
ADAPTATION OF THE GENETIC RISK PREDICTION MODEL BRCAPRO FOR 

PRIMARY CARE SETTINGS 

 

by 

 

Philamer M. Atienza, B.S., M.S. 

 

 

 

 

 

      APPROVED: 

      _____________________________________________ 
      Dr. Sumihiro Suzuki, Co-Chair 

 
      _____________________________________________ 
      Dr. Swati Biswas, Co-Chair 
 
      _____________________________________________ 
      Dr. Karan Singh, Committee Member 

 
      _____________________________________________ 
      Dr. Sumihiro Suzuki, Department Chair 

 
      _____________________________________________ 
      Dr. Dennis L. Thombs, Dean, School of Public Health 



ADAPTATION OF THE GENETIC RISK PREDICTION MODEL BRCAPRO FOR 
PRIMARY CARE SETTINGS 

 

DISSERTATION 

 

 

 

 

Presented to the School of Public Health 

University of North Texas 
Health Science Center at Fort Worth 

in Partial Fulfillment of the Requirements 

 

for the Degree of 

 

Doctor of Philosophy 

 

By 

Philamer M. Atienza, B.S., M.S. 

Fort Worth, Texas 

May 20, 2017



 

 

 

 

 

 

 

 

Copyright © 2017 

Philamer M. Atienza 

All rights reserved



 

ACKNOWLEDGEMENTS 

 

The completion of this research was funded in part by Susan G Komen grant 

KG081303, National Cancer Institute grants 1R03CA173834-01, 1R03CA173834-02 

and 2P30CA006516-47, and the Dana Farber Cancer Institute. 

I would like to express my deepest gratitude to Professors Sumihiro Suzuki and 

Swati Biswas for their invaluable contribution towards the completion of this research 

and dissertation work. 

To Jonathan Chipman, Amanda L. Blackford, Drs. Kevin Hughes, and Giovanni 

Parmigiani, thank you for your guidance and assistance, and for allowing me the 

opportunity to work with your team on the enhancements to the BRCAPRO model. 

And to all my family, colleagues, and peers, thank you for all the support and 

willingness to help in every way possible. 

 

Philamer M. Atienza



iv 

TABLE OF CONTENTS 

              Page 

ACKNOWLEDGEMENTS  

LIST OF TABLES………………………………………………………………………………vii 

LIST OF FIGURES……………………………………………………………………………..ix 

ABSTRACT 

Chapter 

1 INTRODUCTION……………………………………………………………………………...1 

 1.1 ORGANIZATION OF THE DISSERTATION…………………………………….5 

2 LITERATURE REVIEW………………………………………………………………………7 

 2.1.1 EXPERT BASED…………………………………………………………………8 

 2.1.2 EMPIRICAL MODELS……………………………………………………………9 

 2.1.3 MENDELIAN MODELS…………………………………………………………11 

 2.2 BRCAPRO VALIDATION STUDIES…………………………………………….17 

 2.3 MODEL COMPARISONS..…..…………………………………………………..21 

 2.4 CLINICAL DECISION SUPPORT SOFTWARES..…..………………………..26 

 2.4.1 BAYESMENDEL..…..……………………………………...……….................29 

 2.4.2 HUGHES RISK APPS (HRA) as available currently from the Web 
Service.………...……….......................................................................................30 

 
3 SIMPLIFYING CLINICAL USE OF THE GENETIC RISK PREDICTION MODEL 

BRCAPRO…………………………………………………………………………………….35 
 
 3.1 INTRODUCTION..…..……………………………………...………....................35



v 

 3.2 METHODS.………..…..……………………………………...……….................37 

 3.2.1 DATA…….………..…..……………………………………...………................37 

 3.2.2 BRCAPRO…….………..…..……………………………………...……….......38 

 3.2.3 BRCAPROLYTE………..…..……………………………………...……….......40 

 3.2.4 BRCAPROLYTE-PLUS..…..……………………………………...……….......40 

 3.2.5 BRCAPROLYTE-SIMPLE..…..……………………………………...………...41 

 3.2.6 BRCAPRO-1DEGREE..…..……………………………………...…………….42 

 3.2.7 FHAT………………………..……………………………………...…………….42 

 3.2.8 EVALUATION STRATEGY……………………………………...…………….42 

 3.3 RESULTS……………………………………...…………………………………..44 

 3.4 DISCUSSION……………………………………...………………………………49 

4 A TWO-STAGE APPROACH TO GENETIC RISK ASSESSMENT IN PRIMARY 
CARE………………………………………………………………………………………….56 

 
 4.1 INTRODUCTION……………………………………...…………………………..56 

 4.2 METHODS……………………………………………...………………………….58 

 4.2.1 COHORTS……………………………………………………………………….58 

 4.2.2 TWO-STAGE APPROACH…………………………………………………….60 

 4.2.3 BRCAPRO……....……………………………………………………………….60 

 4.2.4 BRCAPROLYTE..……………………………………………………………….60 

 4.2.5 BRCAPROLYTE-PLUS…..…………………………………………………….61 

 4.2.6 BRCAPROLYTE-SIMPLE..…………………………………………………….61 

 4.2.7 EVALUATION STRATEGY…………………………………………………….61 

 4.3 RESULTS…………………………………………………………………….........63 

 4.4 DISCUSSION……………………………………………………………………...70 



vi 

5 CONCLUSION AND PUBLIC HEALTH IMPLICATIONS……………………………….74 

 5.1 PUBLIC HEALTH IMPLICATIONS………………………………………………76 

 5.2 FUTURE WORK…………………………………………………………………..77 

APPENDIX 1 SUPPLEMENTARY MATERIALS FOR CHAPTER 4……………………..79 

APPENDIX 2 THE BRCAPRO PROBABILITY MODEL…………………………………..87 

APPENDIX 3 AUC CONFIDENCE INTERVAL ESTIMATION…………………………....89 

REFERENCES…………………………………………………………………………………91 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 



vii 

LIST OF TABLES 
 

2.1 Criteria used in evaluating and comparing the performance of prediction models...21 

3.1 Pedigree characteristics by sites………………………………………………………...39 

3.2 Median and interquartile range of ages of various relative types stratified by the 
number of relatives obtained from the colorectal data…………………………………41 

 
3.3 Numbers of referrals (denominator) made by each tool at different cutoffs and the 

number of carriers (numerator) out of those referrals………………………………….46 
 
3.4 NRI statistic and its four components representing the proportions of carriers (C) 

and non-carriers (NC) who got reclassified as high risk (moved up) or low risk 
(moved down) when a simplified tool is used in place of BRCAPRO at the same 
cutoff………………………………………………………………………………………...50 

 
3.5 AUC and its 95% CI by site………………………………………………………………51 
 
3.6 Sensitivity, Specificity, PVP, and PVN, and their 95% CI…………………………….52 
 
4.1 Pedigree Characteristics………………………………………………………………….59 
 
4.2 AUC (with CI) of the two-stage approach and BRCAPRO.  For AUC.p, the first-stage 

cutoff corresponding to p (percentage followed-up in the second stage) is indicated 
as c1…………………………………………………………………………………………68 

 
A.1 First Stage Results (with CI) for NWH data…………………………………………….81 
 
A.2 Numbers of referrals made at each stage using a two-stage approach, as compared 

to using BRCAPRO only on all probands for CGN+MDA data.  For each combination 
of c1 and c2, three numbers are provided – number of probands with first stage 
probability exceeding c1 (n1), out of n1, the number of probands with second stage 
probability exceeding c2 (n2), and out of n2, the number of probands tested positive 
for BRCA mutation…………………………………………………………………………83 

 
A.3 Numbers of referrals made at each stage using a two-stage approach, as compared 

to using BRCAPRO only on all probands for NWH data.  For each combination of c1 
and c2, three numbers are provided – number of probands with first stage probability 



viii 

exceeding c1 (n1), out of n1, the number of probands with second stage probability 
exceeding c2 (n2), and out of n2, the number of probands tested positive for BRCA 
mutation…………………………………………………………………………………….85 



ix 

LIST OF FIGURES 
 

2.1 Hughes RiskApps (HRA) Work Flow……………………………………………………31 

3.1 Probabilities of carrying any BRCA mutation as computed by the five simpler tools 
plotted against those from BRCAPRO…………………………………………………45 

 
3.2 ROC curves with AUC and their 95% CI………………………………………………..48 
 
3.3 Sensitivity and specificity for cutoffs ranging from 0.01 to 0.2 calculated at an 

increment of 0.01………………………………………………………………………….53 
 
4.1 Numbers of referrals made at each stage using a two-stage approach, as compared 

to using BRCAPRO only on all probands for a CGN+MDA and b NWH data………64 
 
4.2 Sensitivity (Se.O) and specificity (Sp.O) of the two-stage approach and BRCAPRO 

for a CGN+MDA and b NWH data……………………………………………………….65 
 
4.3 Predictive value positive (PVP.O) and negative (PVN.O) of the two-stage approach 

and BRCAPRO for a CGN+MDA and b NWH data……………………………………67 
 
4.4 Ratio of observed number of carriers to the expected number of carriers as 

predicted by the two-stage approach and BRCAPRO for a CGN+MDA and b NWH 
data………………………………………………………………………………………….69 



 

 

ABSTRACT 

 

Atienza, Philamer M., Adaptation of the Genetic Risk Prediction Model BRCAPRO for 

Primary Care Settings. Doctor of Philosophy (Biostatistics), May 20, 2017, 100 pp., 12 

tables, 8 illustrations, bibliography, 94 titles. 

 Identifying women at high risks of carrying the breast cancer susceptibility genes 

is crucial for providing timely surveillance and necessary health management 

interventions.  BRCAPRO is one of the most widely used statistical models for breast 

cancer risk prediction in genetic counseling.  It provides carrier probabilities of BRCA1/2 

mutations and calculates the risks of developing breast and ovarian cancers.  This 

calculation requires extensive personal and family history information, which makes it 

difficult to use in primary care where a wider population could be reached.  Thus, we 

developed a two-stage approach for the genetic risk prediction of BRCA1/2 mutation.  In 

the first stage, limited information on the counselee and her family history of cancer are 

used in simplified versions of BRCAPRO.  If the risk at this stage is found to be high, the 

full BRCAPRO model utilizing the complete family history is implemented in the second 

stage.  We aimed to balance the tradeoff between the amount of information used and 

the accuracy of the predictions.  We explored several first stage tools.  BRCAPROLYTE 

uses information on the affected relatives up to the second degree only.  

BRCAPROLYTE-Plus additionally includes unaffected relatives by imputing their ages.  

BRCAPROLYTE-Simple eliminates the need to collect information on the numbers and 



 

 

types of unaffected relatives and imputes them and their ages instead.  The study 

cohorts include 1,917 families mostly at high risk from the Cancer Genetics Network, 

796 high-risk families from MD Anderson Cancer Center, and 1,344 population-based 

families from Newton-Wellesley Hospital.  To evaluate the models, we used sensitivity, 

specificity, area under the curve, and observed versus expected number of carriers.  

We also considered clinical criteria of number of referrals made by each model.  We 

found the proposed two-stage approach (with BRCAPROLYTE, BRCAPROLYTE-Plus, 

and BRCAPROLYTE-Simple at the first stage) has very limited loss of discrimination 

and comparable calibration with BRCAPRO.  It identifies a similar number of carriers 

without requiring a full family history evaluation on all probands.  Thus, our two-stage 

approach allows for practical large-scale genetic risk assessment in primary care.
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CHAPTER 1 

 

INTRODUCTION 

 

According to the Centers for Disease Control and Prevention (CDC), breast 

cancer is the most common cancer diagnosis in women in the United States (U.S.) 

(CDC, 2016), and it is one of the leading cause of cancer deaths among women of all 

races (United States Cancer Statistics (USCS) Working Group, 2016), aside from non-

melanoma skin cancer (CDC, 2016; National Cancer Institute (NCI), 2016).  In 2016, 

approximately 249,260 men and women are expected to be diagnosed with breast 

cancer from which 40,890 are expected to die (American Cancer Society, 2016).  

Research has found several risk factors that increase susceptibility to breast cancer 

such as age, family history of breast cancer, early menarche, early menopause, using 

combination hormone therapy, having dense breast tissue, taking birth control pills, 

never having given birth, not being physically active, being overweight, alcohol intake, 

as well as having mutations in the breast cancer related genes BRCA1 or BRCA2 

(CDC, 2016).  It is estimated that about 7% of all women in the U.S. will get breast 

cancer by age 70, and most will occur after the age of 50 (CDC, 2014; CDC, 2016).  

Among those who develop breast cancer, approximately 5% to 10% will have harmful 

mutations in the breast cancer susceptibility genes BRCA1 and BRCA2 

(BreastCancer,org, 2016; Campeau, Foulkes, and Tischkowitz, 2008; CDC, 2015).  For 
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women with BRCA1/2 mutations, the risks for lifetime and early breast and ovarian 

cancers are greatly increased (Lynch et al., 2008; Miki et al., 1994; Parmigiani, Berry, 

and Aguilar, 1998; Wooster et al., 1995).  The lifetime breast cancer risk in women in 

the general population is about 12% (NCI, 2015), while for those who have inherited a 

harmful mutation in BRCA1 or BRCA2, the risks can be as high as 80% 

(BreastCancer.org, 2016).  The prevalence of some deleterious mutations of BRCA1 or 

BRCA2 among some ethnicities such as Ashkenazi Jews (AJ) is higher, and hence, 

they are at even greater risk of breast cancer development (BreastCancer.org, 2015).  

The two mutations in BRCA1 (185delAG and 5382insC) and one mutation in BRCA2 

(6174delT) substantially increase the risk for breast and ovarian cancer in AJ families 

(Hartge et al., 1999).  However, no long-term general population study to directly 

compare the cancer risks of women who have and do not have the harmful BRCA1 or 

BRCA2 mutations has been performed (NCI, 2015).  Thus, the risk of breast cancer in 

the general population may not be accurately reflected. 

It is important to detect who has harmful BRCA1/2 mutations early to manage 

their risk of cancer.  Interventions such as mastectomy, oophorectomy or 

chemoprevention can be performed.  Frequent monitoring and health management can 

help reduce the woman’s chance of breast cancer and/or increase her survival rate 

(NCI, 2015).  Hence, different models for genetic risk prediction are currently used in 

research and academic centers as well as in high-risk clinics or breast cancer centers 

that provide advanced diagnosis and detection capabilities.  One set of genetic risk 

prediction models, the Mendelian models, use the known inheritance pattern of the 

genes given by the Mendelian laws, i.e., laws describing how a mutated gene is being 
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passed from a parent to an offspring.  An example of a Mendelian genetic risk prediction 

model is the BRCAPRO (Parmigiani, Berry, and Aguilar, 1998).  In general, a woman’s 

risk for breast cancer is greater when she has more close relatives who have had breast 

or ovarian cancer, and additionally, if their ages of diagnosis are younger (CDC, 2014).  

In BRCAPRO, the family history of breast and ovarian cancers as well as information on 

age, type, and number of relatives are considered in calculating the risks.  Ethnicity, 

such as being of AJ descent, breast tumor marker status, and oophorectomy status of 

each family member are also included as risk factors (Biswas et al., 2012; Chen, 

Blackford, and Parmigiani, 2009; Chen et al., 2004; Katki, 2007; Mazzola et al., 2014; 

Parmigiani et al., 2011; Tai et al., 2008).  Given all of this information, BRCAPRO 

calculates an individual’s probability of carrying a mutation of BRCA1 or BRCA2 under 

the assumption that the information on all relatives is accurate.  It uses the Bayes’ rule 

to find this probability using known (estimated) prevalence and penetrance of the 

mutations; that is, BRCAPRO calculates the probability of an individual’s being a 

BRCA1 or BRCA2 mutation carrier based on estimates of mutation prevalence and 

penetrance found in the research literature (Chen et al., 2004).  BRCAPRO also 

provides the absolute risk of developing breast and ovarian cancer for the counselee at 

5-year increments by default, which can be modified to specific age intervals up to a 

maximum age (Chen et al., 2014). 

The prediction models can potentially reap preventative benefits for more women 

when used in primary clinical settings like mammography clinics because it will allow for 

large-scale risk assessments, and can in turn lead to managing the health of high-risk 

individuals before they develop breast cancer or are at an early stage of the disease.  
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However, these models have limited availability to the general population.  In primary 

care settings, as opposed to genetic counseling settings, collecting a lot of information 

needed for prediction on extended family history such as the age of onset and affection 

status can become a burden due to limited time and resource constraints (Drohan, 

Ozanne, and Hughes, 2009).  The NCI recommends that individuals concerned about 

their risks consult directly with genetics professionals, yet there is a limited availability of 

such professionals (Drohan, Ozanne, and Hughes, 2009).  Thus, having a simpler 

model to implement in primary care may be more useful and practical and could 

promote widespread use in a wider range of clinical settings. 

In this dissertation, to bring the benefits of the genetic risk prediction to the 

general population, many of whom remain unaware of their mutation carrier status, we 

propose a two-stage approach.  In the first stage, intended for primary care settings, a 

simpler version of BRCAPRO is used, which requires limited information about the 

patient’s family history.  If the risk at this stage is sufficiently high, the patient is referred 

to a more exhaustive genetic risk assessment (stage two) utilizing the full BRCAPRO 

version that uses extensive family history information.  Such an approach allows 

balancing of the tradeoff between the accuracy versus the practicality of using the 

BRCAPRO model in predicting hereditary risks. 

The aims of this dissertation are as follows: 

1. To propose and assess the performance of simplified versions of BRCAPRO for 

estimating the probabilities of being a BRCA1 or BRCA2 mutation carrier, using 

limited family history information. 
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2. To develop and assess the performance of a two-stage approach for genetic risk 

prediction of BRCA1 or BRCA2 carrier mutation.  If the risk is sufficiently high at 

the first stage, the full BRCAPRO model using data on the more extensive family 

history will be implemented at the second stage. 

It is expected that the results of this study will promote the use of the proposed 

two-stage approach and lead to more women being screened for the genetic 

predisposition to breast cancer.  Our goal is to select optimal model(s) that will be most 

useful in a primary care setting, thereby potentially screening and identifying more 

women who are at high risks and can benefit from early diagnosis.  We hope that our 

research findings will help modify the current research practice of limiting the benefits of 

genetic counseling and risk prediction models in high-risk clinics only and bring them to 

the general (wider) population.  Additionally, the two-stage approach of genetic risk 

prediction of breast cancer may help reduce the genetic testing burden for individuals 

who have lower risks of carrying a BRCA1 or BRCA2 mutation, and increase the 

identification and management of individuals who have higher risks of carrying a 

BRCA1 or BRCA2 mutation without increasing the genetic counseling burden in the 

second stage. 

 

1.1. ORGANIZATION OF THE DISSERTATION 

 This chapter covered the background information and rationale for the two-stage 

approach to BRCA1/2 genetic risk prediction based on the BRCAPRO model.  Chapter 

2 discusses the relevant works of literature.  In Chapter 3, simpler versions of 

BRCAPRO are proposed and evaluated.  Chapter 4 focuses on evaluation of the overall 
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two-stage approach.  Chapters 3 and 4 are based on published manuscripts (Biswas et 

al., 2013; Biswas et al., 2016), and have their own sections for the introduction, 

methods, results, and discussion.  Thus, there is an overlap of their content with this 

Introduction chapter.  Chapter 5 summarizes the main findings of this dissertation and 

highlights the public health importance of the research.  Some future directions for 

research are also discussed.
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CHAPTER 2 

 

LITERATURE REVIEW 

 

Before offering genetic testing for the BRCA1/2 mutations, patients are usually 

assessed on their estimated probability of carrying the mutation.  This allows genetic 

testing to be used where it is most appropriate and is also required by insurance 

companies to determine coverage (Parmigiani et al., 2007).  Several types of prediction 

models have been developed to assess the risks of carrying a BRCA1/2 mutation and of 

developing breast and ovarian cancer.  These models can be broadly categorized as 

the expert-based approach, empirical models, and Mendelian models (Parmigiani et al., 

2007).  Development of some models that fall into these three categories is described in 

Sections 2.1.1 to 2.1.3. 

The expert-based models consist of guidelines in identifying high-risk patients 

which were developed based on clinical judgment.  Empirical models are statistical 

models that stratify families according to family history whereby regression or other 

approaches are used to describe the relationship between the family history data 

(predictor variables) and the genotyping results.  The Mendelian models are based on 

Mendelian inheritance patterns of genes passed on from one generation to the other.  

These models use explicit assumptions about genetic parameters such as allele 

frequencies, cancer penetrances, and gene transmission to calculate the probability of 
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the proband/counselee being a mutation carrier (Parmigiani et al., 2007). 

 

2.1.1. EXPERT BASED 

As there was no clear and validated guideline on referrals for genetic testing, 

Gilpin, Carson, and Hunter (2000) developed a family history assessment tool (FHAT) in 

1996 that can be used for genetic counseling.  Weights (scores) assigned to the 

different characteristics of the cancers in the affected patients were adjusted using trial 

and error until the pedigrees (i.e., families) that should be referred to genetic counseling 

(using the target cutoff of double the general population lifetime risks, 0.11 for breast 

cancer and 0.016 for ovarian cancer, as benchmarks) got a total score of ≥10, and <10 

for the pedigrees not requiring a referral.  In FHAT, a 17-question interview is used to 

produce a score ranging from 0 to 45 to represent the risk severity of the family history 

(Parmigiani et al., 2007).  Separate scoring was done for each family member who has 

been diagnosed with breast, ovarian, early colon or prostate cancer, and the total family 

score assisted in determining whether genetic counseling should be referred.  If both 

sides of the counselee’s family have breast and/or ovarian cancer history, the side with 

the higher score was used for risk assessment.  FHAT was effective in minimizing the 

number of referrals and the likelihood of missing mutation-positive women.  It can be 

used for selective referral, but not for estimating the risks of developing breast or 

ovarian cancer, or the likelihood of being a BRCA1 or BRCA2 mutation carrier (Gilpin, 

Carson, and Hunter, 2000). 

It is important to develop models for predicting whether a counselee is likely to 

have BRCA mutations so that genetic screening efforts can be directed to potential 
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carriers.  In this regard, Evans et al. (2004) developed a simple scoring system called 

Manchester scoring system to identify the likelihood of carrying a BRCA1 or BRCA2 

mutation.  Similar to FHAT, this system assigns scores based on the cancer types and 

age at diagnosis, and the side of the family that had the highest score was used for 

prediction.  A score of 10 was used separately for each gene, which was considered as 

equivalent to a 10% probability of BRCA1 or BRCA2 mutation.  The system does not 

require inputting the family tree into the computer program, hence, practical for use in 

busy clinics to help in identifying families to refer for BRCA1/2 mutation testing.  

However, this model does not take into account AJ ancestry.  In addition, it is based on 

the number of cases per family which can bias the estimates (Kang et al., 2006). 

 

2.1.2. EMPIRICAL MODELS 

Couch et al. (1997) aimed to use clinical information, family history, and 

deoxyribonucleic acid (DNA) analysis to define the incidence of BRCA1 mutations and 

create probability tables of finding the mutations in individual families.  The study 

population was presumed to be representative of the kinds of patients seen in a breast 

cancer referral clinic.  However, many of the families were too small (i.e., there was a 

small number of individual members per family) to predict mutation status from an 

inheritance pattern.  Most families only had breast cancer cases, and only a few had 

ovarian cancer, resulting in large confidence intervals.  Additionally, the study sample 

was almost entirely White, so the results cannot be generalized to women of other races 

or ethnicities.  Contrary to expectations, results showed that bilateral breast cancer 
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incidence, the number of affected family members, and the average age at diagnosis of 

ovarian cancer were not associated with increased risk for a BRCA1 mutation. 

Another prediction model for BRCA mutations was introduced by Vahteristo et al. 

(2001) based on the study of Finnish breast cancer families and their clinical 

characteristics.  Only families containing three or more first or second degree relatives 

with breast or ovarian cancer were included in the model.  The model was compared to 

results from Shattuck-Eidens et al. (1997) and Couch et al. (1997), both of which were 

developed only for BRCA1.  The simple criterion of a family in this study population 

having a breast cancer before age 40 or any ovarian cancer was effective in predicting 

mutation carrier families.  The results were similar when BRCA1 and BRCA2 carriers 

were analyzed separately, so a common model was used.  Results also showed that 

mutation screening in families with only two affected patients (moderately affected 

families) was not useful in the study population. 

Apicella et al. (2003) also created a simple, reliable algorithm to estimate the 

probability that an AJ woman carries an ancestral mutation in BRCA1 or BRCA2 based 

on multiple predictive factors (personal or family history of breast or ovarian cancer).  In 

this study, the authors used an unconditional multiple linear logistic regression to model 

the probability that each woman was a mutation carrier: starting with a baseline score of 

-3.75, a multiple of 0.5 based on the logistic regression estimates was added for each 

predictive feature.  The sum of the scores is the estimated log odds ratio of being a 

carrier, converted to a probability using a reference table.  The model developed in this 

study is called LAMBDA, which stands for “Log odds of carrying an Ancestral Mutation 

in BRCA1 or BRCA2 for a Defined personal and family history in an Ashkenazi Jewish 
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woman.”  One advantage of the model is that it integrates multiple datasets to provide 

estimates across a range of personal and family histories.  Because of its simplicity, the 

LAMBDA model may have wide use in clinical settings. 

These statistical models have their limitations.  The Couch model was based on 

BRCA1 mutation only.  It is based on logistic regression and requires the exact ages of 

all affected relatives (Lindor et al., 2007).  The Vahteristo model is difficult to use in a 

typical clinic setting, and while Apicella’s LAMBDA is an easy tool because it does not 

require a computer program (Lindor et al., 2007), it was designed only for use with AJ 

families. 

 

2.1.3. MENDELIAN MODELS 

Formal probabilistic models were found to be optimal in the selection of families 

that can be referred for genetic testing than clinical criteria or scoring methods (James 

et al., 2006).  Moreover, Mendelian models were found to be more accurate and 

effective at estimating an individual’s risk of being a BRCA mutation carrier and the 

overall number of mutations when compared to empirical models (Marroni et al., 2004).  

Development of two Mendelian models, the Breast and Ovarian Analysis of Disease 

Incidence and Carrier Estimation Algorithm (BOADICEA) and BRCAPRO, are 

discussed below. 

Antoniou et al. (2002) developed the BOADICEA model under which 

susceptibility to breast cancer is explained by BRCA1 and BRCA2 mutations as well as 

by the joint multiplicative effects of many genes (polygenic component) using combined 

data on high-risk families and population based series of breast cancer cases in the 
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United Kingdom.  Models incorporating the simultaneous effects of BRCA1, BRCA2, 

BRCA3 (which was a hypothetical gene assumed to have increased risks of breast 

cancer), and a polygenic effect, i.e., the effect of several low-risk polymorphisms which 

act multiplicatively, were analyzed using segregation analysis.  The model with separate 

relative risks assumed for ages grouped by decade fit significantly better than the one 

with a constant relative risk (p-value=0.03).  BRCA1 mutation carriers were more likely 

to develop early onset breast cancer than BRCA2 mutation carriers.  The results were 

consistent with the Breast Cancer Linkage Consortium estimates (Easton et al., 1993; 

Easton et al., 1995; Ford et al., 1998), where high-risk families are expected to have a 

much larger polygenic component than average.  The results of the polygenic model, 

determined to be the most parsimonious, suggested that several genes that have small 

but multiplicative effects on risk can account for the non-BRCA1/BRCA2 familial 

clustering of breast cancer.  Additionally, the risk modifiers in BRCA1 and BRCA2 

carriers may explain the differences in the estimates for population based studies and 

high-risk families. 

In 2008 (Antoniou et al.), BOADICEA was extended to include a larger number of 

mutation-carrying families in order to produce more reliable estimates for the BRCA 

mutation incidences.  The polygenic component’s variance was also updated to be age 

dependent.  A birth cohort effect was implemented leading to cohort-specific incidences 

for carriers and non-carriers.  The fitted model predicted that the average breast cancer 

risks in carriers increase in more recent birth cohorts.  BOADICEA returns the 

probabilities of carrying a BRCA1 or BRCA2 mutation and of developing breast or 

ovarian cancer. 
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For BRCAPRO, initially, Berry et al. (1997) developed a mathematical model for 

computing the probability of a woman carrying a mutation of the BRCA1 gene based on 

her family history of breast and/or ovarian cancer.  The model was based on the 

available estimates of BRCA1 mutation frequencies in the general population and the 

age-specific incidence of breast and ovarian cancers for women who were BRCA1 

mutation carriers.  For women with breast cancer at a young age, the authors found that 

there was strong evidence for being a mutation carrier, because breast cancer was 

much more common at younger ages among carriers than non-carriers.  However, for 

those without breast cancer, there was very little evidence for being a carrier, and this 

evidence of being a non-carrier became stronger with age as long as the woman 

remained free of cancer.  The number of relatives was also an important consideration 

because having many unaffected family members can substantially lower a carrier 

probability.  Using the weights from the developed model, the cumulative incidence 

probabilities for carriers and non-carriers can be averaged to get the cumulative 

probability of breast cancer before a particular age.  BRCA1 carriers were very likely to 

have bilateral breast cancer (Easton et al., 1995).  The authors assumed the 

independence of the incidence of breast and ovarian cancers separately for carriers and 

non-carriers, which is not necessarily true about the general population when carrier 

status is ignored.  At that time, the assumption was that all other breast cancer is 

sporadic, but this is not true because BRCA2 has been cloned since then. 

Extending Berry et al.’s work, Parmigiani, Berry, and Aguilar (1998) used 

Bayesian methods for evaluating the probabilities that a woman is a BRCA1 or BRCA2 

mutation carrier on the basis of the occurrence of breast and ovarian cancers in her first 
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and second degree relatives.  As there were uncertainties in the age-specific incidence 

of the diseases and the overall prevalence of mutations, Monte Carlo simulation was 

used to incorporate these in the model.  The late onset of breast cancer cases made it 

more likely that the mutation was due to BRCA2 than BRCA1.  In addition, the presence 

of breast cancer in males gave a strong indication that there was BRCA2 mutation.  

When there was an early age of onset of the diseases, BRCA1 was more likely than 

BRCA2.  However, with late onset, the overall probability of the individual being a 

mutation carrier decreased. 

In 2009, in a correspondence to the editor of the Journal of Clinical Oncology, 

Chen, Blackford, and Parmigiani addressed the findings of Kurian et al. (2008) that the 

BRCAPRO model underpredicts the proportion of BRCA2 mutations in relation to the 

total number of mutations, and also underpredicts the total number of BRCA1 and 

BRCA2 mutations among Asian-Americans.  The allele frequencies were updated in a 

later BRCAPRO model (in BayesMendel version 1.3-1) than what Kurian et al. used 

(version 1.2-1).  Penetrance estimates for breast and ovarian cancers were updated in 

version 1.3-1 (BayesMendel Lab, 2015).  Furthermore, BRCAPRO was enhanced in 

version 2.0-2 by incorporating Asian-specific phenocopy rates which was justified 

because Asians have a lower risk of developing breast cancer than Whites (8% vs. 

12%) according to Surveillance, Epidemiology, and End Results (SEER) registry data.  

The more recent BRCAPRO versions allow user specification for race as Asian, Black, 

Hispanic, Native American or White; and for ethnicity of each family member as AJ, 

non-AJ, Italian or Other (Mazzola et al., 2015). 
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Another factor that should be considered in genetic risk prediction models is 

medical interventions.  Katki (2007) argued that medical interventions given to at-risk 

people should be included in Mendelian models.  This is because interventions may 

imply that relatives are at high-risk and could be carriers, and because interventions 

alter mutation penetrances.  For example, if a relative who is thought to be high-risk has 

an intervention at a young age which prevents her from developing cancer, her non-

cancer status will affect the prediction of the patient’s risk because prediction models 

use family history of cancers in calculating the risks.  If the family member’s intervention 

is not incorporated into the model, there is the untenable assumption that the 

penetrances for those who have and who have not had an intervention are the same.  

Thus, Katki incorporated the hazard ratio of having oophorectomy into the BRCAPRO 

model.  Oophorectomy (removal of ovaries and fallopian tubes) halves the risk of breast 

cancer and removes the risk for ovarian cancer entirely, therefore it is a common 

intervention for women at high-risk.  This study showed that the importance of 

accounting for interventions increases when mutation carriers and non-carriers differ 

more in terms of the benefits of intervention.  Accounting for the oophorectomy was 

most important for older family members, and ignoring the procedure leads to carrier 

probabilities that are underestimated to a varied degree, especially if the post-

oophorectomy disease is informative about carrier status.  When the hazard ratio of the 

reduction due to intervention between carriers and non-carriers is more than one (that 

is, when there is more benefit for non-carriers than carriers), interventions are most 

informative about the carrier status; getting cancer after the procedure is more evidence 

for a mutation.  However, ultimately, if the full family history and all their genetic test 
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results are known to the consultand, there is no carrier status information gained by the 

knowledge that a relative has chosen to have an intervention because each individual’s 

carrier status, disease history, and associated penetrances should already be factored 

into the model.  Having mastectomy has also been incorporated into the BRCAPRO 

model starting from BayesMendel version 2.1 to improve the carrier probability 

calculation (Mazzola et al., 2015). 

Tai et al. (2008) also added improvements to the BRCAPRO cancer risk 

prediction model by directly integrating a patient's pathological subtype information into 

the estimation methods.  Including estrogen receptor (ER), progesterone receptor (PR), 

cytokeratin (CK)5/6, and CK14 marker information improved the BRCAPRO carrier 

probabilities, thereby discriminating between BRCA1 and non-BRCA1 breast tumors 

better.  In 2012, Biswas et al. added the possibility of incorporating the human 

epidermal growth factor receptor 2 (Her-2/neu) into BRCAPRO to help improve the risk 

prediction for BRCA mutation.  These improvements in risk estimation could lead to 

different clinical recommendations for genetic testing and cancer prevention. 

We focus on BRCAPRO, which is widely used and distributed free of charge as 

part of the BayesMendel computer software package (Chen et al., 2004; 

http://bayesmendel.dfci.harvard.edu/risk/), and in the genetic counseling packages 

CancerGene (https://www4.utsouthwestern.edu/breasthealth/cagene/) and Hughes 

RiskApps (HRA; http://bcb.dfci.harvard.edu/bayesmendel/riskservice.php).  In particular, 

CancerGene is licensed to more than 6,000 sites including high risk clinics in large 

academic medical centers and providers.  Literature shows that BRCAPRO is one of the 

better-performing models for assessing an individual’s risks for carrying a BRCA 
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mutation and for developing breast and/or ovarian cancer, with the AUCs (area under 

the receiver operating characteristic (ROC) curves) ranging from 80% or above (James 

et al., 2006; Parmigiani et al., 2007), i.e., in about 80% of the time, BRCAPRO assigns 

high probability to a positive BRCA1 or BRCA2 mutation carrier than to a negative 

mutation carrier.  Further discussions about model comparisons can be found in Section 

2.3. 

 

2.2. BRCAPRO VALIDATION STUDIES 

Genetic testing for BRCA1 and BRCA2 mutations is commonly warranted from 

risk assessments based on family history of breast and/or ovarian cancer.  Genetic tests 

have both health and cost implications, stressing the importance of both the accuracy of 

risk assessments and suitability for testing (Berry et al., 2002).  In this section, validation 

studies of the BRCAPRO prediction model are discussed. 

Berry et al. (2002) compared the probability estimates for genetic mutation 

produced by BRCAPRO with genetic test results as well as assess genetic testing 

sensitivity and the relevance of other breast and ovarian cancer susceptibility genes.  

Six high-risk counseling clinics provided data for families in which at least one member 

had undergone testing for both BRCA1 and BRCA2.  Ages of onset, types of cancers, 

numbers and ages of unaffected family members, and the exact relationships among all 

family members should be considered as factors as what the BRCAPRO uses.  There 

was a tendency for probands with a large number of affected family members with 

breast and ovarian cancers to have higher carrier probabilities, but there were 

unexpected results as well indicating that factors aside from the number of familial 
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cancers should also be included in genetic risk assessment.  BRCAPRO may 

overestimate the probability of mutation for those with the highest risk and 

underestimate the probability for those with the lowest risk.  However, the overall 

correspondence between the probabilities produced by BRCAPRO and the results of 

the genetic testing was good.  The sensitivity of the genetic test was high at 85.4% 

[78.7%-90.5%; 95% Confidence Interval (CI)].  The study showed that BRCAPRO was 

an accurate tool upon which patients can be counseled about their probability of 

carrying the BRCA1 and BRCA2 mutations.  BRCAPRO was determined to be 

particularly effective in predicting positive tests when the carrier probability is less than 

70%. 

Euhus et al. (2002) performed an analysis to compare BRCAPRO with eight 

cancer risk counselors in their identification of families likely to carry the mutation.  The 

study was also used to assess the impact that having BRCAPRO probabilities alongside 

the pedigree information had on the genetic risk counselor's probability estimations.  

Pedigrees were chosen for probability estimation on the basis of a proband affected by 

either breast or ovarian cancer and who had a conclusive positive or negative result 

after full sequence genetic testing.  All eight counselors and BRCAPRO provided 

probability estimations for each family in a supervised environment to ensure that the 

probabilities from the counselors were not biased from the use of BRCAPRO or other 

models.  Comparisons with BRCAPRO were made using a >10% mutation probability 

threshold, because genetic testing is usually recommended for individuals with a 

probability estimate above 10%.  Each of the pedigrees was presented twice to the 

counselors, once without BRCAPRO data and once with BRCAPRO estimates 
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alongside the pedigree information.  The differences in their probability estimates were 

compared for each family.  Six of the 8 showed improvement in the AUC estimates, but 

only one counselor’s improvement was statistically significant with p-value=0.05 when 

the BRCAPRO information was added to the pedigrees.  It was concluded that while 

sensitivity was comparable between BRCAPRO and the counselors, the computer 

modeling was consistently better in terms of specificity.  Overall, BRCAPRO was slightly 

better than the counselors at identifying the genetic mutation carriers. 

BRCA1 and BRCA2 genetic mutations are well documented as susceptibility 

genes for breast cancer, but the variety of the mutations and risk modifiers among 

ethnic minorities were still unclear.  The BRCAPRO model was originally designed 

using mutation frequencies of White (non-AJ and AJ) populations to be able to predict a 

family´s likelihood of being a BRCA1 or BRCA2 mutation carrier.  Vogel et al. (2007) 

applied BRCAPRO to the Hispanic population while Nanda et al. (2005) used it for 

Whites, African Americans, and AJ families in high-risk clinics to obtain information 

about the usefulness of the model in these populations.  In both studies, the results 

showed that the probabilities were similar for the same level of specificity.  The AUCs 

for both the Hispanic and African American families were around 0.77 which were 

comparable to the White and AJ populations.  A founder mutation in the AJ population, 

187delAG, was the most frequent in the Hispanic sample with BRCA1 mutations.  

These studies provided evidence that it is appropriate to use the BRCAPRO model in 

risk assessment of Hispanic families as well as high-risk African American families, as 

its performance in these ethnic groups was equally well with Whites. 
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Katki et al. (2008) studied the prediction accuracy of an extension of the 

BRCAPRO model.  The extended model took into account the survival to other non-

breast/ovary cancers as a single outcome and assessed the effect of excluding 

mutation-unrelated cancers.  They also considered the effects of informative censoring 

caused by ignoring certain mutation-related diseases such as pancreatic or prostate 

cancers for BRCAPRO.  Even if no family member gets the disease, the authors 

showed that the carrier probability will be inflated if the disease occurs more often in 

carriers, or deflated if it occurs less often in carriers, if it is not accounted for in the 

model.  In the case of a disease unrelated to mutation that is dependent on other 

mutation-related diseases, a person’s survival could be informative about the carrier 

status.  Ignoring the member’s disease which has a higher prevalence among mutation 

carriers will cause the carrier probability to be deflated.  The extended model was 

shown to help extract more useful information from male relatives and from families that 

have many older relatives with cancer. 

Biswas et al. (2012) validated the use of the three breast cancer markers ER, 

PR, and Her-2/neu in the BRCAPRO model.  Results revealed that most BRCA1 

carriers were ER negative but both non-carriers and BRCA2 carriers were ER positive, 

consistent with literature.  With women who are Her-2/neu negative and ER positive, 

Her-2/neu could help distinguish between carriers versus non-carriers.  ER and PR 

helped improve the discrimination between carriers of BRCA1 versus BRCA2, which is 

useful because these genes confer different risks (e.g., BRCA1 carriers are more likely 

to have ovarian cancer while BRCA2 carriers are more likely to have pancreatic 

cancer).  The results revealed that the updated BRCAPRO model, which accounted for 
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these breast tumor markers, improved the BRCA1 or BRCA2 mutation status prediction 

and is beneficial to use in clinical settings whenever possible. 

 

2.3. MODEL COMPARISONS 

Each statistical model has its strengths and limitations in different scenarios.  A 

summary of the common methods that several authors have used in their studies to 

evaluate the performance of each BRCA genetic risk prediction model is shown in Table 

2.1.  A careful examination of the results from each of these models in light of known 

strengths and limitations of one over the other is important when comparing the 

performance of the risk prediction models.  Ideally, we want to select models that give 

higher predictive power and accuracy.  Among these comparison methods, it is of 

greater interest to choose models that give higher sensitivity and AUC values without 

sacrificing the associated loss incurred on the other measures when adjusting 

thresholds.  A model that gives better calibration, i.e., an observed over expected ratio 

closer to one, is also preferred. 

Table 2.1. Criteria used in evaluating and comparing the performance of prediction 
models 

Comparison Methods Specific Purpose (if any) References 
positive and negative 
predictive values 

 Barcenas et al., 2006; 
Kang et al., 2006;  
Parmigiani et al., 2007

sensitivity and specificity  Barcenas et al., 2006; 
James et al., 2006;  
Kang et al., 2006;  
Marroni et al., 2004;  
Parmigiani et al., 2007

ROC curves analysis  to determine the cutoff value 
that provides the best discrimination 
between BRCA mutation carriers 
and non-carriers 

James et al., 2006;  
Marroni et al., 2004 

AUC or c-statistic (the  to measure the level of Barcenas et al., 2006; 
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probability that a 
randomly-chosen 
positive case (carrier) 
has a higher probability 
of a BRCA mutation than 
a randomly-chosen 
negative case (non-
carrier)) 

discrimination between carriers and 
non-carriers, or to discriminate 
between individuals testing positive 
and negative 
 to examine accuracy with an 
AUC of 1.0 being a perfect 
discrimination between BRCA 
mutation carriers and non-carriers, 
and 0.5 meaning that the model is 
completely unable to distinguish 
between carriers and non-carriers 

James et al., 2006;  
Kang et al., 2006;  
Lindor et al., 2007;  
Parmigiani et al., 2007

comparison of the 
observed and expected 
number of mutations (χ2 
and z-distribution) 

 to test whether predicted 
probabilities are systematically too 
high (over-estimation) or too low 
(under-estimation); i.e., assessment 
of accuracy 
 to test whether the distributions 
are too variable or not; i.e., 
assessment of predicted carrier 
probabilities for over- or under-
dispersion, which happens when a 
large number of probands with low 
predicted carrier probabilities or 
when a very small number with 
higher predicted carrier probabilities 
are carriers 

Lindor et al., 2007;  
Marroni et al., 2004 

Wilcoxon rank sum test  to assess the significance of 
trends when comparing all models 

Parmigiani et al., 2007

ease of use as an office 
tool 

 Barcenas et al., 2006; 
Kang et al., 2006; 
Lindor et al., 2007 

 

Kang et al. (2006) evaluated four models BRCAPRO, Manchester (Evans et al., 

2004), University of Pennsylvania (Penn) (Couch et al., 1997), and Myriad-Frank (Frank 

et al., 2002) on families who had been tested for mutations in BRCA1 and BRCA2.  

These models could not rule in or rule out BRCA carrier status as indicated by the 

positive and negative likelihood ratios for those who had a model probability >10% and 

<10%, respectively.  Each model performed equally well when mutations in both genes 

were considered, with the AUCs being around 0.75.  Each of the Manchester, 
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BRCAPRO, and Penn models performed similarly for BRCA1, but the Penn model was 

better at, and the BRCAPRO model was worst at, distinguishing BRCA2 carriers.  It was 

recommended that the use of these models routinely in the clinical setting was not 

justified.  Future models should be less reliant on clinical history because of its 

inaccuracies, often due to the inability to verify cancer and diagnosis age.  In addition, 

the choice of an individual from a high-risk family who tests negative for BRCA mutation 

does not necessarily mean that the family is mutation negative. 

Marroni et al. (2004) compared the performance of eight models for predicting 

BRCA1 and BRCA2 mutations: the Penn model, the Myriad-1 model, the Myriad Tables, 

the Spanish model, the Finnish model, the Yale University (Yale) model, the BRCAPRO 

model, and the Italian Consortium (IC) model.  The Mendelian models were more 

accurate because they calculate individualized probabilities.  While the Mendelian 

models BRCAPRO and IC performed the best overall, this work showed that there was 

substantial room for improvement in model performance.  In particular, the adjustment 

of genetic parameters for families at low risk and the discrimination between the two 

genes is expected to improve the ability of models to predict carrier status. 

Barcenas et al. (2006) looked specifically at BOADICEA and compared its 

performance to five other mathematical models: BRCAPRO, Myriad I, Myriad II, Couch 

and Manchester Scoring System.  They used a 10% threshold (as initially 

recommended by the American Society of Clinical Oncology (1996)) to assess family 

data where at least one member had genetic testing.  BOADICEA, BRCAPRO, and 

Myriad II had comparable performance and all moderately effective at estimating the 
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risk of carrying a BRCA gene mutation.  For non-AJ families, BRCAPRO was found to 

be the best for predicting BRCA1 mutations. 

James et al. (2006) wanted to find the optimal method for determining which 

families in the moderate- to high-risk group should be tested for BRCA1 and BRCA2 

mutations for use at standard familial cancer centers.  They compared six methods for 

estimating the probability of being a carrier: Frank (empirical), Couch (logistic 

regression), BRCAPRO (probabilistic), Adelaide (clinical criteria), FHAT (clinical 

scoring), and Manchester Score (clinical scoring).  The model which best discriminated 

between mutation-positive and negative families was the BRCAPRO score for any 

BRCA mutation (AUC=0.78 [0.72-0.85, 95% CI]).  Overall, the highest accuracy was 

achieved with a combination of pathology data (grade and ER or PR status) and the 

combined BRCAPRO score, and particularly for BRCA1 families. 

Parmigiani et al. (2007) compared seven models for estimating the probability of 

having a mutation in BRCA1 or BRCA2: Finnish, Myriad, NCI, and Penn which are 

empirical models; BRCAPRO and Yale which are Mendelian models; and FHAT which 

is expert-based.  BRCAPRO performed best overall in all but two subgroups, but the 

range of c-statistics across different models was not large, making it difficult to point out 

a clear best model.  In general, the models performed worse in cancer-free individuals 

and for younger people.  Also, discrimination between mutation carriers and non-

carriers was better in population-based studies than in high-risk samples (p-

value=0.036), suggesting that the models were better at coping with broadly 

representative settings than high-risk centers. 
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The relative performance of the models LAMBDA, Myriad II, BRCAPRO, and 

Couch was compared in Lindor et al. (2007).  Results showed that the AUCs were 

similar for the four models, ranging from 0.71 to 0.76, with BRCAPRO having the 

highest AUC, but no evidence of statistical difference was found (p-value=0.3).  A test of 

observed versus predicted values found that the overprediction of carriers by LAMBDA 

was not statistically significant (p-value=0.3), but the underprediction of carriers by 

BRCAPRO, Couch, and Myriad II were all statistically significant (p-values are 0.01, 

0.01, and <0.001, respectively).  BRCAPRO was the best discriminator between carriers 

and non-carriers. 

Fischer et al. (2013) evaluated the performance of four widely used genetic 

models BRCAPRO, BOADICEA, IBIS, and extended Claus (eCLAUS) using a large 

sample from central Europe.  They estimated the BRCA1/2 mutation carrier probabilities 

under each model, and assessed the models’ diagnostic accuracy via ROC analysis.  

Model calibration was compared via the ratio of observed to expected numbers of 

carriers at various categories of predicted mutation carrier probabilities.  BRCAPRO and 

BOADICEA discriminated well between carriers and non-carriers with their AUCs 

significantly larger than those of IBIS and eCLAUS (0.796, 0.791, 0.749 and 0.745, 

respectively; p-value<0.001).  At 10% cutoff, the sensitivities were also higher for 

BRCAPRO and BOADICEA than IBIS: 84.3% and 82.1% vs. 77%.  eCLAUS had the 

highest sensitivity at 98%; however, its specificity was very low: 9.6% compared to 55%, 

56.8%, and 56.5% for BRCAPRO, BOADICEA, IBIS, respectively.  BOADICEA was 

best in calibration overall, while BRCAPRO overpredicted the mutations, especially the 

BRCA2 carriers.  The study also showed that incorporating breast tumor marker 
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information on ER, PR, Her-2, (CK)5/6, and CK14 improved the predictive ability of 

BOADICEA, supporting the results from BRCAPRO studies (Biswas et al., 2012; James 

et al., 2006).  The use of BRCAPRO and BOADICEA models for estimating BRCA1/2 

mutations in clinical settings was recommended. 

In terms of ease of use in an office, in the study of Barcenas et al. (2006), Myriad 

II was found to be the easiest to implement in actual clinical settings because of the 

table of probabilities that is provided.  However, this model does not differentiate 

between BRCA1 and BRCA2 mutations.  Mendelian models such as BRCAPRO, on the 

other hand, are capable of doing this.  However, both Kang et al. (2006) and Lindor et 

al. (2007) indicated that the time needed for inputting all variables into the computer and 

amount of data required in implementation was a hindrance for BRCAPRO. 

Overall, it might be beneficial for genetic counselors to consider several 

predictive models to get a more reliable result in estimating the probability of having 

BRCA mutation (Parmigiani et al., 2007).  In light of similar performance among some 

models, the review of cancer family histories by an experienced clinician to supplement 

the model’s predictions was recommended so as not to overlook critical elements, 

especially at the lowest or highest ends of the probability scale (Lindor et al., 2007). 

 

2.4. CLINICAL DECISION SUPPORT SOFTWARES 

Despite all the models and guidelines that were developed, there are many 

barriers to large-scale screening for women at high risk of having hereditary breast or 

ovarian cancer (HBOC).  Such barriers include lack of clinicians required in taking and 

recording detailed family histories, lack of knowledge by clinicians to identify hereditary 
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cancer syndromes, and time-intensive or difficult-to-use risk assessment programs 

(Ozanne et al., 2009).  Many clinicians also lack the skills and education necessary to 

analyze family history information in a clinic setting.  It is unreasonable to expect that 

medical practitioners will remember all the details of the 188 hereditary syndromes 

associated with common adult chronic diseases listed in the Online Mendelian 

Inheritance in Man database (Drohan, Ozanne, and Hughes, 2009).  Identifying patients 

with high risks of being a carrier of mutation for HBOC is challenging especially if 

medical professionals will only rely on memory to classify such patients (Drohan et al., 

2012).  Many physicians are not adept with linking family history data and genetic 

testing referrals to risk interventions (Drohan, Ozanne, and Hughes, 2009).  Family 

history information such as the number of blood relatives affected with cancer, early age 

at diagnosis, multiple primary cancers in an individual, or male breast cancer are just 

some of the factors suggestive of HBOC that clinicians need to consider.  It is, however, 

important to discover these high risk patients in the general population in order to 

prevent breast and ovarian cancer or to diagnose them at an early age so that the 

disease can be effectively managed (Drohan et al., 2012). 

The need for a Clinical Decision Support (CDS) tool to effectively manage patient 

family history data was recommended by Drohan et al. (2012).  CDS tools aide 

clinicians in choosing the correct approach to managing patient information and 

improving the quality of medical care.  These systems must have the ability to evolve 

over time as new analysis techniques become available.  Results should be presented 

in a manner that the patients can understand to be able to make an informed decision in 

managing their risks.  Drohan, Ozanne, and Hughes (2009) discussed that the 
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approaches to CDS for HBOC had been unsuccessful due to several factors like data 

collection, data entry, data analysis, and interoperability issues.  Collecting family 

history information is time consuming and often lacks pertinent information such as the 

age of diagnosis of the relatives affected with breast or ovarian cancer.  The ideal 

situation is to have the family history updated at every patient visit but this is not a 

common practice.  In busy clinics, many medical practitioners see little or no value in 

entering patients’ family history data due to time and cost constraints.  Most clinicians 

record data in free text form but the unstructured data format is not useful for computer 

programs in drawing pedigrees or running analyses.  Also, different software 

applications require separate data entry, which only highlight the importance of 

interoperability.  As suggested by the Family Health History Multi-Stakeholder 

Workgroup (Feero et al., 2008), having individual vendors develop their own complete 

family history pedigree drawing and risk assessment tool is not practical as compared to 

the modular approach.  Top notch software that solves problems specific to small 

groups of clinicians should be integrated with electronic health records (EHRs) to reach 

a wider audience in a faster pace.  However, the challenge of having various tools 

linked is the heterogeneity of data, i.e., the various data structures that each module 

application requires.  Thus, standards were designed and developed by different 

organizations such as the Clinical Genomics Special Interest Group under HL7, an 

international group which specializes in standardizing health related data, and the 

American Health Information Community. 
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2.4.1. BAYESMENDEL 

One computer tool designed to help practitioners in predicting the risks of being a 

BRCA1/2 mutation carrier and some other cancer-related genes is BayesMendel.  Chen 

at al. (2004) developed the library BayesMendel, which is implemented in the R 

statistical language.  R is an object-oriented structure language, freely distributed, and 

open source.  BayesMendel follows a Mendelian model, which uses genotype and 

marginal distributions of genotype (penetrance and prevalence, respectively) as 

information to build conditional distributions of phenotype in order to predict the carrier 

status for genetic counseling.  It includes the BRCAPRO model for breast and ovarian 

cancer to predict BRCA1 and BRCA2 carrier predictions, as well as other models to 

predict mutations associated with some other cancers such as pancreatic, melanoma, 

and colorectal and endometrial cancers (BayesMendel Lab, 2015).  The library models 

can also be easily modified for different diseases and subpopulations without having to 

customize the library code.  The backbone of the software is the calculation of the 

carrier probability, i.e., calculating the probability distribution of the counselee genotype 

given the family history, covariates, and pedigree structure.  Within BayesMendel, there 

are three major object classes: pedigree objects, penetrance objects, and prediction 

objects.  A pedigree object is in matrix format and includes the phenotype information of 

the family and the pedigree structure.  The row represents each family member, and for 

each member, information such as member ID, relation to the counselee, gender, father 

and mother IDs, disease status, age of onset or current age, genetic testing result, etc., 

is in 12 or more columns.  Penetrance objects include information on literature-based 

net penetrance by age, gender, phenotye, and mutation status; default values are 
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available in the software.  Separate penetrance estimations are used for the AJ and 

non-AJ ancestries.  Prediction objects include the joint probability of an inherited 

deleterious mutation in the two genes in matrix form.  The rows or columns in the matrix 

signify the homozygous carrier, heterozygous carrier, and wild-type genotypes at 

BRCA1/BRCA2.  For example, the matrix results: 

BRCA20 BRCA21 
BRCA10 0.89051874 0.0729811285 
BRCA11 0.03631815 0.0001819807 

 
indicate that the probabilities of the proband being either a BRCA1 or BRCA2 mutation 

carrier is 0.10948126 (1 minus 0.89051874), being a BRCA1 mutation carrier is 

0.03631815, being a BRCA2 mutation carrier is 0.0729811285, and being both a 

BRCA1 and BRCA2 mutation carrier is 0.0001819807.  If the counselee is unaffected 

(without the disease), the net and crude cumulative risk of developing the disease is 

also included in the objects. 

One caveat is that the use of the BayesMendel package by itself would require 

some computer or programming knowledge for data entry and risks prediction.  In actual 

clinical settings, BayesMendel is used through the genetic counseling software 

packages CancerGene (https://www4.utsouthwestern.edu/breasthealth/cagene/) and 

HRA (http://bcb.dfci.harvard.edu/bayesmendel/riskservice.php).  Both of these user-

friendly tools do not require programming knowledge. 

 

2.4.2. HUGHES RISKAPPS (HRA) as available currently from the Web Service 

Drohan et al. (2012) offered a technological solution to help address the gap 

between the number of mutation carriers in the U.S. versus those who have been tested 
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and identified as BRCA1 or BRCA2 mutation carriers by developing HRA.  To estimate 

the gap and help increase the awareness of genetic testing and its benefits, they used 

data available on the internet and made assumptions about the types and results of 

genetic testing.  From their estimates of the U.S. population in 2000, there were 

348,274 mutation carriers among women who are 20 years and above.  Out of these, 

they estimate that only 29.3% carriers with cancer and 5.5% carriers without cancer 

have been identified; i.e., only a small proportion of BRCA1 or BRCA2 carriers have 

been identified even after 14 years of BRCA testing availability. 

HRA (open-source family history collection, risk assessment, and CDS) software 

system was developed for use at primary care clinics and cancer centers (Ozanne et 

al., 2009).  Figure 2.1 shows the HRA Work Flow and described briefly below. 

Figure 2.1. Hughes RiskApps (HRA) Work Flow (http://www.hughesriskapps.net) 
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Due to time and resource constraints, only a limited amount of family history is 

asked from a patient when he/she checks in to the clinic.  The process begins with a 

survey (either a Standard Survey or a Risk Clinic Survey) on a tablet, desktop 

computer, or kiosk, which the patient (or staff at the clinic) has to use to fill in her family 

information.  The entered data including the numbers and types of affected first and 

second degree relatives, and their ages of diagnosis are analyzed in real time by risk 

prediction models such as BRCAPRO (or a simpler version BRCAPROLYTE) and 

Myriad models to assess the risk of carrying a BRCA1 or BRCA2 mutation.  The results 

of the survey (risk factors, family history, risk of mutation, and lifetime risk of breast and 

ovarian cancers) are centrally stored and are available immediately to the clinicians 

involved with a patient, who can modify or add data to a patient’s file.  Family history 

information collected when the patient first enters the clinic will not have to be entered 

more than once if the patient is predicted with a higher BRCA1 or BRCA2 mutation 

carrier risk.  For all patients with greater than 10% risk of carrying a mutation, an 

information sheet is given or mailed which explains HBOC and recommends a genetic 

counseling appointment.  Finally, CDS is given to the clinician, which is composed of 

recommendations about genetic testing, surveillance, and prevention options, and then 

provides a list of relatives who should also be prioritized for genetic testing.  The 

electronic nature of data collection and evaluation creates a work flow that is highly 

efficient and potentially less prone to errors.  The auditing feature is also a desirable 

property as patient data and family history information can change over time and must 

be captured into the risk prediction model. 
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The HRA software was implemented and first installed in April 2007 at the 

Newton-Wellesley Hospital (NWH) (Drohan et al., 2012).  Nine hundred fifteen out of 

25,763 individuals (3.6%) were eligible for risk assessment and possible genetic testing 

based on a 10% risk of mutation threshold, representing a dramatic increase over 

previous numbers identified (from 1 to 2 per month to 5 to 6 per week) (Ozanne et al., 

2009).  This resulted in an increase in the number of patients sent for genetic testing, 

but a decrease in the workload of genetic counselors due to centralized data storage 

and sharing across clinics.  Given the success of implementation, cost benefits by 

several departments, and increase in high-volume screening and risk prediction for 

HBOC, this system is likely to improve the efficiency and effectiveness of care as well 

as increase the number of at-risk relatives who can be identified and prioritized for 

assessment. 

The successful implementation of HRA at the NWH illustrates how large-scale 

identification and management of women at high-risks can be conducted in an efficient 

manner in primary care settings, which can play a significant role in the prevention or 

early detection of cancer for many women who may be otherwise unaware of their risk.  

In 2012, Drohan et al. reported that 2,255 women had been identified by HRA to be at 

high risks.  However, even though BRCAPROLYTE has been successfully implemented 

in clinical settings, its effectiveness is unknown as there has been no formal statistical 

evaluation and validation performed to-date, as is with other statistical models for 

predicting an individual’s lifetime risk (Amir et al., 2010; Gail & Mai, 2010).  This process 

which can critically affect the health of millions of women must be formally validated and 

enhanced for maximum efficacy and efficiency. 
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We formalize the idea of BRCAPROLYTE by developing simplified versions of 

BRCAPRO.  However, to bring BRCAPRO to this simplified level and yet be helpful, we 

need to balance the tradeoff between simplicity (with regard to the amount of 

information entered) and the overall accuracy achieved.  This motivation naturally leads 

to a two-stage approach.  The first stage is intended for primary care settings wherein 

individuals provide limited information about their family history of cancers, which is then 

used to calculate carrier probabilities using a simplified version of BRCAPRO or other 

simpler models such as FHAT.  If this probability is sufficiently high, the patient will be 

referred for a more exhaustive risk assessment, the second stage, wherein the full 

version of BRCAPRO is utilized.  This two-stage approach could play a central role in 

identifying potential BRCA mutation carriers so that they can be referred for further risk 

assessment and genetic testing.



 

1Originally appearing in Breast Cancer and Research Treatment  
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CHAPTER 3 

 

SIMPLIFYING CLINICAL USE OF THE GENETIC RISK PREDICTION MODEL 

BRCAPRO1 

 

3.1. INTRODUCTION 

Carriers of deleterious mutations of the BRCA1 and BRCA2 genes are at a much 

higher lifetime risk of developing breast and ovarian cancers than the general 

population (Antoniou et al., 2003; King, Marks, and Mandell, 2003), and may benefit 

from more intensive screening, prophylactic surgery, and/or chemoprevention (Schwartz 

et al., 2008).  Yet a majority of mutation carriers remain unaware of their status and risk, 

and are not managed in a way that might mitigate their risk (Drohan et al., 2012).  This 

is partly because health care providers lack tools that can help them efficiently identify 

high-risk patients within the time and resource constraints of a busy practice.  Genetic 

risk prediction models used currently in genetic counseling could help fill this gap if 

adapted and incorporated into Electronic Medical Records (EMRs) or other Health 

Information Technology (HIT) solutions (Drohan, Ozanne, and Hughes, 2009).  Such 

adaptation could play a central role in identifying potential carriers so that they can be 

referred for risk assessment, genetic testing, and appropriate management. 

The BRCAPRO genetic risk prediction model (Parmigiani, Berry, and Aguilar, 

1998) is widely used in genetic counseling and is freely available through the  
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BayesMendel R package (Chen et al., 2004), CancerGene genetic counseling package 

(http://www.utsouthwestern.edu/utsw/cda/dept47829/files/65844.html), 

HughesRiskApps (HRA; http://www.HughesRiskApps.net), and through a web-based 

risk service (http://bayesmendel.dfci.harvard.edu/risk/).  It estimates the probability that 

a counselee carries a deleterious mutation of BRCA1 or BRCA2 as well as his/her risk 

of developing cancer.  BRCAPRO is improved continually and currently can utilize a 

wealth of relevant information on proband and family history (Biswas et al., 2012; Chen, 

Blackford, and Parmigiani, 2009; Katki, 2007; Katki et al., 2008; Tai et al., 2008).  

However, in many health care settings, collecting exhaustively the family history used 

by BRCAPRO is not practical.  Thus, it is useful to develop simplified adaptations of 

BRCAPRO.  An example, named BRCAPROLYTE, is implemented in HRA (Ozanne et 

al., 2009). 

HRA is a freeware program designed to manage high-risk clinic data as well as 

to identify high-risk women within the framework of a breast imaging center, a breast 

surgery practice, or an obstetrics practice.  HRA collects family history via a tablet-

based, patient self-administered questionnaire and assesses risk fully electronically 

(Ozanne et al., 2009).  To address time and resource constraints, the basic HRA survey 

only collects a limited family history including the numbers and types of affected first- 

and second-degree relatives, and their ages of diagnosis.  The data are analyzed in real 

time by BRCAPROLYTE and other models to assess the risk of carrying a BRCA1/2 

mutation.  If the risk is high (10 % or greater in many clinical applications), the patient is 

informed that counseling is advised.  The electronic nature of the process makes it 
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highly efficient.  HRA and hence BRCAPROLYTE are currently in use in many clinical 

settings; however, BRCAPROLYTE has not been evaluated and tested. 

In this article, we evaluate BRCAPROLYTE and three other simplified versions of 

BRCAPRO that we refer to as BRCAPROLYTE-Plus, BRCAPROLYTE-Simple, and 

BRCAPRO-1Degree.  BRCAPROLYTE-Plus takes the same information as 

BRCAPROLYTE plus the family structure and additionally imputes ages of unaffected 

relatives.  BRCAPROLYTE-Simple does not require knowledge of family structure and 

imputes both the family structure and the ages of unaffected relatives.  BRCAPRO-

1Degree is the same as BRCAPROLYTE but uses information on first-degree affected 

relatives only.  In addition, we also consider the Family History Assessment Tool 

(FHAT) (Gilpin, Carson, and Hunter, 2000), another tool designed to rapidly identify 

high-risk individuals for testing.  We compare the performances of these five tools and 

also investigate the clinical implications of using them. 

 

3.2. METHODS 

 

3.2.1. DATA 

We use data originally collected for the Cancer Genetics Network (CGN) Carrier 

Probability Validation project (Parmigiani et al., 2007), and additional data from the MD 

Anderson Cancer Center (MDA), as summarized in Table 3.1.  While MDA was one of 

the sites in Parmigiani et al. (2007), we excluded it from this analysis to avoid overlap 

with larger and more up-to-date data we have available.  Data from Baylor College of 

Medicine are a population-based sample of Ashkenazi Jews and include a much 
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smaller proportion of BRCA mutation carriers (2.1 %) compared to other sites, wherein 

families were selected for participation in high-risk clinics.  In total, we consider 2,713 

probands with family history information and genetic test results.  A total of 576 (21.2 %) 

probands are BRCA mutation carriers.  Three probands are carriers of both BRCA1 and 

BRCA2 mutations.  The median family size ranges from 10 to 35, which highlights the 

practical difficulty of collecting complete family information in many health care settings.  

We ran BRCAPRO, BRCAPROLYTE, BRCAPROLYTE-Plus, BRCAPROLYTE-Simple, 

BRCAPRO-1Degree, and FHAT on all probands.  In the following, we discuss these 

tools and the evaluation strategy. 

 

3.2.2. BRCAPRO 

BRCAPRO is a Mendelian model utilizing detailed information on all available 

relatives (of any degree) including relationships between members, ethnicity, ages of 

breast and ovarian cancer diagnosis, and current age/age of death for unaffected 

members.  We used the version implemented in BayesMendel 2.0-8, which also 

incorporates breast tumor marker (ER, PR, and Her-2/neu) information for members 

affected with breast cancer (Biswas et al., 2012; Tai et al., 2008).  However, this 

information was only available for MDA, and so for those families, we evaluated 

BRCAPRO both with and without using marker information.  To be consistent across all 

sites while combining the results, the latter is the one we used in our summaries.  We 

present differences resulting from including tumor marker in the Discussion section.  

None of the following simpler tools use marker information.
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Table 3.1 Pedigree characteristics by sites 
All sites MDA GT Penn Duke JHU Baylor UTSW HCI 

Total pedigrees 2713 796 248 773 277 106 282 115 116 
Pro. AJ descent 744 (27.4) 80 (10.1) 89 (35.9) 194 (25.1) 26 (9.4) 48 (45.3) 282 (100) 22 (19.1) 3 (2.6) 
Pro. BRCA1+ 377 (13.9) 107 (13.4) 54 (21.8) 131 (16.9) 37 (13.4) 10 (9.4) 6 (2.1) 17 (14.8) 15 (12.9) 
Pro. BRCA2+ 202 (7.4) 80 (10.1) 22 (8.9) 57 (7.4) 17 (6.1) 5 (4.7) 0 (0) 9 (7.8) 12 (10.3) 
Pedigree size** 20 (15) 35 (19) 18 (8) 16 (10) 19 (8) 15 (7) 15 (7) 10 (6) 23 (16.5) 
Age of pro.** 49 (17) 46 (16) 51.5 (14) 49 (19) 48 (13) 50 (12.75) 52 (14) 47 (16) 61.5 (24.25) 
Males tested 87 (3.2) 9 (1.1) 2 (0.8) 68 (8.8) 0 (0) 2 (1.9) 0 (0) 6 (5.2) 0 (0) 
Males tested and BC 48 (1.8) 5 (0.6) 1 (0.4) 39 (5) 0 (0) 1 (0.9) 0 (0) 2 (1.7) 0 (0) 
Pro. unilateral BC 1628 (60) 517 (64.9) 198 (79.8) 500 (64.7) 193 (69.7) 49 (46.2) 33 (11.7) 51 (44.3) 87 (75) 
Pro. bilateral BC 244 (9) 94 (11.8) 34 (13.7) 51 (6.6) 46 (16.6) 7 (6.6) 0 (0) 12 (10.4) 0 (0) 
Pro. with OC 245 (9) 87 (10.9) 21 (8.5) 86 (11.1) 27 (9.7) 5 (4.7) 2 (0.7) 10 (8.7) 7 (6) 
Pro. with BC and OC 88 (3.2) 27 (3.4) 8 (3.2) 35 (4.5) 11 (4) 1 (0.9) 0 (0) 6 (5.2) 0 (0) 
BC age for pro.** 43 (14) 42 (13) 44 (12) 42 (15) 42 (12) 46 (10.25) 48 (13) 42 (13.5) 47 (20.5) 
OC age for pro.** 51 (14) 54 (17) 47 (8) 53.5 (14.75) 49 (7) 50 (14) 58 (20) 49 (11.75) 52 (8.5) 
All data except for the MDA site are from Parmigiani et al. (2007).  Entries are numbers followed by percents in 
parentheses except for rows denoted by ** where entries are median followed by Inter-quartile range (IQR) in parenthesis 
 
Pro. Proband. BC Breast Cancer, OC Ovarian Cancer, MDA MD Anderson Cancer Center, GT Georgetown University, 
Penn University of Pennsylvania, Duke Duke University, JHU Johns Hopkins University, Baylor Baylor College of 
Medicine, UTSW University of Texas Southwestern Medical Center, HCI Huntsman Cancer Institute
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3.2.3. BRCAPROLYTE 

BRCAPROLYTE evaluates BRCAPRO using age of the proband and ages of 

diagnosis for affected first- and second-degree relatives.  A proband is asked about the 

numbers and types of first- and second-degree relatives (including maternal/paternal 

side information), and if any of those relatives are affected with cancer.  If the proband 

indicates that a relative has cancer, BRCAPROLYTE further requires the age of 

diagnosis.  For unaffected relatives, no additional information is collected.  Also, the AJ 

status of the proband is collected and utilized in calculations.  We evaluated 

BRCAPROLYTE using BRCAPRO, by setting the current age/age at death of 

unaffected relatives as missing. 

 

3.2.4. BRCAPROLYTE-PLUS 

As BRCAPROLYTE ignores unaffected relatives, its carrier probabilities are 

generally inflated.  However, it is not excessively onerous to collect information on the 

numbers of first- and second-degree relatives, as HRA does currently.  Using these, in 

BRCAPROLYTE-Plus, we impute the ages of unaffected relatives to compensate for 

this inflation, and thereby reduce false positives. 

For imputation purposes, “age” refers to current age or age at death.  

BRCAPROLYTE-Plus imputes ages by utilizing an external independent dataset of 

unaffected relatives from families collected in colorectal cancer high-risk clinics (Chen et 

al., 2006).  In Table 3.2, we list the median and inter-quartile range of ages for different 

first- and second-degree relative types in this dataset, stratified by the number of 

relatives of that type (1, 2–4, and ≥5).  For imputation, we use the median age from this 
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table.  For example, if a proband has 3 maternal aunts, we impute their current ages 

using the median age of maternal aunts of probands who have 2–4 maternal aunts 

(67.5 years).  We do not impute family structure in BRCAPROLYTE-Plus, so 

BRCAPROLYTE-Plus requires the same information as BRCAPROLYTE. 

Table 3.2 Median and interquartile range of ages of various relative types stratified by 
the number of relatives obtained from the colorectal data (Chen et al., 2006) 
Relative type Number of relatives 

1 2–4 ≥5 
Sister 48 (20) 48.5 (18.5) 54 (19.4) 
Brother 49 (19) 48 (16) 57.1 (19.4) 
Daughter 28 (23) 33.5 (21.5) 48.2 (13.1) 
Son 28 (21) 30 (23.2) 46.4 (8.9) 
Maternal aunt 70 (17) 67.5 (19) 68.2 (16.3) 
Maternal uncle 67 (20.5) 65.7 (19.2) 61.8 (13.5) 
Paternal aunt 70 (28) 68.5 (18.5) 69.5 (14.3) 
Paternal uncle 67 (21.8) 66 (16) 67.5 (15.3) 
Mother 70 (20) - - 
Father 69 (19) - - 
Paternal grandmother 76 (20) - - 
Paternal grandfather 70 (25) - - 
Maternal grandmother 75 (22) - - 
Maternal grandfather 70 (24) - - 
BRCAPROLYTE-Plus and BRCAPROLYTE-Simple impute the median ages for ages of 
unaffected relatives 
 
 

3.2.5. BRCAPROLYTE-SIMPLE 

BRCAPROLYTE-Plus requires that the family structure be known.  To explore 

whether the burden for data collection can be further reduced, we examine 

BRCAPROLYTE-Simple, which only requires information on the numbers and types of 

affected relatives and their ages of diagnosis.  Unlike BRCAPROLYTE-Plus, this does 

not need knowledge of the total number of relatives of each type.  BRCAPROLYTE-

Simple imputes the number of relatives using the median number of relatives for each 
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relative type from the same colorectal data used for imputing ages in BRCAPROLYTE-

Plus (Chen et al., 2006).  The median number of relatives is one for each relative type 

that is listed in Table 3.2.  So, if a proband does not have an affected relative of a 

particular type, a single unaffected relative of that type is created.  Imputation of ages 

for the newly created unaffected relatives proceeds as in BRCAPROLYTE-Plus. 

 

3.2.6. BRCAPRO-1DEGREE 

This tool is similar to BRCAPROLYTE but only uses affected relatives up to the 

first degree.  So, to run it, we set information on all relatives beyond the first degree and 

all unaffected first-degree relatives as missing. 

 

3.2.7. FHAT 

FHAT uses a 17-question interview about affected relatives to produce a 

quantitative score.  Any relative affected with breast, ovarian, prostate, or colon cancer 

up to 3rd degree contribute to the score.  A score of 10 or higher is typically considered 

as indicative of high risk.  So, for FHAT, we use this cutoff for calculating sensitivity, 

specificity, and predictive values as described below. 

 

3.2.8. EVALUATION STRATEGY 

We use scatterplots to visually compare the probability of carrying any BRCA 

mutation, as generated by each of the simpler tools to those obtained using BRCAPRO.  

Next, we evaluate the clinical impact of using a simplified tool in place of BRCAPRO.  

For this, first we compare various tools in terms of the numbers of probands whose 
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carrier probabilities exceed or are equal to different cutoffs (i.e., the number of referrals) 

by each tool, and the number of carriers captured among those referred.  With this 

information, we investigate what cutoffs may be appropriate for simpler tools to clinically 

perform similar to how BRCAPRO performs at 10 %, the most commonly used cutoff.  

To further assess clinical impact, we consider the additional numbers of probands who 

are classified correctly or incorrectly as high or low risk (i.e., referred or not referred) 

using a simpler version as compared to BRCAPRO.  Here the classification is 

considered correct if a carrier is classified as high risk or a non-carrier is classified as 

low risk.  Thus, for such comparison, four numbers are of interest – two each for correct 

and incorrect classification.  These are combined in a measure called Net 

Reclassification Improvement (NRI) (Pencina et al., 2008), which we report along with 

its four components.  Next, we plot the Receiver Operating Characteristic (ROC) curve 

and report the Area under the ROC curve (AUC) for all tools.  We also report the 

sensitivity, specificity, predictive value (PV) positive (PVP) and negative (PVN) at 

various cutoffs.  To assess calibration, we compare the observed number of carriers to 

the number of carriers expected according to each method.  For FHAT, we do not 

evaluate calibration and NRI as the FHAT score is not in the probability scale.  We find 

95 % confidence interval (CI) obtained using the bootstrap method (Efron and 

Tibshirani, 1994) for each of the reported statistics.  We used the statistical software R 

2.15.2 for all computations. 
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3.3. RESULTS 

Figure 3.1 shows scatterplots of carrier probabilities from the five simpler tools 

plotted against those from BRCAPRO.  The BRCAPROLYTE probabilities are, in 

general, larger than the corresponding BRCAPRO probabilities.  This is expected as 

BRCAPROLYTE only uses information on affected relatives, leading to inflation of the 

probability.  BRCAPROLYTE-Plus, by imputing the ages for those relatives, decreases 

the probabilities across the range as seen from the fact that the points in its plot are 

closer to the diagonal line of equality with BRCAPRO.  BRCAPROLYTE-Simple shows 

an intermediate pattern between those of BRCAPROLYTE and BRCAPROLYTE-Plus.  

The probabilities from BRCAPRO-1Degree seem to have the least correlation with 

those from BRCAPRO.  This demonstrates that information on first-degree relatives 

only is not generally enough to capture family history for counseling purposes.  Finally, 

FHAT scores are positively correlated with BRCAPRO probabilities. 

In clinical applications it is common to consider a specific threshold of risk as a 

trigger for differential clinical management, as in this case, referral to counseling.  In 

Table 3.3, we report the total number of referrals and the number of carriers captured in 

those referrals.  We would ideally like to have fewer referrals (and hence reduced 

burden of following up the referred patients) but capture more carriers in those referrals.  

At the most commonly used cutoff of 10 %, BRCAPRO captures 413 carriers out of 

1,031 referrals giving a percentage of carriers per referral (or predictive value positive) 

of 40 %.  In other words, among probands whose carrier probability is 10 % or higher, 

40 % are actually carriers.  The corresponding percentages for other tools are 30 % 
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(BRCAPROLYTE), 42 % (BRCAPROLYTE-Plus), 32 % (BRCAPRO-1Degree), 36 % 

(BRCAPROLYTE-Simple), and 30 % (FHAT).  Thus, BRCAPROLYTE-Plus is closest to  

Figure 3.1 Probabilities of carrying any BRCA mutation as computed by the five simpler 
tools plotted against those from BRCAPRO 
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Table 3.3 Numbers of referrals (denominator) made by each tool at different cutoffs and the number of carriers 
(numerator) out of those referrals 
Cutoff BRCAPRO LYTE LYTE-Plus BRCAPRO-1Degree LYTE-Simple FHAT 
0.3 300/580 = 0.52 387/997 = 0.39 276/527 = 0.52 307/713 = 0.43 316/648 = 0.49 
0.25 320/649 = 0.49 407/1105 = 0.37 298/590 = 0.51 329/815 = 0.40 334/721 = 0.46 
0.2 345/734 = 0.47 436/1250 = 0.35 319/652 = 0.49 352/922 = 0.38 357/818 = 0.44 
0.1 413/1031 = 0.40 493/1631 = 0.30 379/902 = 0.42 418/1301 = 0.32 426/1166 = 0.37
0.05 457/1358 = 0.34 531/2027 = 0.26 438/1243 = 0.35 475/1726 = 0.28 486/1521 = 0.32
0.03 497/1620 = 0.31 552/2254 = 0.24 471/1476 = 0.32 516/2060 = 0.25 511/1788 = 0.29
0.01 547/2069 = 0.26 568/2583 = 0.22 535/2002 = 0.27 560/2542 = 0.22 556/2299 = 0.24
10 488/1625 = 0.30
The bold numbers correspond to the commonly used threshold of 10 % for referral by BRCAPRO and for simpler tools, 
they correspond to the modified thresholds at which the respective tools perform closest to BRCAPRO 
 
LYTE represents BRCAPROLYTE 
 
BRCAPRO in this regard followed by BRCAPROLYTE-Simple.  The tools compare similarly at other cutoffs.  Table 3.3 

can also be used to find cutoffs at which simpler tools perform closest to what BRCAPRO provides at the 10 %, or other, 

cutoff.  For example, if we want the number of referrals to be similar to that of BRCAPRO at 10 % (1,031), the cutoff to be 

used for BRCAPROLYTE should be slightly less than 30 %; however, if we want to capture similar number of carriers 

(413) we might set the threshold between 20 and 25 %.  For BRCAPROLYTE-Plus and BRCAPROLYTE-Simple, the 

respective cutoffs should be slightly lower and higher than 10 %, and they will capture comparable numbers of carriers as 

BRCAPRO.  For BRCAPRO-1Degree, the cutoff should be close to 20 %, and it will capture fewer carriers than 

BRCAPRO.  Overall, it is clear that BRCAPROLYTE-Plus performs best among all simpler tools.  Finally, FHAT at cutoff 

10 has a comparable number of referrals as do BRCAPRO at cutoff 3 % and BRCAPROLYTE at cutoff 10 %, and has 



 

47 
 

also comparable percentage of carriers captured among those referred as 

BRCAPROLYTE. 

To further evaluate the clinical implications of using these simpler versions, we 

consider how many additional probands would be reclassified if one was to switch from 

BRCAPRO to a simplified implementation.  At the threshold of 10 % carrier probability, 

BRCAPROLYTE reclassifies to high risk (i.e., the carrier probability moves above the 

threshold), 14 % of carriers (a desirable reclassification) and 25 % of non-carriers (an 

undesirable reclassification), while it does not reclassify any carrier or non-carrier to low 

risk.  This is summarized in NRI (Table 3.4), which is calculated as (0.14 – 0) – (0.25 – 

0) = –0.11; the negative value in this case reflects the fact that BRCAPROLYTE is 

worse in classification than BRCAPRO.  BRCAPROLYTE-Plus, at the same cutoff, 

reclassifies fewer families than BRCAPROLYTE, and the difference with BRCAPRO is 

not statistically significant on the NRI scale.  In Table 3.4, we report the NRI and its four 

components for the tools studied here, at three different clinically relevant thresholds.  

BRCAPROLYTE-Plus is closest to BRCAPRO with its CI including 0 for each threshold.  

The next best is BRCAPROLYTE-Simple. 

Figure 3.2 shows ROC curves and the corresponding AUC for the combined 

sample.  Among the simplified tools, BRCAPROLYTE-Plus and BRCAPROLYTE-

Simple have the highest AUC while BRCAPRO-1Degree performs worst.  The AUCs 

vary by sites as reported in Table 3.5.  In general, of the simpler tools, BRCAPROLYTE-

Plus performs the best followed closely by BRCAPROLYTE-Simple. 
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Figure 3.2 ROC curves with AUC and their 95 % CI 

 
 

Next, in Table 3.6, we report sensitivity, specificity, and PVs.  These statistics 

vary across different tools at the same cutoff as reflected earlier in the varying numbers 

of referral and carriers captured.  In fact, PVP is equivalent to the % of carriers captured 

per referral as reported in Table 3.3.  At 10 % cutoff, BRCAPROLYTE has the highest 

sensitivity, even higher than BRCAPRO, but has the lowest specificity while 

BRCAPROLYTE-Plus has the lowest sensitivity and highest specificity.  If one is 

interested in comparing specificities of different tools for a fixed sensitivity, Figure 3.3 
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may be used.  For example, at the 80 % sensitivity value denoted by the horizontal gray 

line, the specificity values for different tools can be found by drawing a vertical line from 

the 80 % sensitivity point to the corresponding specificity curve.  BRCAPROLYTE-Plus 

and BRCAPROLYTE-Simple give slightly higher specificity than BRCAPROLYTE for 

similar values of sensitivity.  Also, from Table 3.6, the specificity, sensitivity, and PVs of 

FHAT are similar to that of BRCAPROLYTE at 10 % cutoff. 

With regard to calibration, the average number of carriers estimated by each tool 

is 517.30 (BRCAPRO), 820.83 (BRCAPROLYTE), 604.34 (BRCAPRO-1Degree), 

464.71 (BRCAPROLYTE-Plus), and 577.91 (BRCAPROLYTE-Simple).  By comparing 

these to the observed number of carriers, 576, we see that BRCAPROLYTE 

overestimates the overall number of carriers while BRCAPROLYTE-Plus 

underestimates.  BRCAPROLYTE-Simple is best and even slightly better than 

BRCAPRO. 

 

3.4. DISCUSSION 

We have developed and evaluated simplified versions of BRCAPRO.  Of these, 

BRCAPROLYTE has been in use in clinical settings, though this is the first time that it is 

empirically evaluated.  Our results show that it has high sensitivity but it overestimates 

carrier probabilities by a potentially large extent as it relies only on the affected relatives.  

Thus, we proposed BRCAPROLYTE-Plus wherein ages for unaffected relatives are 

imputed.  This attempts to correct for the overestimation without increasing the burden 

of data collection.  BRCAPROLYTE-Plus does balance the overestimation to some 

extent and thus gives higher specificity than BRCAPROLYTE for similar values of 
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Table 3.4 NRI statistic and its four components representing the proportions of carriers (C) and non-carriers (NC) who got 
reclassified as high risk (moved up) or low risk (moved down) when a simplified tool is used in place of BRCAPRO at the 
same cutoff 
Cutoff Tool C.up C.down NC.up NC.down NRI 95 % CI 
0.01 BRCAPROLYTE 0.04 0 0.23 0 –0.19 (–0.22, –0.17) 

BRCAPRO-1Degree 0.03 0.01 0.22 0.01 –0.19 (–0.22, –0.17) 
BRCAPROLYTE-Plus 0.01 0.03 0.04 0.07 0 (–0.02, 0.03) 
BRCAPROLYTE-Simple 0.02 0 0.11 0.01 –0.09 (–0.11, –0.07) 

0.05 BRCAPROLYTE 0.13 0 0.28 0 –0.15 (–0.18, –0.12) 
BRCAPRO-1Degree 0.1 0.07 0.21 0.05 –0.13 (–0.17, –0.1) 
BRCAPROLYTE-Plus 0.02 0.05 0.02 0.07 0.01 (–0.01, 0.04) 
BRCAPROLYTE-Simple 0.06 0.01 0.09 0.02 –0.01 (–0.04, 0.01) 

0.1 BRCAPROLYTE 0.14 0 0.25 0 –0.1 (–0.14, –0.07) 
BRCAPRO-1Degree 0.1 0.09 0.18 0.05 –0.12 (–0.15, –0.07) 
BRCAPROLYTE-Plus 0.01 0.07 0.01 0.06 –0.01 (–0.04, 0.01) 
BRCAPROLYTE-Simple 0.05 0.02 0.08 0.02 –0.03 (–0.06, –0.01) 

The four components are C.up, C.down, NC.up, and NC.down 
 
sensitivity.  We also showed that the burden of data collection can be further reduced by asking only about the affected 

relatives and using BRCAPROLYTE-Simple to impute the rest of the family members and their ages.  BRCAPROLYTE-

Simple performs slightly better than BRCAPROLYTE.  FHAT at cutoff 10 performed similar to BRCAPROLYTE at cutoff 

10 %; however, BRCAPROLYTE has larger AUC.  BRCAPRO-1Degree performs worst, clearly demonstrating the need 

for collecting information on affected second-degree relatives for genetic risk prediction. 
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Table 3.5 AUC and its 95 % CI by site 
BRCAPRO LYTE LYTE-Plus BRCAPRO-1Degree LYTE-Simple FHAT 

MDA 0.774 (0.735, 0.812) 0.737 (0.693, 0.779) 0.768 (0.729, 0.808) 0.681 (0.631, 0.728) 0.759 (0.715, 0.802) 0.737 (0.694, 0.779) 

GT 0.765 (0.7, 0.826) 0.743 (0.674, 0.807) 0.755 (0.689, 0.822) 0.722 (0.643, 0.793) 0.75 (0.68, 0.816) 0.716 (0.643, 0.785) 

Penn 0.771 (0.732, 0.811) 0.765 (0.724, 0.806) 0.765 (0.724, 0.806) 0.745 (0.7, 0.784) 0.772 (0.732, 0.81) 0.716 (0.671, 0.759) 

Duke 0.823 (0.763, 0.877) 0.816 (0.75, 0.874) 0.827 (0.768, 0.881) 0.781 (0.706, 0.85) 0.819 (0.76, 0.873) 0.754 (0.68, 0.821) 

JHU 0.829 (0.722, 0.914) 0.81 (0.703, 0.906) 0.841 (0.744, 0.931) 0.7 (0.522, 0.856) 0.816 (0.709, 0.917) 0.83 (0.721, 0.921) 

Baylor 0.699 (0.588, 0.816) 0.723 (0.61, 0.842) 0.727 (0.613, 0.836) 0.744 (0.61, 0.869) 0.717 (0.591, 0.844) 0.759 (0.661, 0.845) 

UTSW 0.82 (0.72, 0.907) 0.808 (0.71, 0.892) 0.817 (0.72, 0.899) 0.744 (0.615, 0.86) 0.821 (0.726, 0.905) 0.772 (0.673, 0.859) 

HCI 0.696 (0.569, 0.815) 0.641 (0.52, 0.754) 0.675 (0.539, 0.797) 0.618 (0.494, 0.734) 0.673 (0.546, 0.791) 0.599 (0.474, 0.725) 
LYTE represents BRCAPROLYTE 
 
MDA MD Anderson Cancer Center, GT Georgetown University, Penn University of Pennsylvania, Duke Duke University, 
JHU Johns Hopkins University, Baylor Baylor College of Medicine, UTSW University of Texas Southwestern Medical 
Center, HCI Huntsman Cancer Institute 
 

We also found that there is only modest loss in discrimination and calibration by BRCAPROLYTE-Plus and 

BRCAPROLYTE-Simple as compared to the complete BRCAPRO.  From a practical point of view, as these simpler 

versions take limited amount of family information, they can be efficiently integrated into the EMR and other HIT solutions 

at the primary care or screening level, and thus can be routinely used to screen patients for their genetic risk.  

Nonetheless, it must be pointed out that BRCAPRO has additional features that are not included in simplified tools.  It can 

utilize information on tumor markers, genetic test results, and medical interventions such as oophorectomy (Biswas et al., 

2012; Katki, 2007; Tai et al., 2008).  BRCAPRO must also be available for management beyond screening. 
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Table 3.6 Sensitivity, Specificity, PVP, and PVN, and their 95 % CI 
Cutoff BRCAPRO LYTE LYTE-Plus BRCAPRO-1Degree LYTE-Simple FHAT 

Se 0.1 0.72 (0.68, 0.75) 0.86 (0.83, 0.88) 0.66 (0.62, 0.7) 0.73 (0.69, 0.76) 0.74 (0.7, 0.77) 
Sp 0.71 (0.69, 0.73) 0.47 (0.45, 0.49) 0.76 (0.74, 0.77) 0.59 (0.57, 0.61) 0.65 (0.63, 0.67)
Se 0.05 0.79 (0.76, 0.83) 0.92 (0.9, 0.94) 0.76 (0.72, 0.79) 0.82 (0.79, 0.85) 0.84 (0.81, 0.87)
Sp 0.58 (0.56, 0.6) 0.3 (0.28, 0.32) 0.62 (0.6, 0.64) 0.41 (0.39, 0.44) 0.52 (0.49, 0.54)
Se 0.03 0.86 (0.83, 0.89) 0.96 (0.94, 0.97) 0.82 (0.79, 0.85) 0.9 (0.87, 0.92) 0.89 (0.86, 0.91)
Sp 0.47 (0.45, 0.5) 0.2 (0.19, 0.22) 0.53 (0.51, 0.55) 0.28 (0.26, 0.3) 0.4 (0.38, 0.42) 
Se 0.01 0.95 (0.93, 0.97) 0.99 (0.98, 0.99) 0.93 (0.91, 0.95) 0.97 (0.96, 0.98) 0.97 (0.95, 0.98)
Sp 0.29 (0.27, 0.31) 0.06 (0.05, 0.07) 0.31 (0.29, 0.33) 0.07 (0.06, 0.08) 0.18 (0.17, 0.2) 
Se 10 0.85 (0.82, 0.88)
Sp 0.47 (0.45, 0.49)
PVP 0.1 0.4 (0.37, 0.43) 0.3 (0.28, 0.32) 0.42 (0.39, 0.45) 0.32 (0.3, 0.35) 0.37 (0.34, 0.39)
PVN 0.9 (0.89, 0.92) 0.92 (0.91, 0.94) 0.89 (0.88, 0.9) 0.89 (0.87, 0.9) 0.9 (0.89, 0.92) 
PVP 0.05 0.34 (0.31, 0.36) 0.26 (0.24, 0.28) 0.35 (0.33, 0.38) 0.28 (0.25, 0.3) 0.32 (0.3, 0.34) 
PVN 0.91 (0.9, 0.93) 0.93 (0.92, 0.95) 0.91 (0.89, 0.92) 0.9 (0.88, 0.92) 0.92 (0.91, 0.94)
PVP 0.03 0.31 (0.28, 0.33) 0.24 (0.23, 0.26) 0.32 (0.3, 0.34) 0.25 (0.23, 0.27) 0.29 (0.26, 0.31)
PVN 0.93 (0.91, 0.94) 0.95 (0.93, 0.97) 0.92 (0.9, 0.93) 0.91 (0.89, 0.93) 0.93 (0.91, 0.95)
PVP 0.01 0.26 (0.25, 0.28) 0.22 (0.2, 0.24) 0.27 (0.25, 0.29) 0.22 (0.2, 0.24) 0.24 (0.22, 0.26)
PVN 0.95 (0.94, 0.97) 0.94 (0.89, 0.98) 0.94 (0.92, 0.96) 0.91 (0.86, 0.95) 0.95 (0.93, 0.97)
PVP 10 0.3 (0.28, 0.32) 
PVN 0.92 (0.9, 0.94) 
LYTE represents BRCAPROLYTE
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Figure 3.3 Sensitivity and specificity for cutoffs ranging from 0.01 to 0.2 calculated at an 
increment of 0.01 

 
 

In our data, MDA is the only site that had information on ER, PR, and Her-2/neu.  

These were not utilized to assess BRCAPRO in the results presented here, to facilitate 

comparison with other sites and to better focus on assessing the information loss from 

omitting the questions about unaffected relatives’ age and/or family structure.  If tumor 

marker information is available, the loss in using simplified versions of BRCAPRO is 

greater.  For the MDA site, the AUC of BRCAPRO including marker information 

increases from 0.774 (in Table 3.5) to 0.802, and sensitivity/specificity at 10 % cutoff 
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increase from 0.64/0.78 to 0.66/0.79.  The calibration is only slightly changed.  If tumor 

marker information is readily available, the loss in using simpler tools is generally 

greater and must be weighed against the data collection burden associated with 

complete BRCAPRO. 

For BRCAPROLYTE-Plus, we imputed missing ages using the median age, after 

stratifying by the number of relatives.  We also carried out two sensitivity analyses by 

using the mean age in place of the median age and by using a coarser stratification by 

numbers of relatives.  The results from both analyses are very close to what we have 

reported. 

A practical issue is the choice of cutoff to be used for the simplified tools in 

clinical settings.  We described how cutoffs may be chosen so that the number of 

referrals by a tool is comparable to that of BRCAPRO.  One could also consider 

sensitivity and specificity.  The trade-off between sensitivity, specificity, and burden of 

following up of referrals can be evaluated using Tables 3.3, 3.6, and Figure 3.3 together 

to choose a cutoff that suits specific needs.  For example, a user of BRCAPROLYTE-

Simple could achieve a sensitivity of 0.84 and a specificity of 0.52 using a cutoff of 0.05.  

This would lead to referral of about half of the patients (1521/2713).  As seen in Figure 

3.3, for achieving the same sensitivity, different tools require different cutoffs.  As 

different clinical scenarios may require a different balance of specificity, sensitivity, and 

cost and benefit of genetic counseling, we recommend a careful weighing of cutoffs 

prior to implementation.  One should also keep in mind that the widely used 10 % cutoff 

has different interpretations and implications depending on the tool used, as we have 

discussed in the Results section.  For a specific clinical scenario, more formal statistical 
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analysis can be carried out to determine an optimal cutoff if the associated cost and 

benefit for genetic risk prediction can be quantified (Parmigiani, 2002). 

A limitation of our study is that the data used here are mostly from high-risk 

families.  For our one population-based sample, Baylor, we found that sensitivity 

dropped faster with increasing cutoff and so smaller cutoffs should be used for such a 

scenario, as expected.  The performance of the proposed tools for this site is similar to 

the results we presented here for combined sample and this is consistent with earlier 

studies (Parmigiani et al., 2007).  However, the sample size and the number of carriers 

for this site is small and so it would be useful to validate these approaches on a larger 

population-based sample. 

In summary, we have shown that one can use modifications of BRCAPRO with 

limited collection of family history to construct simple and practical risk assessment tools 

whose performance is comparable to that of standard tools used in high-risk clinics.  

This limited data collection is feasible in a busy practice.  Thus, these tools have 

formidable potential to bring the benefits of genetic counseling and testing to large 

sections of the population who are still unaware of the important prevention implications 

of inherited susceptibility.



 

2Originally appearing in Breast Cancer and Research Treatment 
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CHAPTER 4 

 

A TWO-STAGE APPROACH TO GENETIC RISK ASSESSMENT IN PRIMARY CARE2 

 

4.1. INTRODUCTION 

The risk of developing breast and ovarian cancers is high for the carriers of 

deleterious mutations of the BRCA1 and BRCA2 genes, and thus it is critical to identify 

carriers as early as possible (Antoniou et al., 2003; King, Marks, and Mandell, 2003).  

Yet there is a lack of streamlined procedures for identifying mutation carriers from a 

general population.  As a result, many carriers remain unaware of their status (Drohan 

et al., 2012).  The identification of potential carriers can be ideally initiated by primary 

care providers; however, they need tools that can help them in efficiently identifying 

high-risk patients within their constraints of limited time and resources.  Genetic risk 

prediction models that are used currently in genetic counseling are effective but too 

complex for the primary care setting, unless they can be simplified and incorporated into 

the electronic medical records (EMR) or other health information technology (HIT) 

solutions (Drohan, Ozanne, and Hughes, 2009).  With a simplified adaptation, potential 

carriers can be identified in primary care and referred for further risk assessment and 

genetic testing. 

The BRCAPRO genetic risk prediction model (Parmigiani, Berry, and Aguilar, 

1998) is used extensively in genetic counseling and is available in the BayesMendel R 
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package (Chen et al., 2004), the CancerGene genetic counseling package 

(https://www4.utsouthwestern.edu/breasthealth/cagene/), the web-based risk service 

(http://bayesmendel.dfci.harvard.edu/risk/), the Hughes RiskApps (HRA) package 

(http://www.HughesRiskApps.com), and other computing environments.  Based on the 

family history information provided by a counselee, BRCAPRO estimates the probability 

that she/he carries a BRCA1/2 mutation as well as her/his prospective risk of 

developing cancer.  Several improvements to BRCAPRO in recent years allow it to use 

a variety of information (Biswas et al., 2012; Chen, Blackford, and Parmigiani, 2009; 

Katki, 2007; Katki et al., 2008; Mazzola et al., 2015; Tai et al., 2008).  Primary care 

settings and breast imaging centers are ideal for fully reaping the preventative benefits 

of such risk prediction models at a large population level.  However, in such settings, 

collecting and assembling the exhaustive family history used by BRCAPRO are not 

practical. 

We have recently proposed three simplified versions of BRCAPRO: 

BRCAPROLYTE, BRCAPROLYTE-Plus, and BRCAPROLYTE-Simple (Biswas et al., 

2013).  We evaluated these tools on datasets collected in genetic counseling settings, 

and found that they entail only a modest loss of accuracy compared to BRCAPRO, 

especially BRCAPROLYTE-Plus and BRCAPROLYTE-Simple. 

This suggests that we can use these tools to achieve a balance between 

simplicity (an issue of utmost importance in primary care) and accuracy by carrying out 

genetic risk prediction in two stages.  In the first stage, intended for primary care, risk 

will be assessed using a simplified version of BRCAPRO.  Those found to be at 

sufficiently high risk will be referred to the second stage (counseling), where the full 
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BRCAPRO will be used.  A software implementation of such a two-stage approach is 

already available in HRA (Ozanne et al., 2009) which includes two sequentially 

administered surveys – “Short breast” and “Risk Clinic,” using limited and more 

exhaustive family information.  The two-stage procedure has not been evaluated in 

primary care settings so far. 

Our aim is to formally develop and investigate the two-stage approach.  We 

evaluate three versions of this approach, each with a different first-stage tool – 

BRCAPROLYTE, BRCAPROLYTE-Plus, and BRCAPROLYTE-Simple.  In each case, 

the second stage uses BRCAPRO on all available information. 

 

4.2. METHODS 

 

4.2.1. COHORTS 

We use retrospective data from three sources: Cancer Genetics Network (CGN), 

MD Anderson Cancer Center (MDA), and Newton-Wellesley Hospital (NWH).  The first 

two have been described and analyzed earlier (Biswas et al., 2012; Biswas et al., 2013; 

Parmigiani et al., 2007); here we analyze them for the first time using two-stage 

approaches.  In particular, the pedigree characteristics for each of seven sites in CGN 

and that of MDA can be found in Table 1 of Biswas et al. (2013).  For completeness, in 

Table 4.1, we list the characteristics of the two datasets combined (referred as 

CGN+MDA and analyzed as a whole throughout).  MDA as well as all CGN sites except 

one consists of high-risk families, i.e., the probands entered the study at least in part 

because of their personal and/or family history.  The third cohort captures all probands 
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referred for genetic counseling at the NWH.  The vast majority of these individuals enter 

the sample through a primary care encounter, typically a breast imaging visit.  They are 

subsequently referred to counseling if they have a prior history of ovarian cancer, meet 

National Comprehensive Cancer Network (NCCN) guidelines 

(http://www.nccn.org/professionals/physician_gls/f_guidelines.asp#detection), their 

BRCAPROLYTE probability exceeds 10 %, or are referred by a clinician based on 

his/her interpretation of risk.  A fraction of this cohort sought genetic counseling after a 

relative had already been tested; they will be analyzed separately also.  Pedigree 

characteristics of NWH data are listed in Table 4.1.  Less than 10 % of NWH probands 

are BRCA mutation carriers compared to 21 % carriers in CGN+MDA data.  The latter 

has also higher proportions of probands with breast and/or ovarian cancers along with 

younger affection ages.  The median reported family size is about 20, highlighting the 

practical difficulty of collecting complete family information in primary care. 

Table 4.1 Pedigree Characteristics 
CGN+MDA NWH 

Total pedigrees 2713 1344 
Probands of AJ descent: n (%) 744 (27.4) 366 (27.2)
Probands tested BRCA1+: n (%) 377 (13.9) 49 (3.6) 
Probands tested BRCA2+: n (%) 202 (7.4) 76 (5.7) 
No. of members per pedigree: median (IQR) 20 (15) 19 (20) 
Age of proband: median (IQR) 49 (17) 53 (16) 
Males tested: n (%) 87 (3.2) 14 (1) 
Males tested with BC: n (%) 48 (1.8) 6 (0.4) 
Probands with unilateral BC: n (%) 1628 (60) 698 (51.9)
Probands with bilateral BC: n (%) 244 (9) 72 (5.4) 
Probands with OC: n (%) 245 (9) 55 (4.1) 
Probands with BC & OC: n (%) 88 (3.2) 17 (1.3) 
BC age for proband: median (IQR) 43 (14) 47 (13.75)
OC age for proband: median (IQR) 51 (14) 53 (16.5) 

IQR Inter-quartile range, BC breast cancer, OC ovarian cancer 
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4.2.2. TWO-STAGE APPROACH 

In this approach, the first-stage tool is either BRCAPROLYTE, BRCAPROLYTE-

Plus, or BRCAPROLYTE-Simple.  We had earlier also considered the Family History 

Assessment Tool (FHAT) (Gilpin, Carson, and Hunter, 2000) and another simpler 

version of BRCAPRO based on first-degree relatives only.  Their performance was 

inferior compared to the three selected and thus we do not pursue them here.  In the 

second stage, the complete BRCAPRO is used on those probands whose first-stage 

probability exceeds a chosen cutoff. 

 

4.2.3. BRCAPRO 

BRCAPRO utilizes information on all available relatives including family structure, 

ages of diagnosis, current age/age at death for unaffected members, ethnicity, and 

additional information such as breast tumor markers and BRCA genetic test results, if 

available.  We used the version implemented in BayesMendel 2.0-9. 

 

4.2.4. BRCAPROLYTE 

BRCAPROLYTE applies the BRCAPRO model using only information on the 

numbers and types of first- and second-degree relatives, which relatives are affected 

with breast and ovarian cancer, and their affection ages.  We performed 

BRCAPROLYTE calculations using BRCAPRO after setting the current age/age at 

death of all relatives as missing to mimic the scenario when ages are not 

collected/known to the proband. 
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4.2.5. BRCAPROLYTE-PLUS 

BRCAPROLYTE does not collect data on ages of unaffected relatives leading to 

inflated carrier probabilities in general (Biswas et al., 2013).  As the numbers of first- 

and second-degree relatives are collected, we can impute the ages of unaffected 

relatives to compensate for the inflation of probabilities, and thereby offset false 

positives.  This idea is implemented in BRCAPROLYTE-Plus.  The imputation of ages is 

based on an external large dataset as described elsewhere (Biswas et al., 2013). 

 

4.2.6. BRCAPROLYTE-SIMPLE 

BRCAPROLYTE-Plus needs knowledge of the numbers of each type of relative.  

A further simplification can be achieved by imputing this information when it is unknown.  

BRCAPROLYTE-Simple does this through two levels of imputation: number of relatives 

of each type and ages of unaffected relatives, based on an external dataset (Biswas et 

al., 2013).  The burden of data collection is therefore the least with BRCAPROLYTE-

Simple. 

 

4.2.7. EVALUATION STRATEGY 

To establish a baseline, we apply each simplified tool and BRCAPRO separately 

to all probands and compare the results for NWH data.  We earlier reported results for 

each of the simplified tools on the CGN and MDA data (Biswas et al., 2013).  This is the 

first analysis addressing the two-stage approach. 
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We then evaluate the clinical impact of two-stage approaches by quantifying the 

reduction in genetic counseling burden as compared to applying BRCAPRO to all 

probands.  We consider various combinations of cutoffs for the two stages (denoted as 

c1 and c2, respectively) and note the number of counselees whose carrier probabilities 

exceed c1 and/or c2.  We compare scenarios constructed so that the numbers of carriers 

captured by the two-stage approaches and BRCAPRO are about the same. 

The statistical evaluation of a two-stage approach is more involved than that of a 

single-stage tool as results from both stages as well as dependence of the second 

stage on the first-stage results must be considered.  In Supplementary Methods, we 

show that the overall sensitivity (Se.O), specificity (Sp.O), Area Under ROC Curve 

(AUC.O), and predictive value positive and negative (PVP.O and PVN.O) can be written 

in terms of sensitivity and specificity of the first stage and of the second stage given the 

results of the first stage. 

Next, we calculate the ratio of the observed (O) number of carriers to the 

expected (E) number (O/E).  To compute E, we need one carrier probability per 

proband.  We use the first-stage probability for counselees who undergo the first stage 

only (first-stage probability <c1), while for the rest, we use their second-stage probability.  

We plot O/E, along with their 95 % confidence interval (CI), for a set of c1 values 

ranging from 0.01 to 0.1, the cutoffs typically used in practice. 

We also consider scenarios where the percentage of counselees to be followed-

up in the second stage is fixed in advance in consideration of resource constraints.  This 

requires setting a specific cutoff c1 for the first stage.  Depending on whether a proband 

was evaluated at the second stage, we use either the first- or second-stage probability 
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and calculate AUC referred as AUC.p, where “p” is the fixed percentage follow-up and is 

set to 25, 50, and 75 % in turn. 

For all analyses, we also report the results when all probands are evaluated 

using BRCAPRO.  We refer to each two-stage approach by the name of the 

corresponding first-stage tool, as BRCAPRO is always used in the second stage.  We 

used the statistical software R 3.1.0 for all computations. 

 

4.3. RESULTS 

In NWH, BRCAPROLYTE (applied to all probands) overestimates carrier 

probabilities compared to BRCAPRO as reflected in O/E values smaller than 1 in 

Appendix 1 Table A.1.  We also observe higher sensitivity and lower specificity of 

BRCAPROLYTE for a fixed cutoff.  BRCAPROLYTE-Plus and BRCAPROLYTE-Simple 

are better calibrated with O/E values closer to 1, and show a trend toward better 

calibration than BRCAPRO.  The AUCs of all three first-stage tools are close to 0.65, 

the AUC of BRCAPRO in this dataset.  We reported similar results for CGN and MDA 

(Biswas et al., 2013). 

Next, we quantify the consequences of using the two-stage approach on the 

clinical workflow.  There are 576/2713 BRCA mutation carriers in CGN+MDA and 

125/1344 in NWH.  As shown in Figure 4.1, when BRCAPRO is applied to all probands, 

the carrier probabilities of 1036 and 363 probands exceed 10 %, a cutoff traditionally 

used in clinical practice, though not necessarily optimum (American Society of Clinical 

Oncology, 1996).  Of these, only 414 and 57 are carriers.  The genetic counseling 

burden with this single-stage approach is the totality of probands (2713 and 1344) and 
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genetic testing is done for 1036 and 363 probands.  The sensitivity of BRCAPRO at this 

cutoff is 0.72 and 0.46 in CGN+MDA and NWH, respectively (Appendix 1 Table A.1).  

The corresponding specificities are 0.71 and 0.75.  Now let us compare these numbers 

with those for the two-stage approaches. 

Figure 4.1 Numbers of referrals made at each stage using a two-stage approach, as 
compared to using BRCAPRO only on all probands for a CGN+MDA and b NWH data 

 

We denote by c1 and c2 the cutoffs used at the first and second stages, respectively.  
The number of probands whose carrier probability at the first stage exceeds c1 is 
denoted by n1, and out of n1, the number of probands with second-stage carrier 
probability exceeding c2 is denoted by n2.  When we evaluate BRCAPRO alone, the 
cutoff is labeled as c and the number of probands with carrier probability exceeding c is 
n2.  These numbers are further stratified by the carrier status in parentheses 
 

In Figure 4.1b, for NWH, we see that out of a total of 1344 probands that go 

through the first stage, 803, 1235, and 964 are referred to the second stage by 
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BRCAPROLYTE, BRCAPROLYTE-Plus, and BRCAPROLYTE-Simple, respectively.  

Correspondingly, the reduction in genetic counseling burden as compared to direct 

counseling of all 1344 probands is 541 (40 %), 109 (8 %), and 380 (28 %) families.  In 

the second stage, the numbers of probands referred for genetic testing are close to 363 

as obtained using BRCAPRO only.  The sensitivity and specificity for all two-stage  

Figure 4.2 Sensitivity (Se.O) and specificity (Sp.O) of the two-stage approach and 
BRCAPRO for a CGN+MDA and b NWH data 

 
The x-axis has two sets of cutoffs, c1 (first stage) followed by c2 (second stage) below it.  
For BRCAPRO, only one cutoff (indicated by the second level c2 values) is applicable 
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approaches are about the same as those of BRCAPRO (0.46 and 0.75; Figure 4.2 

discussed below).  The comparison on CGN+MDA is similar, as shown in Figure 4.1a.  

In particular, the reduction in genetic counseling is 129 (5 %), 710 (26 %), and 413 (15 

%) by using BRCAPROLYTE, BRCAPROLYTE-Plus, and BRCAPROLYTE-Simple in 

the first stage, respectively.  Thus, two-stage approaches are able to capture the same 

numbers of carriers and achieve same sensitivity and specificity as BRCAPRO with a 

reduction of genetic counseling burden.  Additional scenarios are considered in 

Appendix 1 Tables A.1 and A.2.  We see that similar numbers of carriers can be 

captured using other cutoff combinations as well.  The genetic counseling burden can 

be further reduced through a higher first-stage cutoff, albeit with larger number of 

genetic tests. 

Figure 4.2 plots Se.O and Sp.O for specific cutoff combinations for the two 

stages.  We see that if we want a two-stage approach to achieve same Se.O value 

(e.g., 80 %) with a similar (or higher) Sp.O value as that of BRCAPRO, it is usually 

possible at different cutoff combinations for different models.  In general, 

BRCAPROLYTE has high values of sensitivity, while BRCAPROLYTE-Plus and 

BRCAPROLYTE-Simple give slightly higher values of specificity for the same sensitivity.  

If we choose the same cutoff for BRCAPRO when applied by itself and when applied as 

the second stage (i.e., compare the curves within each column panel), then the former 

seems to have highest sensitivity and lowest specificity.  However, by allowing the 

cutoffs to vary, the two-stage approaches can achieve similar values of sensitivity and 

specificity as BRCAPRO.  Similar plots for PVP.O and PVN.O are shown in Figure 4.3, 

and the same trend is seen.  Similar considerations apply to PVP.O and PVN.O. 
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Table 4.2 lists AUC.O, AUC.25, AUC.50, and AUC.75.  AUC.O values for all two-

stage approaches are practically same as that of BRCAPRO.  In fact, AUCs remain 

comparable even when the percentage of follow-up in the second stage is restricted to 

25, 50, or 75 %. 

Figure 4.3 Predictive value positive (PVP.O) and negative (PVN.O) of the two-stage 
approach and BRCAPRO for a CGN+MDA and b NWH data 

 

The x-axis has two sets of cutoffs, c1 (first stage) followed by c2 (second stage) below it.  
For BRCAPRO, only one cutoff (c2) is applicable 
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Table 4.2 AUC (with CI) of the two-stage approach and BRCAPRO.  For AUC.p, the first-stage cutoff corresponding to p 
(percentage followed-up in the second stage) is indicated as c1 

Dataset BRCAPROLYTE BRCAPROLYTE-Plus BRCAPROLYTE-Simple BRCAPRO 
AUC.O 
   CGN+MDA 0.79 (0.76, 0.81) 0.78 (0.76, 0.81) 0.79 (0.76, 0.81) 0.78 (0.76, 0.81)
   NWH 0.66 (0.61 , 0.71) 0.65 (0.6, 0.71) 0.66 (0.61, 0.71) 0.65 (0.59, 0.70)
AUC.75 (cutoff) 

   CGN+MDA 0.78 (0.76, 0.8), c1=0.049 0.78 (0.76, 0.8), c1=0.009 0.78 (0.76, 0.8), c1=0.018

   NWH 0.65 (0.59, 0.7), c1=0.027 0.65 (0.6, 0.7), c1=0.005 0.65 (0.6, 0.7), c1=0.009 
AUC.50 (cutoff) 

   CGN+MDA 0.78 (0.75, 0.8), c1=0.169 0.78 (0.76, 0.8), c1=0.039 0.78 (0.76, 0.8), c1=0.069

   NWH 0.65 (0.6, 0.71), c1=0.08 0.64 (0.59, 0.7), c1=0.018 0.65 (0.59, 0.7), c1=0.028
AUC.25 (cutoff) 

   CGN+MDA 0.77 (0.74, 0.79), c1=0.479 0.77 (0.75, 0.8), c1=0.185 0.78 (0.75, 0.8), c1=0.274

   NWH 0.63 (0.58, 0.69), c1=0.217 0.64 (0.58, 0.69), c1=0.068 0.64 (0.58, 0.7), c1=0.092
 

Next, we plot O/E values in Figure 4.4.  In general, BRCAPROLYTE tends to overestimate the risk of mutation, 

BRCAPROLYTE-Plus tends to underestimate, and BRCAPROLYTE-Simple remains in between and is the most stable 

across varying cutoffs.  When compared with BRCAPRO, the two datasets show somewhat different trends.  In 

CGN+MDA, the two-stage approaches have somewhat worse calibration than BRCAPRO with BRCAPROLYTE 

performing the best (remains closest to 1), while in NWH, BRCAPROLYTE-Plus and BRCAPROLYTE-Simple have 

slightly better calibration than BRCAPRO.  The CIs overlap substantially and so calibration of the two-stage approaches
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Figure 4.4 Ratio of observed number of carriers to the expected number of carriers as 
predicted by the two-stage approach and BRCAPRO for a CGN+MDA and b NWH data 

 
 
may not be very different from BRCAPRO, although there seems to be some 

differences between high-risk and community practice. 

In summary, the two-stage approach has similar discrimination and calibration, 

and can achieve a similar clinical impact without requiring a full evaluation in primary 

care. 
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4.4. DISCUSSION 

We proposed and evaluated two-stage approaches for genetic risk assessment.  

The first stage can be implemented in a primary care setting using limited family history 

information, and can be efficiently integrated into an EMR or other HIT solutions.  

Patients with sufficiently high risk can then be assessed in further detail, typically, 

though not necessarily, within a genetic counseling clinic.  We showed that the overall 

performance of the two-stage approach is comparable to using the more complete 

assessment on all patients.  Even though it is more complex than performing a single 

full evaluation of all patients, the clinical importance of this result lies in the fact that the 

latter is not currently scalable to primary care delivery.  Moreover, testing everyone is 

currently not a practical option in the U.S. due to financial and other considerations.  

The two-stage approach makes it possible to screen the general population for risk of 

carrying BRCA mutations.  It not only entails an increase in the burden of data collection 

in primary care, and a duplicate assessment on a relatively large subset of families, but 

also results in a reduction in genetic counseling activities, the most challenging and less 

easily scalable stage. 

A practical issue is the choice of cutoffs for use in clinical settings.  We illustrated 

the clinical implications using specific combinations of first- and second-stage cutoffs to 

quantify the genetic counseling and testing burden associated with using different first-

stage tools in different populations.  For practical applications, different clinical 

scenarios may require a different balance of specificity, sensitivity, and burden of data 

collection, and these considerations should guide the choice of appropriate 

combinations. 
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One of the strengths of our study is the use of high-risk as well as population-

based data.  Although specific assessments of discrimination and calibration for the two 

datasets were different, both analyses gave the same conclusion about the viability of 

the two-stage approach.  Thus, our overall conclusions are likely to be applicable to the 

more general population, at least qualitatively.  However, due to limitations of the data 

(as discussed below), these results may not be fully representative of the use of the 

two-stage approach in an unselected population. 

At present, the paucity of medical environments where the potential for genetic 

testing is routinely incorporated into primary care workflows makes it challenging to 

carry out a population-based evaluation of the two-stage approach.  Our analysis of the 

NWH data comes close, but still has limitations.  The main limitation is that the NWH 

cohort is enriched for patients with BRCAPROLYTE probability exceeding 10 %, which 

makes it more difficult to generalize our conclusions on the operating characteristics of 

the two-stage approach involving BRCAPROLYTE as the first step.  Generally, our 

analyses are likely to overestimate the number of high-risk families found in the first 

stage, when compared to an application of a two-stage approach to a completely 

unselected population. 

The discrimination of the BRCAPRO model in the NWH cohort, as measured by 

AUC, is lower than reported in other datasets (Biswas et al., 2013; Parmigiani et al., 

2007).  This indicates that the carrier probability distributions for BRCA carriers and 

non-carriers are not well separated.  For example, the median probabilities for carriers 

and non-carriers are 0.07 and 0.03, respectively, compared to 0.34 and 0.03 for 

CGN+MDA data.  If we take each proband in CGN+MDA and find a matching proband 
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(with the closest probability) from NWH, the BRCAPRO AUC for this subset of NWH 

probands is 0.72, compared to 0.65 observed in the whole NWH data.  Also, 175 

probands in NWH have genetic test results available for at least one relative.  Including 

their test results in BRCAPRO calculations increases the AUC from 0.65 to 0.79 

showing the strong impact of genetic test results.  However, if information on relatives’ 

test results is not used (as it will be burdensome to collect this information in the primary 

care), the results of the two-stage approaches for this subset are similar to what we 

found for the whole NWH data. 

Of the three two-stage approaches, BRCAPROLYTE tends to over-predict.  

BRCAPROLYTE-Plus gives less inflated estimates but appears to be affected by under-

prediction of carrier probabilities.  BRCAPROLYTE-Simple seems to provide a better 

balance between over- and under-prediction.  This is somewhat unexpected as 

BRCAPROLYTE-Simple uses less information on family structure than 

BRCAPROLYTE-Plus.  From a practical point of view, this is a useful result as the 

burden of data collection in the first stage is the least through use of BRCAPROLYTE-

Simple.  To provide a rough estimate of savings in time, consider that it takes about 10–

30 minutes to collect the vital status and age of every relative.  Compared to that, it may 

take only about 3 minutes to obtain the age and relationships of each person with 

cancer, which is sufficient for applying BRCAPROLYTE-Simple.  Future work can focus 

on estimation of the burden of data collection as well as the acceptance rate of the 

simplified tools in clinical practice. 

In summary, our work proposes a new paradigm of formally integrating genetic 

risk assessment in primary care.  By implementing the process of risk assessment in 
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two stages, the proposed approach strikes a balance between two competing issues – 

identifying potential carriers among large populations who are currently not receiving 

adequate risk counseling and ensuring that the burden of exhaustive genetic counseling 

(second stage) remains manageable.  By adjusting the cutoffs for the two stages, this 

approach allows identification of as many carriers as are practically possible.  Although 

we focused on breast and ovarian cancer risk here, the approach is general and can be 

used for risk prediction for other cancers, for which well-established genetic models 

exist such as pancreas, colon, and melanoma (Chen et al., 2006; Wang et al., 2007; 

Wang et al., 2010).
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CHAPTER 5 

 

CONCLUSION AND PUBLIC HEALTH IMPLICATIONS 

 

A woman who has a family history of breast and ovarian cancers may consider 

genetic testing.  BRCAPRO is one of the most widely used statistical models for genetic 

risk prediction for breast cancer, and provides probabilities of being a carrier of the 

breast cancer susceptibility genes BRCA1 or BRCA2.  Despite its widespread use in 

genetic counseling, a limitation is that it requires extensive information on the proband 

and her family history.  This poses practical challenge for its use in many primary care 

clinics.  As a further enhancement to the BRCAPRO model, we proposed the two-stage 

approach in order to bring its utility available to a more general population.  In a primary 

care setting, simplified versions of BRCAPRO will be used as the first stage in 

estimating the risks of being a BRCA1 or BRCA2 mutation carrier using limited family 

history information.  For those who are identified to be at potentially high risk, the full 

BRCAPRO model will be used in the second stage, typically in genetic counseling, to 

provide more accurate risk estimates. 

BRCAPROLYTE relies only on first- and second-degree relatives who are 

affected with breast and/or ovarian cancer.  BRCAPROLYTE-Plus additionally imputes 

the ages of the relatives who are unaffected with breast or ovarian cancer.   
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BRCAPROLYTE-Simple is a more simplified model which imputes the relatives who are 

unaffected, in addition to their ages.  Overall, we have shown that among the five 

simpler tools considered at the first stage, BRCAPROLYTE, BRCAPROLYTE-Plus, and 

BRCAPROLYTE-Simple perform better and lead to only modest loss in accuracy 

compared to the results when the full BRCAPRO model is applied to all probands.  The 

AUCs for BRCAPRO are 0.783 for CGN+MDA and 0.648 for NWH.  At the first stage, 

the AUCs for CGN+MDA for BRCAPROLYTE, BRCAPROLYTE-Plus, and 

BRCAPROLYTE-Simple are 0.763, 0.772, and 0.773, while for NWH, the corresponding 

AUCs are 0.629, 0.644, and 0.641. 

By identifying accurately women who are unlikely to have mutations, the 

developed approach has the potential to result in substantial savings in time, resources, 

and money.  At the same time, more high risk patients can be identified for genetic 

testing who can benefit in time from preventative medicine.  Knowledge of patient’s 

increased susceptibility to breast cancer can help in medical management.  These risk 

prediction models are used by insurance companies to determine whether the costs for 

genetic tests, which range from about $300 to $5,000 (BreastCancer.org, 2016), would 

be covered.  Thus, these models crucially impact the degree, quality, and cost of care of 

millions of women in the U.S. 

Different individuals will have different attitudes about testing, thus, a single 

probability cutoff so that testing is appropriate above and not appropriate below that 

cutoff cannot be recommended.  The chance of carrying a mutation varies from person 

to person, thus, understanding and conveying risk information should be individualized.  

Great care is needed when assessing patient suitability for genetic testing of the BRCA 
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mutation.  As well as a financial cost, there are legal, health, and ethical issues to be 

considered, stressing the importance of the accuracy of risk assessments.  The 

possibility of an adverse psychological effect of receiving BRCA1/2 mutation test results 

must also be considered before undergoing genetic testing (Palma et al., 2006).  In 

Schwartz et al.’s study (2002), participants who received negative test results showed 

significant decrease in perceived risk and distress compared with those who received 

positive test results.  There are situations where individuals were perceived to have 

experienced “survivor’s guilt” when test results showed they did not have the genetic 

mutations (Dudok deWit et al., 1998; Lodder, L.N., 2001; Wagner et al., 2000).  In 

Croyle et al. (1997) and Dorval et al. (2000), carriers were found to have significantly 

higher levels of test-related psychological distress than non-carriers.  In Hamilton, 

Lobel, and Moyer’s (2009) meta-analysis, results indicate that BRCA1/2 testing have 

emotional consequences, with the most unfavorable outcome among carriers, but the 

distress levels appear to be minimal and returned to pre-test levels over time.  All things 

considered, it is important to make personalized recommendations for cancer screening 

and prevention. 

 

5.1. PUBLIC HEALTH IMPLICATIONS 

Before actual genetic testing is conducted, statistical models are used to 

determine the probability of the patient being a mutation carrier through genetic 

counseling based on family history.  If a patient has been identified as being high-risk, 

the psychosocial issues attached to the awareness of the mutation status such as the 

effect on the patient’s relationship with the rest of the family, the effects on body image 
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and personal identity, cancer-related stress and worry, feelings of guilt for passing on 

the genetic risk to the offspring, etc. (NCI, 2015) can be tackled appropriately.  The 

information gained from this research can be used for surveillance and management of 

women at a higher risk of an inherited predisposition to breast cancer.  Women deemed 

to be at high risk can be tested to see whether they are carriers of mutations of BRCA1 

and BRCA2 genes.  Men also carry mutations of these genes and in rare cases may 

develop breast cancer, which is a strong indicator of BRCA2 mutation in the family 

(Komen, 2016).  If genetic tests show presence of a BRCA1 or BRCA2 mutation, 

necessary preventative measures (such as oophorectomy, mastectomy, 

chemoprevention, etc.) can be taken.  Alternatively, management strategies or frequent 

monitoring through mammograms, magnetic resonance imaging (MRI), ultrasounds, 

and other tests can be performed (NCI, 2015). 

 

5.2. FUTURE WORK 

As discussed in Chapter 4, one of the limitations of our study is that the NWH 

data used may not be entirely representative of the general population.  Future work 

may involve validation of our proposed two-stage approach using a completely 

unselected population; i.e., patients will be selected randomly from those who go to 

primary care or breast clinics without consideration of their BRCA mutation risk 

probabilities.  It is also of interest to investigate if the burden of data collection is indeed 

lessened, whether our first stage tools will be more accepted in primary care settings 

where it is intended, and how much that helps in identification of potential mutation 

carriers. 
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In addition, some known risk factors are not incorporated into the full BRCAPRO 

model.  Body mass index, alcohol intake, age at menarche, age at first live birth, age at 

menopause, hormone replacement therapy use, and prostate and colon cancer in 

relatives (Amir et al., 2010; Gilpin, Carson, and Hunter, 2000) can be included to make 

the model more personalized and accurate.  The full BRCAPRO model can also be 

enhanced to allow the inclusion of genes other than BRCA1/BRCA2 that are associated 

with breast/ovarian cancer cases found from genome-wide association studies of 

several single-nucleotide polymorphisms (SNPs) (Fanale et al., 2012; Foulkes, 2008).  

Among these SNPs, the mutations in serine-threonine protein kinase 11 (STK11), 

phosphatase and tensin homologue (PTEN), E-cadherin (CDH1), tumor protein 53 

(TP53), BRCA1-interacting protein C-terminal helicase 1 (BRIP1, aka BACH1), partner 

and localizer of BRCA2 (PALB2), cell-cycle-checkpoint kinase (CHEK2), ataxia-

telangiectasia mutated (ATM), fibroblast growth factor receptor 2 (FGFR2), tox high-

mobility group box family member 3 (TOX3, aka TNRC9), mitogen-activated protein 

kinase kinase kinase 1 (MAP3K1, aka MEKK1), lymphocyte-specific protein 1 (LSP1, 

aka WP43), and caspase 8 (CASP8) genes have been identified to have different effect 

levels on breast cancer (Foulkes, 2008).  Systematically incorporating the high-

penetrance genes or genes that have been identified with high degree of certainty as 

risk factors for breast and ovarian cancers into the BRCAPRO model may help make 

risk predictions more accurate.
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APPENDIX 1 

 

SUPPLEMENTARY MATERIALS FOR CHAPTER 4 

 

Supplementary Methods 

Here we describe the methods for obtaining the overall sensitivity, specificity, 

AUC, PVP, and PVN of the two-stage approach.  First, we obtain the overall sensitivity 

and specificity as follows.  Denote the cutoffs used at the first and second stages as c1 

and c2, and P(AnyBRCA) at these two stages as Pr1 and Pr2, respectively.  Consider a 

specific first-stage tool and denote its sensitivity and specificity at c1 as Se.1 = P (Pr1 > 

c1| positive genetic test) and Sp.1 = P (Pr1 < c1| negative genetic test).  Further, denote 

the sensitivity and specificity of the second stage at c2 given the results of the first stage 

as Se.2|1 and Sp.2|1, respectively.  These can be estimated by evaluating the 

subsample of patients with Pr1 > c1 who undergo the second stage.  A counselee will be 

considered at high risk overall, and referred for genetic testing, only if Pr1 > c1 and Pr2 > 

c2.  Thus, the sensitivity Se.O and the specificity Sp.O of the overall two-stage 

procedure can be calculated as 

Se.O = P(Pr2 > c2|Pr1 > c1, positive genetic test) ∗ P(Pr1 > c1| positive genetic test) = 
Se.2|1 ∗ Se.1, and 
 
Sp.O = P(Pr1 < c1| negative genetic test) + P(Pr2 < c2|Pr1 > c1, negative genetic test) ∗ 
P(Pr1 > c1| negative genetic test) = Sp.1 + Sp.2|1 ∗ (1 − Sp.1).



 

80 
 

By varying the values of c1 and c2, we can get a range of sensitivities and 

specificities for the two-stage approach.  Next, we plot the Se.O versus 1-Sp.O over the 

range of c1 and c2 to obtain an empirical ROC curve, and estimate the AUC using 

trapezoidal rule.  Also, we calculate the overall predictive values, PVP.O and PVN.O 

from Se.O and Sp.O values by using the Bayes rule.  We obtain 95% CI for overall 

sensitivity, specificity, and predictive values using the bootstrap method (Efron and 

Tibshirani, 1994).  For AUC, we use an asymptotic CI (Hanley and McNeil, 1982; Pepe, 

2004).  Details are provided in Appendix 3.
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Table A.1 First Stage Results (with CI) for NWH data 
Cutoff BRCAPRO BRCAPROLYTE BRCAPROLYTE-Plus BRCAPRO-Simple

Sensitivity 0.001 0.97 (0.93, 0.99) 0.99 (0.97, 1) 0.96 (0.92, 0.99) 0.97 (0.93, 0.99) 
Specificity 0.07 (0.05, 0.08) 0 (0, 0.01) 0.09 (0.07, 0.1) 0.06 (0.04, 0.07) 
Sensitivity 0.003 0.92 (0.87, 0.96) 0.97 (0.93, 0.99) 0.91 (0.86, 0.96) 0.93 (0.88, 0.97) 
Specificity 0.17 (0.15, 0.19) 0.05 (0.04, 0.07) 0.18 (0.15, 0.2) 0.1 (0.08, 0.12) 
Sensitivity 0.005 0.89 (0.83, 0.94) 0.97 (0.93, 0.99) 0.86 (0.79, 0.92) 0.9 (0.85, 0.95) 
Specificity 0.22 (0.2, 0.24) 0.07 (0.05, 0.08) 0.26 (0.24, 0.28) 0.14 (0.13, 0.16) 
Sensitivity 0.007 0.84 (0.77, 0.9) 0.96 (0.92, 0.99) 0.8 (0.73, 0.87) 0.89 (0.83, 0.94) 
Specificity 0.27 (0.25, 0.3) 0.08 (0.06, 0.09) 0.33 (0.3, 0.36) 0.21 (0.19, 0.23) 
Sensitivity 0.01 0.8 (0.73, 0.87) 0.93 (0.88, 0.97) 0.76 (0.68, 0.83) 0.83 (0.76, 0.89) 
Specificity 0.33 (0.3, 0.35) 0.1 (0.08, 0.12) 0.4 (0.37, 0.42) 0.29 (0.27, 0.32) 
Sensitivity 0.03 0.63 (0.55, 0.71) 0.84 (0.77, 0.9) 0.54 (0.46, 0.63) 0.6 (0.51, 0.69) 
Specificity 0.54 (0.51, 0.57) 0.29 (0.27, 0.32) 0.61 (0.58, 0.64) 0.53 (0.5, 0.55) 
Sensitivity 0.05 0.54 (0.45, 0.62) 0.7 (0.61, 0.78) 0.49 (0.4, 0.58) 0.54 (0.45, 0.62) 
Specificity 0.64 (0.61, 0.66) 0.41 (0.39, 0.44) 0.71 (0.68, 0.73) 0.64 (0.61, 0.67) 
Sensitivity 0.1 0.46 (0.37, 0.54) 0.57 (0.48, 0.66) 0.39 (0.31, 0.48) 0.43 (0.34, 0.52) 
Specificity 0.75 (0.72, 0.77) 0.56 (0.53, 0.59) 0.83 (0.81, 0.85) 0.79 (0.77, 0.81) 
Sensitivity 0.2 0.39 (0.31, 0.48) 0.46 (0.37, 0.54) 0.32 (0.24, 0.4) 0.34 (0.25, 0.42) 
Specificity 0.86 (0.84, 0.88) 0.74 (0.72, 0.77) 0.9 (0.88, 0.92) 0.88 (0.86, 0.9) 
PVP 0.001 0.1 (0.08, 0.11) 0.09 (0.08, 0.11) 0.1 (0.08, 0.11) 0.1 (0.08, 0.11) 
PVN 0.95 (0.9, 0.99) 0.83 (0.5, 1) 0.95 (0.91, 0.99) 0.95 (0.89, 0.99) 
PVP 0.003 0.1 (0.08, 0.12) 0.09 (0.08, 0.11) 0.1 (0.08, 0.12) 0.1 (0.08, 0.11) 
PVN 0.95 (0.93, 0.98) 0.94 (0.88, 0.99) 0.95 (0.92, 0.98) 0.93 (0.88, 0.97) 
PVP 0.005 0.1 (0.09, 0.12) 0.1 (0.08, 0.11) 0.11 (0.09, 0.13) 0.1 (0.08, 0.12) 
PVN 0.95 (0.92, 0.97) 0.95 (0.9, 0.99) 0.95 (0.92, 0.97) 0.94 (0.9, 0.97) 
PVP 0.007 0.11 (0.09, 0.13) 0.1 (0.08, 0.11) 0.11 (0.09, 0.13) 0.1 (0.09, 0.12) 
PVN 0.94 (0.92, 0.97) 0.95 (0.9, 0.99) 0.94 (0.92, 0.96) 0.95 (0.92, 0.97) 
PVP 0.01 0.11 (0.09, 0.13) 0.1 (0.08, 0.11) 0.11 (0.09, 0.14) 0.11 (0.09, 0.13) 
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PVN 0.94 (0.92, 0.96) 0.93 (0.89, 0.97) 0.94 (0.92, 0.96) 0.94 (0.92, 0.97) 
PVP 0.03 0.12 (0.1, 0.15) 0.11 (0.09, 0.13) 0.13 (0.1, 0.15) 0.12 (0.09, 0.14) 
PVN 0.93 (0.92, 0.95) 0.95 (0.92, 0.97) 0.93 (0.91, 0.95) 0.93 (0.91, 0.95) 
PVP 0.05 0.13 (0.1, 0.16) 0.11 (0.09, 0.13) 0.15 (0.11, 0.18) 0.13 (0.1, 0.16) 
PVN 0.93 (0.91, 0.95) 0.93 (0.91, 0.95) 0.93 (0.91, 0.95) 0.93 (0.91, 0.95) 
PVP 0.1 0.16 (0.12, 0.2) 0.12 (0.09, 0.14) 0.19 (0.14, 0.24) 0.17 (0.13, 0.22) 
PVN 0.93 (0.91, 0.95) 0.93 (0.91, 0.94) 0.93 (0.91, 0.94) 0.93 (0.92, 0.95) 
PVP 0.2 0.22 (0.17, 0.28) 0.15 (0.12, 0.19) 0.25 (0.18, 0.32) 0.22 (0.16, 0.28) 
PVN 0.93 (0.92, 0.95) 0.93 (0.91, 0.95) 0.93 (0.91, 0.94) 0.93 (0.91, 0.94) 
AUC 0.65 (0.59, 0.70) 0.63 (0.57, 0.68) 0.64 (0.59, 0.7) 0.64 (0.58, 0.7) 

O/E 
125/146.45 = 0.85 125/228.94 = 0.55 125/113.98 = 1.10 125/135.37 = 0.92 
(0.71, 1) (0.46, 0.64) (0.91, 1.3) (0.77, 1.09) 
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Table A.2 Numbers of referrals made at each stage using a two-stage approach, as compared to using BRCAPRO 
only on all probands for CGN+MDA data.  For each combination of c1 and c2, three numbers are provided – 
number of probands with first stage probability exceeding c1 (n1), out of n1, the number of probands with second stage 
probability exceeding c2 (n2), and out of n2, the number of probands tested positive for BRCA mutation 

BRCAPROLYTE BRCAPROLYTE-Plus 

c2 (%) c2 (%) 
1 3 5 10 1 3 5 10

c1 (%) 
 
 
 
 
 
 
 

1 2584 2584 2584 2584 1 2003 2003 2003 2003
2070 1624 1361 1036 1909 1582 1340 1029
548 498 458 414 532 494 456 413

3 2255 2255 2255 2255 3 1477 1477 1477 1477
2012 1620 1359 1035 1470 1429 1280 1006
541 496 456 413 471 468 444 409

5 2028 2028 2028 2028 5 1244 1244 1244 1244
1881 1576 1350 1031 1240 1231 1191 980
526 494 456 413 438 438 429 401

10 1632 1632 1632 1632 10 903 903 903 903
1559 1410 1276 1023 902 902 898 867
490 472 447 412 379 379 378 372

BRCAPROLYTE-Simple BRCAPRO 

c2 (%) c2 (%) 
1 3 5 10 1 3 5 10

c1 (%) 

1 2300 2300 2300 2300 2070 1624 1361 1036
2044 1619 1359 1036 548 498 458 414
546 497 457 414

3 1789 1789 1789 1789
1725 1536 1330 1024
509 483 454 412
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5 1522 1522 1522 1522
1494 1415 1299 1018
484 472 450 412

10 1167 1167 1167 1167
1160 1141 1100 978
426 423 415 399



 

85 
 

Table A.3 Numbers of referrals made at each stage using a two-stage approach, as compared to using BRCAPRO 
only on all probands for NWH data.  For each combination of c1 and c2, three numbers are provided – number of 
probands with first stage probability exceeding c1 (n1), out of n1, the number of probands with second stage probability 
exceeding c2 (n2), and out of n2, the number of probands tested positive for BRCA mutation 

BRCAPROLYTE BRCAPROLYTE-Plus 

c2 (%) c2 (%) 
1 3 5 10 1 3 5 10

c1 (%) 
 
 
 
 
 
 
 

1 1212 1212 1212 1212 1 831 831 831 831
921 641 509 363 795 623 500 356
100 79 67 57 91 77 66 56

3 969 969 969 969 3 540 540 540 540
836 636 504 360 540 510 450 339

98 79 67 57 68 67 61 53
5 803 803 803 803 5 416 416 416 416

729 592 500 357 416 414 389 312
83 76 67 57 61 61 58 51

10 608 608 608 608 10 256 256 256 256
585 513 448 347 256 256 252 239

71 68 61 54 49 49 48 47

BRCAPROLYTE-Simple BRCAPRO 

c2 (%) c2 (%) 
1 3 5 10 1 3 5 10

c1 (%) 

1 964 964 964 964 922 642 510 363
849 635 506 362 100 79 67 57

99 78 67 57
3 651 651 651 651

634 542 470 349
74 72 64 55
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5 506 506 506 506
502 468 417 326

67 67 60 53
10 309 309 309 309

307 303 290 253
54 54 52 48
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APPENDIX 2 

 

THE BRCAPRO PROBABILITY MODEL 

 

Denote R as the total number of relatives of the proband.  The probability of the 

genotypes at BRCA1 and BRCA2 genes of the proband (0), given the family history 

( ), covariates, and pedigree structure ( ), is as follows: 

)X,...,X,X;h,...,h,h |P( R10R100 = 





)|X,...,X,X;h,...,h,hP( * )P(

)|X,...,X,X;h,...,h,hP( * )P(

R10R10

0R10R100  

where  is the set of all possible values of the genotypes of the individual family 

member.  ( ) includes information on the relevant phenotypes and ages of 

onset of the proband and his/her relatives, if affected with cancer (or current age or age 

of death if unaffected).  ( ) includes information on individual specific 

covariates such as being of AJ descent, each relatives’ relationship to the proband, 

tumor marker information, and medical interventions.  BRCA1 and BRCA2 mutations 

are assumed to be inherited independently of each other and all deleterious mutation 

variants are assumed to have the same phenotypic implications (Chen et al., 2004; 

Parmigiani, Berry, and Aguilar, 1998). 

Using the law of total probability, the probability of the phenotypes for the entire 

family given the genotype of the proband is derived as:
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)|X,...,X,X;h,...,h,hP( 0R10R10  = 
  R1,..., 0R1

R

0r rrr )|,...,P( * )|X;hP(



.  

BayesMendel uses the Elston-Stewart Algorithm (Elston and Stewart, 1971) to compute 

the above pedigree likelihood.  Note that it is assumed that the histories of each family 

member (phenotypes) are conditionally independent given their genotypes.  Also, the 

last term in the equation above, )|,...,P( 0R1  , can be computed for all genotype 

configurations using Mendel’s laws as long as the mode of inheritance is known (e.g., 

autosomal dominant for breast cancer) (Parmigiani, Berry, and Aguilar, 1998). 

The overall prevalence of the mutation of each of these genes ( ) and the age-

specific penetrance of breast and ovarian cancers resulting from carrying mutations 

( ) used in BRCAPRO were based on a nine study meta-analysis (Chen et 

al., 2006), the CGN (Tai et al., 2007), Graeser et al. (2009), and Katki et al. (2008).
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APPENDIX 3 

 

AUC CONFIDENCE INTERVAL ESTIMATION 

 

Bootstrap sampling to get the 95% CIs for AUC for the overall two-stage 

approach can be computationally intensive.  Thus, as noted in Appendix 1, we 

calculated the asymptotic CIs for the overall measures of diagnostic accuracy.  Let  = 

# subjects with positive test results,  = # subjects with negative test results, c1 = 

cutoff at the first stage, and c2 = cutoff at the second stage.  For probands with positive 

test results, define  according to the following (reflecting the last carrier probability 

evaluation for each proband): 

. 

For probands with negative test results, define  similarly.  The area under the 

empirical ROC curve is equivalent to the Mann-Whitney U-statistic as follows (Hanley 

and McNeil, 1982; Pepe, 2004): 

AUC = . 

Using large sample approximation, the variance of the AUC can be calculated as: 
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var(AUC) = , 

where   = P( ), 

   = P( ), 

( ) = random pairs of observations from those with positive test results, 

and  ( ) = random pairs of observations from those with negative test 

results. 

 
Therefore, the 95% asymptotic CI for the AUC can be calculated as 

AUC var(AUC) .961 ±  (Pepe, 2004). 
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