848304 229 Cutibacterium_acnes 786 
gi|552876418|ref|NZ_KI515685.1|:c849089-848304 660 Cutibacterium_acnes 786 
gi|552876815|ref|NZ_KI515686.1|:323579-324514 188 Cutibacterium_acnes 936 
gi|552876815|ref|NZ_KI515686.1|:323579-324514 312 Cutibacterium_acnes 936 
gi|552876815|ref|NZ_KI515686.1|:323579-324514 453 Cutibacterium_acnes 936 
gi|552876815|ref|NZ_KI515686.1|:323579-324514 528 Cutibacterium_acnes 936 
gi|552876815|ref|NZ_KI515686.1|:323579-324514 549 Cutibacterium_acnes 936 
gi|552876815|ref|NZ_KI515686.1|:323579-324514 596 Cutibacterium_acnes 936 
gi|552876815|ref|NZ_KI515686.1|:323579-324514 771 Cutibacterium_acnes 936 
gi|552876815|ref|NZ_KI515686.1|:613740-614315 105 Cutibacterium_acnes 576 
gi|552876815|ref|NZ_KI515686.1|:c200743-199319 457 Cutibacterium_acnes 1425 
gi|552876815|ref|NZ_KI515686.1|:c200743-199319 573 Cutibacterium_acnes 1425 
gi|552876815|ref|NZ_KI515686.1|:c642879-642748 108 Cutibacterium_acnes 132 
gi|552876815|ref|NZ_KI515686.1|:c642879-642748 94 Cutibacterium_acnes 132 
gi|552904108|ref|NZ_KI518468.1|:464070-464315 92 Cutibacterium_acnes 246 
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Table S2. Votes and rank of classes for sample S028_R3 for per marker and overall method. The 
total number of votes possible via SVM for the training data set was 25 votes. Sample S028_R3 
had no classification obtaining 25 votes. For classes that received the same number of votes, the 
mean prediction percentage was used to break the tie. 
 

Votes Classification Rank 
24 S036 1 
23 S029 2 
22 S007 3 
22 S004 4 
22 S025 5 
20 S008 6 
20 S006 7 
18 S001 8 
18 S010 9 
16 S028 10 
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ABSTRACT The skin microbiome is a highly abundant and relatively stable source of DNA that 

may be utilized for human identification (HID). In this study, a set of SNPs with a high mean 

estimated FST (> 0.1) and widespread abundance (found in ≥ 75% of samples compared) were 

selected from a diverse set of markers in the hidSkinPlex. The least absolute shrinkage and 

selection operator (LASSO) was used in a novel machine learning framework to generate a SNP 

panel and predict the human host from skin microbiome samples collected from the hand, 

manubrium, and foot. The framework was devised to emulate a new unknown person introduced 

to the algorithm and to match samples from that person against a population database. Unknown 

samples were classified with 96% accuracy (MCC = 0.954) in the test (n = 225 samples) data set. 

A final panel of informative SNPs was determined for HID (hidSkinPlex+) using all 51 individuals 

sampled at three body sites in triplicate. The hidSkinPlex+ is comprised of 365 SNPs and yielded 

prediction accuracy for the correct host of 95% (MCC = 0.949). The accuracy of the hidSkinPlex+ 

may be somewhat overestimated due to using 26 individuals from the training data set for the 

selection of the final panel. However, this accuracy still provides an indication of performance 

when tested on new samples. 

IMPORTANCE One of the fundamental goals in forensic genetics is to identify the source of 

biological evidence. Methods for detecting human DNA have advanced and can be quite sensitive, 

but not all DNA samples are amenable to current methods. Yet, the human skin microbiome is a 

source of DNA with high copy numbers, and it has the potential for high discriminatory power. 

The hidSkinPlex has been used for HID; however, some aspects of the panel could be improved. 

Missing information is ambiguous as it is unclear if marker drop-out is a byproduct of a low-

template sample or if the reasons for not observing a marker are biological. Such ambiguity may 

confound methods for HID, and, as such, an improved marker set (the hidSkinPlex+) was designed 
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that is considerably smaller and more robust to drop-out (365 SNPs contained in 135 markers) yet 

still can be used to accurately predict the human host. 

 

KEYWORDS hidSkinPlex, skin microbiome, microbial forensics, human identification, 

massively parallel sequencing, machine learning, multinomial logistic regression, Wright's 

fixation index  
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INTRODUCTION 

The human microbiome encompasses the fungi, bacteria, and viruses living on and in 

individuals and their surrounding environment. The interplay of genetics and environment results 

in each person having a skin microbiome that is suggested to be unique (1-4). Like human skin 

cells, the skin microbiome is continuously shed from its host and deposited on other individuals, 

items, and surfaces. For every one squamous epithelial cell shed from the human skin 

approximately 30 microorganisms are shed (5). Thus, deposited microorganisms could serve as an 

additional source of evidence to include or exclude a person of interest in criminal cases.  

Genetic signatures from the skin microbiome could be used for HID with a panel that 

targets stable and abundant microorganisms (6, 7). Schmedes et al. (8) developed a targeted 

genome sequencing (TGS) panel called hidSkinPlex. This panel contains 286 markers covering a 

range of taxonomies of specific microorganisms that are in high abundance on the human skin (9). 

With the greater resolution of the hidSkinPlex and the demonstrated stability of the 

microorganisms chosen for the panel, a new avenue is available for HID using the skin 

microbiome. Although some relatively high accuracies were obtained the hidSkinPlex has areas 

that can be improved (10). Optimization of the number and informativeness of the markers as well 

as reduction in their amplicon size is still needed to improve the robustness for HID purposes.   

Like the process of selecting ancestry informative markers in humans, single nucleotide 

polymorphisms (SNPs) within the hidSkinPlex panel of markers can be selected for HID using 

Wright’s fixation index (FST). FST is an estimate of population differentiation that can be used to 

select SNPs to potentially increase classification accuracies for HID. Sherier et al. (11) used FST 

to select SNPs for HID; however the approach only focused on SNPs that were common to the 

two samples being compared. One ramification of only using SNPs that are local to a pair of 



74 
 

individuals is losing information that is specific in one individual but missing in the other. A global 

panel may allow for a better population genetic characterization of the selected SNPs. Furthermore, 

reducing to a specific set of informative SNPs can improve upon the efficiency of machine 

learning. Also, defined SNPs allow for better primer design for smaller amplicons which in turn 

can improve amplification efficiency (i.e., increased sensitivity of detection). Overall, HID could 

be easier to accomplish when the metrics for comparison are the same among all individuals.  

The study herein focuses on developing a select microbial SNP panel for HID that is highly 

effective at associating a sample with its host. An effective microbial SNP panel would be well-

defined in nearly all individuals, be highly individualizing, and involve typing as few genetic 

markers as possible to achieve a defined level of attribution. One approach to select specific SNPs 

and define potential accuracy is to consider the human host as a class and to leverage classifier 

algorithms to predict the identity of the human host from microbial signatures. Some classification 

algorithms can be used to learn a sparse solution (i.e., few SNP markers), and the data can be 

described in a way that is robust to missing data, a common problem with forensic samples. The 

least absolute shrinkage and selection operator (LASSO) is one such algorithm which can be used 

to simultaneously identify a sparse set of SNPs and use those SNPs for HID. Herein, a machine 

learning procedure is introduced that tests the ability of LASSO to identify SNPs for microbial-

based HID. The performance of the selected SNP panel is then tested on individuals not used to 

generate the panel using a cross-validation framework. The candidate SNPs were assessed by their 

ability to predict the human host. 

RESULTS 

FST Estimation. The microbiomes of 51 individuals sampled at three body-sites in triplicate (total 

samples, n = 459) were sequenced with the hidSkinPlex panel. As described in Woerner et al. (10), 
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the resulting fastq files were aligned to the metagenomics database of MetaPhlAn2 (12). Wright's 

fixation index (FST) was estimated between all pairs of samples (459
2 =  105,111 pairs) using the 

formulation of Hudson et al. (13) as described in Sherier et al. (11).  

There are two objectives for determining single nucleotide markers for HID. The SNPs 

should be 1) individualizing to the person (i.e., have generally high FST) and 2) relatively stable 

over time. In terms of the first objective, FST varies from zero to one with an estimate of one 

indicating complete differentiation between (microbial) populations; thus, the nucleotides selected 

should tend to have large FST. In terms of the second objective, FST is undefined in the presence of 

missing data and when the allele is monomorphic between (and within) populations. Thus, it 

follows that the sites selected should have a FST that tends to be well defined. To evaluate the 

interplay between missing information and the central tendencies of the FST of microbial markers, 

FST was estimated at all the 172,116 nucleotide positions in the hidSkinPlex in anywhere from 1 

to 459
2 = 105,111 pairwise comparisons (as limited by the information apparent, Figure 1). 

Nucleotide positions with FST estimates ≥ 0.1 and defined in at least 75% of the comparisons are 

herein considered candidate SNPs. Additionally, selecting SNPs seen in at least 75% of the 

pairwise comparisons allow for some tolerance for missing data which may be due to technical 

limitations.  
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Figure 1. The average FST estimate and the sample size in the hidSkinPlex. The figure on the left 
shows the distribution of the average FST for all nucleotide positions in the hidSkinPlex. The figure 
on the right shows the percentage of nucleotide positions in which FST can be estimated.  

 

Training and test data set creation. Training (n = 234, 26 individuals at three body-sites in 

triplicate) and test (n = 225, 25 individuals at three body-sites in triplicate) data were randomly 

partitioned (Supplemental S1). The training data set produced 26 SNP panels (one for each 

individual) with a mean of 1,265.769 ± 21.486 SNPs per panel.  Similarly, the test data set 

produced 25 panels with a mean of 1,475.240 ± 45.256 SNPs per panel. For the final panel using 

all 459 samples from the training and test data set, the list of initial SNPs for analysis contained 

4,445 SNPs (Figure 2).  
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Figure 2. The average FST estimate and the sample size of the reduced list of 1,344 candidate SNPs 
from the training data set. The figure of the left shows the distribution of the average FST estimated 
for the SNP candidate list. The figure on the right shows the distribution of SNPs contained in the 
top 75% of pairwise comparisons.  
 
Analysis of the training dataset. The training data set was used to optimize an algorithm for 

selecting a reduced number of SNPs for HID. The lambda sequence and the alpha parameter were 

optimized (see Materials and Methods), using all 26 individuals, to ensure that there were not 

too few or too many SNPs selected. A procedure was developed to select a SNP panel and then 

classify a new individual based on the selected markers. The procedure was run in a cross-

validation framework, holding out each individual in turn. The training data set produced 26 SNP 

panels with a mean of 191.400 ± 21.702 SNPs.  

Classification results. The above approach for selecting a reduced SNP list was applied to the 

training and test data sets. Applying the classification procedure (see Materials and Methods) to 

the training data set gave an overall accuracy of 93% (MCC = 0.920, 24.180 times better than 

chance), with only 18 out of 234 samples incorrectly classified (Figure 3). Of the incorrectly 

classified samples, four samples were from the foot (Fb), 11 from the manubrium (Mb), and three 
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from the hand (Hp) (Table 1). Samples from the Mb had a higher number of incorrectly classified 

samples compared to the Fb and a significantly higher number than the Hp (Fisher’s Exact Test, p 

= 0.101 and 0.0470, respectively). A missing SNP was defined as a site selected in the procedure 

wherein 0 reads were apparent for a given sample. For the training data, the number of samples 

missing SNPs was determined for each of the 26 SNP panels. The mean number of samples 

missing SNPs was 93.300 ± 7.394 per panel. The mean number of missing SNPs for combined 

predicted results was 5.154 ± 11.312.  For correctly classified samples, 131 samples were not 

missing any SNPs and 85 had missing SNPs with a mean of 10.330 ± 13.342. Fourteen incorrectly 

classified samples were missing SNPs with a mean of 23.430 ± 18.241. Incorrectly classified 

samples were more likely to have missing SNPs than correctly classified samples (Fisher’s Exact 

Test, p = 0.002). The held-out sample for the development of each panel is more likely to have 

missing data because the SNPs were selected without considering the held out sample. 

Table 1. The classification accuracy at different body sites in the training data set.  

Training Foot (Fb) Manubrium (Mb) Hand (Hp) Total 
Correct 74 (95%) 67 (85%) 75 (96%) 216 (93%) 
Incorrect 4 (5%) 11 (15%) 3 (4%) 18 (7%) 
Total 78 78 78 234 

 

 The classification procedure was applied to the test data set. The test data set was 96% 

accurate (MCC 0.954, 24.000 times better than chance), with only 10 (all from the Mb) out of 225 

samples incorrectly classified (Table 2). Nine misclassified samples were missing a mean of 

23.333 ± 32.943 SNPs (Figure 3). Of the correctly classified samples 103 out of 215 had missing 

SNPs (6.786 ± 8.354).  As with the training data set, incorrectly classified samples were more 

likely to have missing SNPs than correctly classified samples (Fisher’s Exact Test, p = 0.009).  

Table 2. The classification accuracy at different body sites in the test data set.  
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Test Foot (Fb) Manubrium (Mb) Hand (Hp) Total 
Correct 75 (100%) 65 (87%) 75 (100%) 215 (96%) 
Incorrect 0 (0%) 10 (13%) 0 (0%) 10 (4%) 
Total 75 75 75 225 

 

 

Figure 3. Classification results for training and test data sets and the number of samples missing 
SNPs. The x-axis indicates the number of missing SNPs for a given sample. The y-axis shows 
training and test data sets partitioned into the correct (white) and incorrect (gray) classification 
groups.  
 

Reduced SNP list. The final candidate SNP list was determined by pooling the test and training 

data sets and re-applying a similar classification procedure. LASSO was used to produce a single 

SNP list. Cross validation was used to find the optimal lambda and to estimate the overall accuracy. 

The final SNP list, referred to as hidSkinPlex+, is composed of 365 SNPs (Supplemental Table 
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S2) that reside in 135 of the original amplicons (mean number of SNPs in each marker 3.419 ± 

4.984, range from 1 to 51) from the hidSkinPlex (12). The markers are specific to four taxa, 

Cutibacterium acnes, Cutibacterium humerusii, Corynebacterium tuberculostearicum, and 

Propionibacteriaceae. Previous studies have shown Cutibacterium is a common and abundant (14-

16) genus found on human skin (3, 9). 

 Of 459 samples, 95% (MCC = 0.949, 48.469 times better than chance) were correctly 

classified using data from the hidSkinPlex+. Of the 23 incorrectly classified samples, 17 were from 

Fb samples, which is a significantly larger number of samples than the two Mb and the four Hp 

samples incorrectly classified (Fisher’s Exact Test, p < 0.001 compared to the Mb, p = 0.003 

compared to Hp). The number of Mb and Hp was not significantly different (p = 0.684; Table 3).  

Of the 23 incorrectly classified samples 21 samples were missing a mean of 40.520 ± 36.853 SNPs. 

More incorrectly classified Fb samples had missing SNPs (p < 0.001) compared to the number of 

incorrectly classified Mb or Hp samples with missing SNPs. For the 436 samples correctly 

classified, 204 samples had a mean of 11.590 ± 16.559 of missing SNPs. A sample was more likely 

to be misclassified if it had missing SNPs (Fisher’s Exact Test, p < 0.001).  

Table 3. The classification accuracy at different body sites for hidSkinPlex+.  

All Data Foot (Fb) Manubrium (Mb) Hand (Hp) Total 
Correct 136 (89%) 151 (99%) 149 (97%) 436 (95%) 
Incorrect 17 (11%) 2 (1%) 4 (3%) 23 (5%) 
Total 153 153 153 459 

 

DISCUSSION 

The skin microbiome is a highly abundant and relatively stable source of DNA that may 

be utilized for HID (6, 17-21). A common set of microbial SNPs could provide another avenue of 

investigation to improve HID. In this study, a subset of SNPs from the hidSkinPlex that generally 
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were common to all individuals analyzed were assessed for classification accuracy. The skin 

microbiome samples from 51 individuals’ Fb, Mb and Hp were attributed to their respective 

individual hosts with an accuracy of 96% for the test data set. The targeted panels were composed 

of 157 to 243 SNPs, a substantial decrease in the number of SNPs relied on by Woerner et al. (10). 

The final SNP panel, the hidSkinPlex+, contained 365 SNPs residing in 135 markers which were 

specific to four taxa. LASSO was used to select informative SNPs for HID and correctly predicted 

the human host 95% of the time. It should be noted, however, that reported accuracy of the final 

panel may be slightly biased upwards as it is estimated within-fold, though given the 96% accuracy 

of the test data set this bias is likely modest. Classification accuracies for each of the three body 

sites using the hidSkinPlex+ ranged from 89 – 99%. Accuracy with Fb samples (89%) was 

significantly lower (i.e., a greater number of incorrectly classified samples) compared with the Mb 

(99%, Fisher’s Exact Test p < 0.001) and Hp (97%, Fisher’s Exact Test p = 0.001) samples, while 

the accuracy for the Mb and Hp sites were not significantly different. While accuracies for the Fb 

in this study were lower than the other two body sites, the results were more accurate than previous 

work from Woerner et al. (10) (28% - 73%).   

One factor that appears to be related to the reduced accuracies is missing SNPs.  Samples 

that had missing SNPs were more likely to be incorrectly classified compared to samples that had 

no missing SNPs (Fisher’s Exact Test, p < 0.001 for all comparisons). However, there were also 

samples that had missing SNPs that were classified correctly. For example, 38 out of 149 Hp 

samples had missing SNPs but were correctly classified. The incorrectly classified Hp samples 

had a significantly higher mean number of missing SNPs (34.500 ± 32.296) compared to Hp 

samples with missing data that were correctly classified (13.340 ± 16.515, Fisher’s Exact Test p < 

0.001).While further research is needed to determine why some samples were incorrectly 
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classified, one possible explanation of incorrect classification is low coverage. The Fb had the 

largest amount of missing data and the lowest read coverage. For example, the Fb had a mean of 

448,400 ± 319,227 reads compared to Hp which had a mean of 1,025,866 ± 410,674 reads. 

Therefore, a more efficient chemistry could reduce the chances of data drop out.  

The hidSkinPlex+ allows for a new targeted sequencing panel to be designed and optimized 

for the use of HID.  Eliminating the markers that do not contribute to classification accuracy can 

improve the enrichment process, i.e., amplification efficiency of the polymerase chain reaction 

(PCR). Fewer markers in a PCR may increase amplicon yield and thus provide a more sensitive 

assay. Since the hidSkinPlex+ contains fewer markers, and thus SNPs, than that of the original 

hidSkinPlex, specific targeted SNPs primers may be redesigned to generate smaller amplicons that 

may increase amplicon yield and provide for a more robust panel for analyzing degraded samples, 

which are desirable features for forensic applications. Research is still needed to assess how well 

the SNPs selected for the hidSkinPlex+ work when applied to samples collected from touch 

samples and at different time points. With additional studies on the allele frequency of the selected 

SNPs in different populations (populations may be geographically determined instead of 

genetically determined) a better estimation of HID classification accuracies can be achieved.  

These results, herein, further support the skin microbiome can serve as a potential source 

of DNA for HID. This panel could serve as a set of biomarkers to assess the stability of the specific 

SNPs and whether they can be generalized to the greater population. 

MATERIALS AND METHODS 

Sample collection and sequencing. Human skin microbiome samples were collected by swabbing 

51 individuals at three body sites (manubrium (Mb), hand (Hp), foot (Fb)) in triplicate (replicates 

R1, R2, R3), for a total of 459 samples as described previously in Woerner et al. (10). Briefly, the 
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samples were assayed with the hidSkinPlex, a TGS panel developed by Schmedes et al. (9). All 

markers in the hidSkinPlex (9) are drawn from the MetaPhlAn2 database (12) and as such describe 

both the nucleotide sequence of the marker as well as a corresponding taxonomic affiliation (e.g., 

the marker is associated with C. acnes). The hidSkinPlex panel targets 22 clades from the genus 

to the species level and is comprised of 286 markers that are considered taxonomically stable and 

abundant on human skin (9). The University of North Texas Health Science Center Institutional 

Review Board approved the collection and analyses of these samples.  

Sequence data generated. As described previously in Woerner et al. (10), all sequencing was 

performed on a MiSeq (Illumina, San Diego, CA). Fastq files were trimmed with cutadapt (22) to 

remove adapters from the sequencing results. The sequence data were aligned to the MetaPhlAn2 

reference database (12) using bowtie2. Using an in-house BASH script (v. 4.4.20, Free Software 

Foundation, http://www.gnu.org/software/bash/), the total number of reads and the percent of 

ACGT for each nucleotide base were calculated based on pileups from samtools (23). Finally, the 

base pileups for each aligned marker in the hidSkinPlex panel were generated.  

Computation and statistical analysis. As described in Sherier et al. (11), the FST was computed 

as per Hudson et al. (13), who proposed estimating FST as FST = 1 – (Hw/Hb), where Hw is the mean 

number of pairwise differences within a population and Hb is the mean number of pairwise 

differences between two populations (13). FST was estimated using an in-house script written in 

the Python programming language (v. 2.7.17, Python Software Foundation, 

https:/www.python.org/) with minor modifications from the script used in Sherier et al. (11). The 

modifications allowed FST to be measured at all nucleotide positions regardless of read depth. All 

other statistical analyses were performed in R (v. 4.0.3) using the glmnet package (v4.1-1) (24), 
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the tidyverse (v. 1.3.1) (25), and ggplot2 (v. 1.3.1) (26) as appropriate. Additionally, Matthews 

correlation coefficient (MCC) was estimated using mltools (v. 0.3.5) (27). 

Potential SNPs for analysis. Potential informative nucleotide positions were identified on the 

basis of FST estimated between pairs of samples. Training (n = 234, 26 individuals at three body-

sites in triplicate) and test (n = 225, 25 individuals at three body-sites in triplicate) data were 

randomly partitioned by sample(c(1:51), 26) in R (Supplemental S1).  FST was estimated 

between all samples within the training and the test data sets separately (27,261 and 25,200 

pairwise comparisons respectively) at all 172,116 nucleotide positions in the hidSkinPlex. As a 

summary statistic, FST is undefined if either individual (or both individuals) is missing the SNP or 

if the allele is monomorphic between populations. Thus, for some pairwise comparisons there is 

no FST estimate. FST estimates less than zero were documented as zero. Herein, candidate SNPs 

were defined as nucleotide positions that have a mean FST estimate ≥ 0.1 and had a defined FST in 

> 75% of comparisons.  

Machine learning strategy. A major aim of the current study is to identify SNPs that are 

informative for HID. The SNPs are selected to both differentiate individuals (e.g., tend to have 

high FST) and to be well-defined (have a defined FST). Further, a central aim is to identify a small 

number of such SNPs (i.e., a sparse solution). Classification algorithms can be used for HID by 

treating each person as a class (i.e., as a categorical variable) and for the approaches herein an 

individual is predicted based on coefficients that are learned for that individual. One tool to find a 

small set of SNPs for HID is LASSO (the least absolute shrinkage and selection estimator). 

LASSO considers two measures in its optimization: the error (i.e., deviance in a logistic regression) 

and the absolute value of the coefficients (i.e., the L1 norm). The relative importance of these two 

criteria is specified with lambda. L1 regularization tends to produce solutions that are sparse. Thus, 
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in the current use-case LASSO can be used to simultaneously identify a SNP panel and predict the 

human host based on those SNPs.  

A potential concern with LASSO is that the SNP panel identified may work well for each 

person currently in the database, however it may not work well for new individuals. If one were to 

consider a potential forensic scenario, a new individual (e.g., a person of interest) is presented and 

the SNP panel needs to both be accurate for the current database and the additional individual (i.e., 

the new class). While the collection of the samples used in this study does not mimic real-life 

casework, the classification method should determine if accurate HID is possible when samples 

are technical replicates and collected directly from an individual. Given these requirements, a 

procedure was developed that first learns a sparse set of SNPs using LASSO from individuals in a 

database, a new individual is introduced, and then the additional individual is classified based on 

a SNP panel. The last classification is performed using a ridge regression (L2 norm) with the SNP 

panel developed within fold for each held out individual (i.e., based on high FST SNPs identified 

in the database and not considering the held out individual).The three-step procedure was repeated 

in a cross-validation framework, holding out each individual in turn. To ensure that the sample 

sizes were equal in all classes during the cross-validation development of the reduced SNP panel, 

the same sample-type (e.g., Hp, replicate 3) was held out in all individuals. In R (28), the lambda 

sequence is given by 1.1^seq(1, -200, length=100). SNP coefficients and the optimal lambda value 

were learned using the cv.glmnet function in the R package glmnet. The optimal lambda was 

taken to be the lambda that minimizes the deviance (lambda.min from cv.glmnet). In 

particular, the LASSO regression was run by standardizing the allele frequencies for the provided 

SNPs (standardize = TRUE), the regression type was set to grouped 

(type.multinomial = “grouped”), and the maximum number of iterations were set to 
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1,000,000. SNPs were identified by selecting SNP alleles based on the optimal lambda from 

LASSO. SNP panels were created by using all allele frequencies for any SNP position 

corresponding to a non-zero coefficient.  A ridge regression was used to predict the held-out 

individual (that is, by setting alpha=0 in cv.glmnet, but otherwise as per the above LASSO 

procedure).  

Selection of SNPs for hidSkinPlex+. The machine learning strategy above was designed to 

simulate the ability of LASSO to identify SNPs in some data set that can then be used to predict 

the identity of previously unseen individual. In the framework above a SNP panel is produced for 

each held-out individual, which is appropriate for assessing the accuracy of the approach, but it 

does not create a singular SNP panel. To produce a final SNP panel a similar but simpler procedure 

was used. LASSO was used to identify a sparse set of SNPs considering all individuals (and body 

sites) pooled across the training and test data sets. The same lambda sequence was considered and 

the optimal lambda (and corresponding panel) was estimated using cross-validation 

(cv.glmnet). The final panel is referred to as the hidSkinPlex+. The accuracy of the final panel 

was estimated within-fold (keep = TRUE), and, as such, the estimated accuracy of the final 

panel is likely inflated (biased upwards).  

 

DATA AVAILABILITY  

Custom R and Python scripts can be accessed at 

https://github.com/CardiShire/MLforSkinMicrobiomeHID. 

 

ACKNOWLEDGEMENTS 



87 
 

We thank Sarah Schmedes for the design of the hidSkinPlex and sample processing. 

Additionally, we thank Angie Ambers, Rachel Kieser, Frank Wendt, Nicole Novroski, and 

Jonathan King for their contributions to collecting/processing samples. We also would like to 

thank Utpal Smart, Sammed Mandape, Ben Crysup, and Jonathan King for all the time they spent 

advising on code and debugging. 

This study was supported in part by the National Institute of Justice, award numbers 2015-NE-

BX-K006 and 2020-R2-CX-0046. The views expressed in this article do not necessarily represent 

the views of the Department of Justice, National Institute of Justice, or the United States 

government. 

  



88 
 

BIBLIOGRAPHY 

1. Wang Y, Yu Q, Zhou R, Feng T, Hilal MG, Li H. 2021. Nationality and body location alter 

human skin microbiome. Applied Microbiology and Biotechnology doi:10.1007/s00253-

021-11387-8. 

2. Ross AA, Doxey AC, Neufeld JD. 2017. The Skin Microbiome of Cohabiting Couples. 

mSystems 2:e00043-17. 

3. Oh J, Byrd AL, Deming C, Conlan S, Program NCS, Kong HH, Segre JA. 2014. 

Biogeography and individuality shape function in the human skin metagenome. Nature 

514:59-64. 

4. Richardson M, Gottel N, Gilbert JA, Lax S. 2019. Microbial Similarity between Students 

in a Common Dormitory Environment Reveals the Forensic Potential of Individual 

Microbial Signatures. mBio 10:e01054-19. 

5. Percival SL, Emanuel C, Cutting KF, Williams DW. 2012. Microbiology of the skin and 

the role of biofilms in infection. International Wound Journal 9:14-32. 

6. Fierer N, Lauber CL, Zhou N, McDonald D, Costello EK, Knight R. 2010. Forensic 

identification using skin bacterial communities. Proc Natl Acad Sci U S A 107:6477-81. 

7. Knight R, Metcalf JL, Gilbert JA, Carter DO. 2018. Evaluating the Skin Microbiome as 

Trace Evidence. National Criminal Justice Reference Service. 

8. Oh J, Byrd AL, Park M, Program NCS, Kong HH, Segre JA. 2016. Temporal Stability of 

the Human Skin Microbiome. Cell 165:854-66. 

9. Schmedes SE, Woerner AE, Novroski NMM, Wendt FR, King JL, Stephens KM, Budowle 

B. 2018. Targeted sequencing of clade-specific markers from skin microbiomes for 

forensic human identification. Forensic Sci Int Genet 32:50-61. 



89 
 

10. Woerner AE, Novroski NMM, Wendt FR, Ambers A, Wiley R, Schmedes SE, Budowle 

B. 2019. Forensic human identification with targeted microbiome markers using nearest 

neighbor classification. Forensic Sci Int Genet 38:130-139. 

11. Sherier AJ, Woerner AE, Budowle B. 2021. Population Informative Markers Selected 

Using Wright's Fixation Index and Machine Learning Improves Human Identification 

Using the Skin Microbiome. Appl Environ Microbiol 87:e0120821. 

12. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, 

Huttenhower C, Segata N. 2015. MetaPhlAn2 for enhanced metagenomic taxonomic 

profiling. Nat Methods 12:902-3. 

13. Hudson RR, Slatkin M, Maddison WP. 1992. Estimation of levels of gene flow from DNA 

sequence data. Genetics 132:583-9. 

14. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Program NCS, Bouffard 

GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA. 2009. Topographical 

and temporal diversity of the human skin microbiome. Science 324:1190-2. 

15. Grice EA, Kong HH, Renaud G, Young AC, Program NCS, Bouffard GG, Blakesley RW, 

Wolfsberg TG, Turner ML, Segre JA. 2008. A diversity profile of the human skin 

microbiota. Genome Res 18:1043-50. 

16. Fitz-Gibbon S, Tomida S, Chiu BH, Nguyen L, Du C, Liu M, Elashoff D, Erfe MC, 

Loncaric A, Kim J, Modlin RL, Miller JF, Sodergren E, Craft N, Weinstock GM, Li H. 

2013. Propionibacterium acnes strain populations in the human skin microbiome 

associated with acne. J Invest Dermatol 133:2152-60. 



90 
 

17. Franzosa EA, Huang K, Meadow JF, Gevers D, Lemon KP, Bohannan BJ, Huttenhower 

C. 2015. Identifying personal microbiomes using metagenomic codes. Proc Natl Acad Sci 

U S A 112:E2930-8. 

18. Hampton-Marcell JT, Larsen P, Anton T, Cralle L, Sangwan N, Lax S, Gottel N, Salas-

Garcia M, Young C, Duncan G, Lopez JV, Gilbert JA. 2020. Detecting personal microbiota 

signatures at artificial crime scenes. Forensic Sci Int 313:110351. 

19. Kapono CA, Morton JT, Bouslimani A, Melnik AV, Orlinsky K, Knaan TL, Garg N, 

Vazquez-Baeza Y, Protsyuk I, Janssen S, Zhu Q, Alexandrov T, Smarr L, Knight R, 

Dorrestein PC. 2018. Creating a 3D microbial and chemical snapshot of a human habitat. 

Sci Rep 8:3669. 

20. Lax S, Hampton-Marcell JT, Gibbons SM, Colares GB, Smith D, Eisen JA, Gilbert JA. 

2015. Forensic analysis of the microbiome of phones and shoes. Microbiome 3:21. 

21. Lee S-Y, Woo S-K, Lee S-M, Eom Y-B. 2016. Forensic analysis using microbial 

community between skin bacteria and fabrics. Toxicology and Environmental Health 

Sciences 8:263-270. 

22. Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing 

reads. EMBnetjournal 17:3. 

23. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin 

R, Genome Project Data Processing S. 2009. The Sequence Alignment/Map format and 

SAMtools. Bioinformatics 25:2078-9. 

24. Friedman J, Hastie T, Tibshirani R. 2010. Regularization Paths for Generalized Linear 

Models via Coordinate Descent. Journal of Statistical Software 33:1--22. 



91 
 

25. Wickham H, Averick M, Bryan J, Chang W, McGowan LDAF, Romain , Grolemund G, 

Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms 

J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H. 

2019. Welcome to the {tidyverse}. Journal of Open Source Software 4:1686. 

26. Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, Woo K. 2016. 

ggplot2: Elegant Graphics for Data Analysis, vol 2018. Springer-Verlag New York. 

27. Gorman B. 2018.  Package 'mltools'. https://github.com/ben519/mltools. Accessed  

28. Team RC. 2013.  R: A Language and Environment for Statistical Computing, on R 

Foundation for Statistical Computing. http://www.R-project.org/. Accessed 2/12/21. 

  



92 
 

SUPPLEMENTAL 

S1 List of samples contained in the training and test data set.  

Training  

1, 2, 4, 6, 7, 10, 11, 12, 15, 16, 17, 25, 28, 30, 31, 32, 33, 38, 40, 42, 44, 45, 46, 47, 49, 51  

Test  

3, 5, 8, 9, 13, 14, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 34, 35, 36, 37, 39, 41, 43, 48, 50 

 

S2 List of SNPs selected for hidSkinPlex+. 

Marker SNP 
NC_014039.1:c1439020-1438442 111 
NC_014039.1:c1439020-1438442 120 
NC_014039.1:c1439020-1438442 149 
NC_014039.1:c1439020-1438442 162 
NC_014039.1:c1439020-1438442 169 
NC_014039.1:c1439020-1438442 339 
NC_014039.1:c1439020-1438442 369 
NC_014039.1:c1439020-1438442 43 
NC_016511.1:2485446-2486162 325 
NC_016511.1:2485446-2486162 47 
NC_016511.1:2485446-2486162 613 
NC_017535.1:c1339878-1339075 597 
NC_018707.1:c1315368-1314979 313 
NZ_ACVP01000023.1:c144466-143744 147 
NZ_ACVP01000023.1:c144466-143744 156 
NZ_ACVP01000023.1:c144466-143744 171 
NZ_ACVP01000023.1:c144466-143744 177 
NZ_ACVP01000023.1:c144466-143744 178 
NZ_ACVP01000023.1:c144466-143744 183 
NZ_ACVP01000023.1:c144466-143744 216 
NZ_ACVP01000023.1:c144466-143744 225 
NZ_ACVP01000023.1:c144466-143744 226 
NZ_ACVP01000023.1:c144466-143744 231 
NZ_ACVP01000023.1:c144466-143744 249 
NZ_ACVP01000023.1:c144466-143744 255 
NZ_ACVP01000023.1:c144466-143744 262 
NZ_ACVP01000023.1:c144466-143744 273 
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NZ_ACVP01000023.1:c144466-143744 276 
NZ_ACVP01000023.1:c144466-143744 279 
NZ_ACVP01000023.1:c144466-143744 285 
NZ_ACVP01000023.1:c144466-143744 303 
NZ_ACVP01000023.1:c144466-143744 312 
NZ_ACVP01000023.1:c144466-143744 351 
NZ_ACVP01000023.1:c144466-143744 366 
NZ_ACVP01000023.1:c144466-143744 384 
NZ_ACVP01000023.1:c144466-143744 393 
NZ_ACVP01000023.1:c144466-143744 402 
NZ_ACVP01000023.1:c144466-143744 414 
NZ_ACVP01000023.1:c144466-143744 417 
NZ_ACVP01000023.1:c144466-143744 423 
NZ_ACVP01000023.1:c144466-143744 432 
NZ_ACVP01000023.1:c144466-143744 448 
NZ_ACVP01000023.1:c144466-143744 451 
NZ_ACVP01000023.1:c144466-143744 486 
NZ_ACVP01000023.1:c144466-143744 520 
NZ_ACVP01000023.1:c144466-143744 555 
NZ_ACVP01000023.1:c144466-143744 577 
NZ_ACVP01000023.1:c144466-143744 613 
NZ_AFAM01000001.1:c260639-259980 363 
NZ_AFAM01000001.1:c260639-259980 380 
NZ_AFAM01000001.1:c260639-259980 381 
NZ_AFAM01000001.1:c260639-259980 396 
NZ_AFAM01000001.1:c260639-259980 423 
NZ_AFAM01000001.1:c260639-259980 426 
NZ_AFAM01000001.1:c260639-259980 455 
NZ_AFAM01000001.1:c260639-259980 489 
NZ_AFAM01000001.1:c260639-259980 519 
NZ_AFAM01000005.1:c52756-52631 103 
NZ_AFAM01000005.1:c52756-52631 113 
NZ_AFAM01000005.1:c52756-52631 125 
NZ_AFAM01000005.1:c52756-52631 71 
NZ_AFAM01000005.1:c52756-52631 99 
NZ_AFAM01000014.1:c59116-58358 422 
NZ_AFAM01000014.1:c59116-58358 423 
NZ_AFAM01000020.1:c4555-4424 42 
NZ_AFAM01000020.1:c4555-4424 74 
NZ_AFAM01000020.1:c4555-4424 75 
NZ_AFIK01000013.1:c12739-12119 532 
NZ_AFIK01000014.1:315-1133 318 
NZ_AFIK01000014.1:315-1133 517 
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NZ_AFIK01000020.1:c12439-12299 91 
NZ_AFIK01000020.1:c12439-12299 92 
NZ_AFIK01000053.1:c36245-34977 462 
NZ_AFIK01000053.1:c36245-34977 657 
NZ_AFIK01000065.1:c4330-4001 192 
NZ_AFIK01000082.1:c111360-110575 610 
NZ_AFIK01000082.1:c111360-110575 700 
NZ_AFIL01000010.1:c43071-42837 209 
NZ_AFIL01000010.1:c43071-42837 37 
NZ_AFIL01000010.1:c43071-42837 56 
NZ_AFIL01000010.1:c43071-42837 79 
NZ_AFIL01000016.1:c75436-75296 141 
NZ_AFIL01000025.1:23315-23623 192 
NZ_AFIL01000030.1:c58004-57372 114 
NZ_AFIL01000031.1:46041-46637 268 
NZ_AFIL01000040.1:4048-4263 133 
NZ_AFIL01000040.1:4048-4263 89 
NZ_AFIL01000041.1:c77880-77749 104 
NZ_AFIL01000041.1:c77880-77749 112 
NZ_AFIL01000041.1:c77880-77749 57 
NZ_AFIL01000041.1:c77880-77749 74 
NZ_AFIL01000047.1:12103-12642 195 
NZ_AFIL01000051.1:c25042-24929 71 
NZ_AFIL01000069.1:c9632-8838 25 
NZ_AFIL01000069.1:c9632-8838 308 
NZ_AFIL01000070.1:3643-4386 620 
NZ_AFUK01000001.1:1588290-1589009 573 
NZ_AFUK01000001.1:1828645-1829349 502 
NZ_AFUK01000001.1:527724-528653 324 
NZ_AFUK01000001.1:527724-528653 369 
NZ_AFUK01000001.1:527724-528653 621 
NZ_AFUK01000001.1:527724-528653 678 
NZ_AFUK01000001.1:535213-535428 135 
NZ_AFUK01000001.1:535213-535428 33 
NZ_AFUK01000001.1:535213-535428 82 
NZ_AFUK01000001.1:665124-666446 1071 
NZ_AFUK01000001.1:665124-666446 1181 
NZ_AFUK01000001.1:665124-666446 549 
NZ_AFUK01000001.1:665124-666446 600 
NZ_AFUK01000001.1:c1255510-1255055 290 
NZ_AFUK01000001.1:c1579497-1578787 292 
NZ_AFUK01000001.1:c1579497-1578787 400 
NZ_AFUK01000001.1:c1715790-1715233 202 
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NZ_AFUK01000001.1:c1845075-1844710 160 
NZ_AFUK01000001.1:c359834-359544 147 
NZ_AFUK01000001.1:c359834-359544 189 
NZ_AFUK01000001.1:c359834-359544 216 
NZ_AXME01000001.1:1088727-1089377 504 
NZ_AXME01000001.1:1146402-1146932 155 
NZ_AXME01000001.1:1146402-1146932 165 
NZ_AXME01000001.1:1286960-1287442 66 
NZ_AXME01000001.1:1327950-1328573 354 
NZ_AXME01000001.1:1431752-1431913 61 
NZ_AXME01000001.1:1431752-1431913 62 
NZ_AXME01000001.1:1431752-1431913 92 
NZ_AXME01000001.1:40840-41742 120 
NZ_AXME01000001.1:40840-41742 161 
NZ_AXME01000001.1:40840-41742 267 
NZ_AXME01000001.1:40840-41742 324 
NZ_AXME01000001.1:40840-41742 498 
NZ_AXME01000001.1:40840-41742 647 
NZ_AXME01000001.1:49241-49654 219 
NZ_AXME01000001.1:49241-49654 285 
NZ_AXME01000001.1:655649-655855 103 
NZ_AXME01000001.1:655649-655855 142 
NZ_AXME01000001.1:655649-655855 58 
NZ_AXME01000001.1:702826-703131 130 
NZ_AXME01000001.1:97330-98208 639 
NZ_AXME01000001.1:97330-98208 693 
NZ_AXME01000001.1:97330-98208 720 
NZ_AXME01000001.1:990664-990933 147 
NZ_AXME01000001.1:990664-990933 149 
NZ_AXME01000001.1:990664-990933 197 
NZ_AXME01000001.1:990664-990933 89 
NZ_AXME01000001.1:c1552174-1551533 256 
NZ_AXME01000001.1:c1599141-1598893 93 
NZ_AXME01000001.1:c1820429-1820292 53 
NZ_AXME01000001.1:c1820429-1820292 67 
NZ_AXME01000001.1:c1820429-1820292 69 
NZ_AXME01000001.1:c1820429-1820292 73 
NZ_AXME01000001.1:c2014536-2014075 411 
NZ_AXME01000001.1:c2135959-2134715 789 
NZ_AXME01000001.1:c2447430-2446870 136 
NZ_AXME01000001.1:c2447430-2446870 359 
NZ_AXME01000001.1:c31864-31571 165 
NZ_AXME01000001.1:c31864-31571 170 
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NZ_AXME01000001.1:c31864-31571 98 
NZ_AXMG01000001.1:1150303-1151070 308 
NZ_AXMG01000001.1:1231251-1231871 336 
NZ_AXMG01000001.1:1231251-1231871 588 
NZ_AXMG01000001.1:1440218-1440469 42 
NZ_AXMG01000001.1:1440218-1440469 56 
NZ_AXMG01000001.1:1440218-1440469 79 
NZ_AXMG01000001.1:1440218-1440469 80 
NZ_AXMG01000001.1:536557-537231 111 
NZ_AXMG01000001.1:793445-793843 261 
NZ_AXMG01000001.1:99114-99290 107 
NZ_AXMG01000001.1:c1328090-1327596 314 
NZ_AXMG01000001.1:c1443707-1443105 327 
NZ_AXMG01000001.1:c1443707-1443105 333 
NZ_AXMG01000001.1:c1443707-1443105 579 
NZ_AXMG01000001.1:c1945194-1944973 30 
NZ_AXMG01000001.1:c2126720-2126193 185 
NZ_AXMG01000001.1:c2126720-2126193 318 
NZ_AXMG01000001.1:c2126720-2126193 388 
NZ_AXMG01000001.1:c2126720-2126193 389 
NZ_AXMG01000001.1:c2126720-2126193 390 
NZ_AXMG01000001.1:c2126720-2126193 501 
NZ_AXMG01000001.1:c2312839-2311925 221 
NZ_AXMG01000001.1:c2312839-2311925 281 
NZ_AXMG01000001.1:c2312839-2311925 662 
NZ_AXMG01000001.1:c2382295-2381897 120 
NZ_AXMG01000001.1:c2382295-2381897 135 
NZ_AXMG01000001.1:c2382295-2381897 140 
NZ_AXMG01000001.1:c2382295-2381897 234 
NZ_AXMG01000001.1:c2382295-2381897 354 
NZ_AXMG01000001.1:c2382295-2381897 54 
NZ_AXMG01000001.1:c2382295-2381897 84 
NZ_AXMG01000001.1:c2429318-2428110 657 
NZ_AXMG01000001.1:c2429318-2428110 696 
NZ_AXMG01000001.1:c2429318-2428110 702 
NZ_AXMI01000001.1:619555-620031 242 
NZ_AXMI01000001.1:c101377-100163 400 
NZ_AXMI01000001.1:c101377-100163 406 
NZ_AXMI01000001.1:c101377-100163 407 
NZ_AXMI01000001.1:c101377-100163 487 
NZ_AXMI01000001.1:c101377-100163 816 
NZ_AXMI01000001.1:c282323-281691 177 
NZ_AXMI01000001.1:c282323-281691 180 
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NZ_AXMI01000001.1:c282323-281691 193 
NZ_AXMI01000001.1:c282323-281691 214 
NZ_AXMI01000001.1:c282323-281691 236 
NZ_AXMI01000001.1:c282323-281691 260 
NZ_AXMI01000001.1:c282323-281691 338 
NZ_AXMI01000001.1:c282323-281691 343 
NZ_AXMI01000001.1:c282323-281691 353 
NZ_AXMI01000001.1:c282323-281691 441 
NZ_AXMI01000001.1:c282323-281691 531 
NZ_AXMI01000001.1:c282323-281691 558 
NZ_AXMI01000001.1:c282323-281691 92 
NZ_AXMI01000001.1:c282323-281691 97 
NZ_AXMI01000001.1:c306684-306040 255 
NZ_AXMI01000001.1:c306684-306040 318 
NZ_AXMI01000001.1:c325088-324501 236 
NZ_AXMI01000001.1:c443438-442323 135 
NZ_AXMI01000001.1:c443438-442323 271 
NZ_AXMI01000002.1:319095-319601 382 
NZ_AXMI01000002.1:525312-525770 175 
NZ_AXMI01000002.1:525312-525770 356 
NZ_AXMI01000002.1:525312-525770 363 
NZ_AXMI01000002.1:674988-675587 381 
NZ_AXMI01000002.1:721564-722400 139 
NZ_AXMI01000002.1:721564-722400 201 
NZ_AXMI01000002.1:721564-722400 473 
NZ_AXMI01000002.1:721564-722400 543 
NZ_AXMI01000002.1:721564-722400 574 
NZ_AXMI01000002.1:721564-722400 589 
NZ_AXMI01000002.1:837080-837400 114 
NZ_AXMI01000002.1:837080-837400 49 
NZ_AXMI01000002.1:c247178-246402 420 
NZ_AXMI01000002.1:c247178-246402 555 
NZ_AXMI01000002.1:c247178-246402 631 
NZ_AXMI01000002.1:c671938-670697 220 
NZ_AXMI01000002.1:c671938-670697 656 
NZ_AXMI01000002.1:c872629-871631 586 
NZ_AXMI01000002.1:c872629-871631 655 
NZ_AXMI01000003.1:232201-232740 172 
NZ_AXMI01000003.1:232201-232740 76 
NZ_AXMI01000004.1:13568-14401 105 
NZ_AXMI01000004.1:13568-14401 627 
NZ_AXMI01000004.1:13568-14401 648 
NZ_AXMI01000004.1:48085-48816 239 
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NZ_AXMI01000004.1:48085-48816 426 
NZ_AXMI01000004.1:c102788-101976 481 
NZ_AXMI01000004.1:c102788-101976 588 
NZ_AXMI01000004.1:c102788-101976 670 
NZ_AXMI01000004.1:c231437-230883 219 
NZ_AXMI01000004.1:c231437-230883 54 
NZ_AXMI01000004.1:c577292-575922 1207 
NZ_AXMI01000004.1:c577292-575922 1233 
NZ_AXMI01000004.1:c577292-575922 618 
NZ_AXMI01000004.1:c577292-575922 681 
NZ_AXMI01000004.1:c577292-575922 719 
NZ_AXMI01000004.1:c577292-575922 879 
NZ_AXMI01000004.1:c577292-575922 987 
NZ_AXMI01000006.1:1-107 77 
NZ_AXMK01000001.1:c1228696-1228250 107 
NZ_AXMK01000001.1:c1228696-1228250 284 
NZ_AXMK01000001.1:c1228696-1228250 286 
NZ_AXMK01000001.1:c1228696-1228250 338 
NZ_AXML01000004.1:c579659-578172 115 
NZ_AXML01000004.1:c579659-578172 153 
NZ_AXML01000004.1:c579659-578172 162 
NZ_AXML01000004.1:c579659-578172 249 
NZ_AXML01000004.1:c579659-578172 273 
NZ_AXML01000004.1:c579659-578172 315 
NZ_AXML01000004.1:c579659-578172 345 
NZ_AXML01000004.1:c579659-578172 402 
NZ_AXML01000004.1:c579659-578172 430 
NZ_AXML01000004.1:c579659-578172 435 
NZ_AXML01000004.1:c579659-578172 477 
NZ_AXML01000004.1:c579659-578172 542 
NZ_AXML01000004.1:c579659-578172 96 
NZ_GL383469.1:c216727-215501 1006 
NZ_GL383469.1:c216727-215501 777 
NZ_GL383469.1:c216727-215501 788 
NZ_GL383714.1:170052-170369 297 
NZ_GL383714.1:170052-170369 99 
NZ_GL383759.1:c166532-166311 79 
NZ_GL383759.1:c166532-166311 86 
NZ_GL383759.1:c166532-166311 87 
NZ_GL383802.1:56803-56916 35 
NZ_GL383811.1:10443-11039 105 
NZ_GL383811.1:10443-11039 255 
NZ_GL383811.1:10443-11039 294 
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NZ_GL383811.1:10443-11039 408 
NZ_GL383846.1:26161-26922 202 
NZ_GL383846.1:26161-26922 222 
NZ_GL383846.1:26161-26922 485 
NZ_GL383846.1:26161-26922 522 
NZ_GL383846.1:26161-26922 565 
NZ_GL383846.1:26161-26922 566 
NZ_GL383846.1:26161-26922 716 
NZ_GL384462.1:c297812-297150 489 
NZ_GL384610.1:c285619-284684 630 
NZ_GL384610.1:c285619-284684 804 
NZ_GL384611.1:c783227-783054 157 
NZ_GL384611.1:c783227-783054 159 
NZ_GL878448.1:c80834-80607 33 
NZ_GL878448.1:c80834-80607 45 
NZ_GL878455.1:c805995-805537 178 
NZ_GL878455.1:c805995-805537 75 
NZ_GL883048.1:64439-65218 578 
NZ_JH376566.1:1103467-1104744 1044 
NZ_JH376566.1:1103467-1104744 530 
NZ_JH376566.1:1103467-1104744 678 
NZ_JH376566.1:1103467-1104744 948 
NZ_JH376566.1:1105369-1105965 58 
NZ_JH376566.1:1105369-1105965 65 
NZ_JH376566.1:326756-326986 210 
NZ_JH376566.1:507019-507612 166 
NZ_JH376566.1:882552-883256 296 
NZ_JH376566.1:882552-883256 417 
NZ_JH376566.1:882552-883256 571 
NZ_JH376566.1:882552-883256 654 
NZ_JH376567.1:190789-191232 407 
NZ_JH376567.1:251291-251998 318 
NZ_JH376567.1:251291-251998 417 
NZ_JH376567.1:251291-251998 66 
NZ_JH376567.1:251291-251998 84 
NZ_JH376567.1:592116-592328 25 
NZ_JH376567.1:598376-599065 555 
NZ_JH376567.1:c388018-387605 138 
NZ_JH376567.1:c388018-387605 69 
NZ_JH376568.1:c255689-255105 461 
NZ_JH376569.1:c80380-79448 537 
NZ_JH376569.1:c80380-79448 575 
NZ_JH376569.1:c80380-79448 783 
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NZ_KI515684.1:459339-460115 103 
NZ_KI515684.1:459339-460115 315 
NZ_KI515684.1:c325537-325361 150 
NZ_KI515684.1:c44215-43715 276 
NZ_KI515684.1:c44215-43715 61 
NZ_KI515684.1:c488989-488798 105 
NZ_KI515684.1:c488989-488798 93 
NZ_KI515684.1:c584270-583890 116 
NZ_KI515684.1:c96934-96368 306 
NZ_KI515684.1:c96934-96368 517 
NZ_KI515684.1:c96934-96368 518 
NZ_KI515685.1:1081256-1081411 148 
NZ_KI515685.1:187493-188140 411 
NZ_KI515685.1:187493-188140 548 
NZ_KI515685.1:225601-226386 636 
NZ_KI515685.1:339623-340705 603 
NZ_KI515685.1:339623-340705 82 
NZ_KI515685.1:432422-433465 305 
NZ_KI515685.1:546580-547218 453 
NZ_KI515685.1:c1032381-1030873 347 
NZ_KI515685.1:c157510-157292 18 
NZ_KI515685.1:c743399-743001 129 
NZ_KI515685.1:c743399-743001 235 
NZ_KI515685.1:c849089-848304 229 
NZ_KI515685.1:c931935-931327 135 
NZ_KI515685.1:c931935-931327 346 
NZ_KI515685.1:c931935-931327 405 
NZ_KI515686.1:323579-324514 312 
NZ_KI515686.1:323579-324514 453 
NZ_KI515686.1:323579-324514 528 
NZ_KI515686.1:323579-324514 596 
NZ_KI515686.1:323579-324514 810 
NZ_KI515686.1:613740-614315 105 
NZ_KI515686.1:c200743-199319 457 
NZ_KI515686.1:c200743-199319 742 
NZ_KI515686.1:c642879-642748 108 
NZ_KI515686.1:c642879-642748 94 
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Forensic genetics focuses on determining the source of biological evidence from a crime 

scene, most often by DNA profiling. However, biological evidence collected from crime scenes 

can have low quantities of DNA or be degraded and/or damaged (due to environmental or chemical 

factors). In some cases, there may not be enough human DNA in biological evidence to obtain a 

full, or even a partial, STR profile. Thus, there is a need for additional information to help identify 

the source of biological evidence found at crime scenes. The human skin microbiome is a potential 

source for targeted DNA analysis, as there is an abundance of microbes on the human skin.  

The genetic content of the human microbiome likely exceeds that of the human body. The 

human microbiome is estimated to have approximately 232 million genes (1), compared to the 

approximately 45,000 (about 25,000 coding genes) genes annotated in the human genome.  Touch 

DNA often refers to skin cells left behind by an individual touching or encountering an item. A 

touch DNA sample would also include the microorganisms that are shed with the skin cells. For 

every squamous cell shed, cells commonly found in the epidermis, there are approximately 30 

microbial cells shed from the human skin (2). The high copy number and the high ratio of microbial 

cells compared to human skin cells suggests that the skin microbiome may provide more 

information about an individual than using transferred skin cells alone. Schmedes et al. (3) showed 

that samples collected directly from the skin could be used to extract human and microbial DNA. 

In (3), out of nine samples collected from an individual, only one sample produced a complete 

profile, while all nine samples produced enough microbial genetic information to accurately 

identify the individual they were collected from. Considering the samples were collected directly 

from the skin, lower amounts of human and microbial DNA would be recovered from touched 

items. The skin microbiome is in high abundance compared to human skin cells suggesting that 

trace human and microbial DNA profiles could be used together in source attribution of samples.     
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In this dissertation, the hypothesis that SNPs from stable, universal microbial species can 

differentiate skin microbiomes of individuals was investigated for its potential application towards 

forensic HID purposes. Schmedes et al. (3) developed a targeted clade-specific multiplex, called 

the hidSkinPlex, and described proof-of-concept work necessary for using the skin microbiome 

for HID.  The studies within this dissertation focused on identifying informative SNPs contained 

within the markers of the hidSkinPlex that can be used for forensic HID. Samples taken from 51 

individuals at three body-sites in triplicate were analyzed with the hidSkinPlex panel which targets 

specific skin microbiome organisms. SNPs with high estimates of Wright's fixation index (FST) 

were used in conjunction with supervised machine learning techniques (e.g., support vector 

machine (SVM) and least absolute shrinkage and selection operator (LASSO)) to select 

informative SNPs for the development of a new HID sequencing panel. Improved individualization 

was achieved by using informative SNPs and the associated allele frequencies in conjunction with 

supervised machine learning techniques to classify unknown samples.  

In chapter 2, skin swabs from the non-dominant hand of 51 individuals were collected in 

triplicate and were analyzed for HID purposes. A predetermined number of the highest-ranking 

SNPs, based on their FST estimate, were selected using three different methods to determine if the 

number of taxa or SNPs impacted HID accuracies. The FST estimates for each SNP were then input 

into SVM to classify unknown samples to the individual they most resembled. Accuracy of 

classification ranged from 88% - 95%, suggesting that analysis of SNPs with high FST in targeted 

microorganisms can improve the accuracy of HID compared the abundance of taxa present in a 

sample (4, 5).  

Chapter 3 presented an approach for determining a robust set of informative SNPs in the 

hidSkinPlex for HID. There were 51 individuals   sampled on the ball of the foot, manubrium, and 
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non-dominant hand in triplicate that were sequenced using the hidSkinPlex panel. A mean FST 

estimate was calculated and used to rank all nucleotide positions in the data set.  The nucleotide 

positions with a mean FST estimate > 0.1 and seen in at least 75% of sample comparisons were 

referred to as SNPs. LASSO was used to select of highly informative SNPs from the hidSkinPlex 

for attribution purposes. The final list of SNPs included 365 SNPs from 135 markers, specific to 

four species Cutibacterium acnes, Cutibacterium humerusii, Corynebacterium tuberculostearicum, 

and Propionibacteriaceae. These SNPs provided a 93% accuracy when identifying the host (n = 

459).   Based on these results a new panel, hidSkinPlex+, can be developed that may be more 

robust than the hidSkinPlex panel. This work supports that the skin microbiome may be a viable 

source for HID and potentially improve analysis of samples currently yielding low-level human 

nDNA, such as touch samples.  

This dissertation provides some insight into how the hidSkinPlex might be further optimized. The 

hidSkinPlex is composed of 286 markers that range in size from 107 to 2,223 base pairs (bp), with 

a mean size of 601 ± 383 bp. Removing markers from the hidSkinPlex that do not contribute 

substantially to HID may improve the overall amplification efficiency and increase the sequencing 

coverage and as a result, more accurate information for the targeted region will be obtained. The 

hidSkinPlex+,     a stream-lined version of hidSkinPlex, contains 365 SNPs selected in this study, 

and smaller sized amplicons, approximately <200 bp, could be designed such that approximately 

150 primer pairs could capture all selected SNPs (Figure 1).   Using amplicons that are 200 bp or 

less will allow for increased amplification efficiency. Some of the selected SNPs are contained 

within the same original marker from the hidSkinPlex and close together, allowing for the new 

amplicon size to capture more than one SNP that was selected for the hidSkinPlex+.  A benefit of 
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designing primers to capture the most informative SNPs in a reduced amplicon size is that 

degraded DNA may be more readily analyzed.  

 

 

 

Figure 1. Four markers from hidSkinPlex are shown that could be redesigned into smaller 
amplicons for hidSkinPlex+. Each line contains the accession number, species, the original marker 
length from the hidSkinPlex panel, and then the marker is represented by a black line. The numbers 
flanking the line indicate nucleotide positions in the genome and SNPs from the hidSkinPlex+ are 
represented as triangles. Primers can be designed to capture the marked SNPs in smaller 
amplicons, where the vertical dashed lines indicate potential sites for primer design. While most 
markers from the hidSkinPlex will be reduced in length, some markers, such as the last marker 
highlighted at the bottom of the figure, will be kept the same size.  
 

Additional research on the SNPs suggested for the hidSkinPlex+ is needed before the panel 

could be considered for use in a forensic setting. Population-level studies are needed so that the 

allele frequencies and covariance can be better estimated. Unlike traditional DNA markers, where 

human population groups are largely driven geography, the constitutive components of microbial 

population groups likely vary by geolocation, lifestyle, hygiene, and other environmental factors. 

Additionally, just as human DNA-based methods may be confounded by relatedness, microbial 

DNA-based methods may be equally confounded by close relationships. In particular, because 

microbial particles are routinely exchanged, relatedness or unrelatedness status may instead be not 
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just a function of heredity, but also of proximity. As such, future studies should address how 

genetics and environment influence the abundance and stability of the SNPs contained in the 

hidSkinPlex+ in different population groups with varying degrees of particle exchange (i.e., 

considering microbial “relatives”). Once the microbial allele frequency variation is better 

understood, alternative statistical analyses may be employed to associate a sample to an individual 

in a more traditional manner, such as with likelihood ratios.  

 In addition to larger sample sizes from multiple ‘population’ groups, other analysis 

methods for classification of an unknown sample should be investigated. SVM and logistic 

regression provided a strong foundation for classification of unknown data points. For example, 

both are linear methods that work well when the number of independent variables is larger than 

the sample size. However, linear methods are simplistic compared to non-linear machine learning 

algorithms. Non-linear methods may perform better for classification, but a fewer number of 

independent variables (e.g., SNPs) may be needed. Some appropriate nonlinear methods to 

consider include random forests, boosted tree-based methods, non-linear SVM, and convolution 

neural networks. The markers identified in the hidSkinPlex+ may allow these non-linear classifier 

algorithms to consider more nuanced relationships between SNPs within individuals and may in 

turn provide better HID.  

Along with further optimization of the hidSkinPlex+, serious consideration will need to be 

given to the minimum requirements that must be met for a skin microbiome sample to be processed 

and then analyzed for inclusion of an individual as the possible donor. Minimum requirements for 

the input amount of microbial DNA needed for analysis, thresholds for read depth and minimum 

number of SNPs present in a profile should be determined. Employing thresholds will allow for 

associations that are made with a measure of confidence and provide a foundation for when and 
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how microbial profiling could be used in real casework. The time since deposit, collection, and 

processing could have an impact on the results derived from a skin microbiome sample. The 

hidSkinPlex+ contains markers that are already known to be common, abundant, and stable over 

time at multiple body sites. Testing the hidSkinPlex+ with time series samples will provide a better 

understanding of the stability of the selected SNPs and how FST may be able to handle when the 

SNPs have changed over time.  Bringing together information about the stability of a sample after 

it is collected from a crime scene, the stability on an individual, and the minimum requirements 

for processing a skin microbiome sample is of the utmost importance if HID is going to be feasible 

using microorganism.  
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