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Abstract Introduction: We sought to determine if a proteomic profile approach developed to detect Alz-
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heimer’s disease would distinguish patients with Lewy body disease from normal controls, and if
it would distinguish dementia with Lewy bodies (DLB) from Parkinson’s disease (PD).
Methods: Stored plasma samples were obtained from 145 patients (DLB n5 57, PDwithout demen-
tia n5 32, normal controls n5 56) enrolled from patients seen in the Behavioral Neurology orMove-
ment Disorders clinics at theMayo Clinic, Florida. Proteomic assays were conducted and analyzed as
per our previously published protocols.
Results: In the first step, the proteomic profile distinguished the DLB-PD group from controls with a
diagnostic accuracy of 0.97, sensitivity of 0.91, and specificity of 0.86. In the second step, the pro-
teomic profile distinguished the DLB from PD groups with a diagnostic accuracy of 0.92, sensitivity
of 0.94, and specificity of 0.88.
Discussion: These data provide evidence of the potential utility of a multitiered blood-based
proteomic screening method for detecting DLB and distinguishing DLB from PD.
� 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
Keywords: Dementia with Lewy bodies; Parkinson’s disease; Proteomics; Blood biomarkers; Biomarker screening;
Detection; Diagnostic accuracy
1. Background

Lewy body disease is the second most common neurode-
generative disease and clinically may present with dementia
as dementia with Lewy bodies (DLB), or without dementia
as Parkinson’s disease (PD). DLB was first characterized as
a dementia by Kosaka [1] and operationalized diagnostic
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criteria were initially put forth by McKeith [2] in 1992.
Patients who meet consensus criteria for DLB commonly
have Lewy-related pathology [3] at autopsy, and in a large
dementia autopsy series [4], 25% were found to have
Lewy-related pathology. The core clinical features of
DLB include parkinsonism, fluctuating cognition, fully
formed visual hallucinations, and a history of probable
REM behavior disorder [5–7]. There is a subset of
patients with Lewy-related pathology who are often not
recognized clinically as having DLB [8], in large part
because of concomitant Alzheimer’s disease (AD)-related
pathology. Furthermore, the more extensive the tau pathol-
ogy the harder it is to recognize the DLB phenotype. Multi-
modality imaging helps to distinguish DLB from AD, but it
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is an expensive and less viable method for disease detection
methods in community samples [9]. Therefore, a front-line,
minimally invasive, and cost-effective screening method
would be of tremendous value to the field.

A major impediment to the development of treatments
and clinical trials for neurodegenerative diseases is the
lack of sensitive and easily obtained diagnostic biomarkers
[10–14]. The search for biomarkers with diagnostic and
prognostic utility in neurodegenerative diseases has grown
exponentially, with most work focusing on neuroimaging
[15–18] and cerebrospinal fluid (CSF) methodologies
[11,15,17–19]. Some new promising evidence suggests
that CSF may yield a potential biomarker for a-synuclein,
but replication with a large sample will be needed [20].
While advanced imaging and CSFmethods have tremendous
potential as confirmatory diagnostic biomarkers of neurode-
generative diseases, accessibility and cost barriers preclude
these from being utilized as the first step in this process
[12,13,21]. Reliable biomarkers of DLB could have many
uses, including early and preclinical diagnosis, tracking
disease progression, and identifying disease
endophenotypes [14,21]. In addition, the advancement of
biomarkers may serve to pave the road toward a precision
medicine approach to identifying surrogates for
therapeutic outcome measures and for the development of
disease-modifying treatments [22].

There are no currently validated biomarkers for DLB
[23]. It has been proposed that biological markers of the clin-
ical conditions associated with DLB should be “cheap, reli-
able and reproducible, and make use of biological samples
that are easy to obtain” (pg. 1) [13]. Blood-based biomarkers
would fulfill these proposed criteria. In addition, it has been
proposed that proteomic biomarker profiling is a promising
method for discovering DLB biomarkers [21,23] because a
battery of markers covering a range of biological processes
may be required to address the needs of such complex
disorders [24]. In fact, profiling analytes associated with
multiple diseases may highlight novel biological pathways
for therapeutic interventions in the dementia syndromes
[25]. Our work on blood-based biomarkers of AD and PD
has consistently shown that a multimarker approach identi-
fying biomarker profiles of disease presence can yield excel-
lent results [26–28]. We hypothesize that our blood-based
biomarker profile approach may serve to provide a cost-
and time-effective means for establishing a rapidly scalable
multitiered neurodiagnostic process [29,30] for detecting
neurodegenerative disease, including DLB. With this
initial screening approach, appropriate referrals can be
made for subsequent specialty examinations and
confirmatory diagnostic biomarkers (imaging, CSF),
following the multistage models used for diagnosing
cancer [31]. For example, Groveman et al. [20] recently
demonstrated the accuracy of a rapid and ultrasensitive
seed amplification technique for detection of a-synuclein.
In the present proposed context, a blood-based screening
tool can be utilized to rule out the vast majority of patients
who do not need to undergo lumbar puncture for biomarker
confirmatory diagnostics. This approach can also be readily
adopted to clinical trials thereby (1) increasing access to
broader numbers of patients and (2) significantly reducing
screening costs into such novel trials.

In our prior work, we have generated and cross-validated
our AD proteomic profile across platforms [26,32], cohorts
[26,28,29,33,34], species (human, mouse) [32], tissue
(brain, serum, plasma) [32], and ethnicities (non-Hispanic
white, Mexican American) [26,35], which is currently
being prospectively tested in primary care settings. In our
initial pilot work, this same approach was highly accurate
in discriminating PD from AD [32]. Here we test the hypoth-
esis that our previously published proteomic profile
approach to detecting AD [29,32] would be successful in
(1) detecting neurodegenerative disease due to
synucleinopathy (DLB and PD vs controls) and (2)
discriminating among neurodegenerative disease due to
synucleinopathy (i.e., DLB vs PD). This study was
conducted by examination of plasma samples from the
Mayo Clinic, Jacksonville. Following the methods from
our prior work, we also examined the impact of
demographic factors (age, gender, education) on the
proteomic profile. Here we utilized the same approach as
in our prior work beginning with the discovery phase by
using a multistep approach to determine if our approach
can detect neurodegenerative disease and discriminate
DLB from PD.
2. Methods

2.1. Subjects

The study sample included 145 patients (DLB n5 57, PD
n5 32, normal control n5 56) seen through the Alzheimer’s
Disease Research Center and the Movement Disorders Cen-
ter at the Mayo Clinic, Florida. All participants underwent a
neurologic examination, a Mini-Mental State Examination
and diagnosis was based on recent criteria [5,36]. The
DLB patients also underwent neuropsychological testing,
had pathologic confirmation of diffuse or transitional
Lewy body disease, and were specifically selected for this
study if they had a documented response to cholinesterase
inhibitors based on our prior work showing that DLB
cases who respond to these medications are less likely to
have imaging-based AD comorbid pathology [18]. Normal
controls were recruited through the Alzheimer’s Disease
Research Center and were all cognitively normal based on
neuropsychological testing. All PD-dementia cases were
not included in this study.

2.2. Proteomics

Blood samples were collected as per the NACC–Alz-
heimer’s Center guidelines, which also align with the recent
guidelines published by an international working group [37].
Briefly, nonfasting sample was collected in an EDTA tube



Table 1

Demographic characteristics of the cohort

Descriptor DLB mean (SD) PD mean (SD) Normal control mean (SD) AD mean (SD)

N 57 32 56 53

Age; mean (SD) 76.03 (6.23) 67.06 (11.58) 76.16 (6.07) 76.12 (5.95)

Education mean (SD) 14.73 (3.56) 15.74 (2.49) 14.47 (2.87) 13.68 (3.25)

Gender (%M) 76.0 68.8 74.5 74.2

MMSE score mean (SD) 21.13 (6.8) – 28.04 (1.64) 18.30 (5.97)

Abbreviations: DLB, dementia with Lewy bodies; PD, Parkinson’s disease; MMSE, Mini-Mental State Examination.
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from participants while seated using a 21g needle, gently in-
verted 5–10 times and centrifuged at 2000 ! g for 10 min
before being aliquoted into cryovial (polypropylene) tubes
and stored at 280�C. All processing was completed within
a two-hour time frame. Samples remained in storage until
shipped to the O’Bryant laboratory for assay. Plasma sam-
ples were assayed via a multiplex biomarker assay platform
using electrochemiluminescence laboratory using the
QuickPlex fromMeso Scale Discovery as per our previously
published methods using commercially available kits
[29,32]. The Meso Scale Discovery platform has been
used extensively to assay biomarkers associated with a
range of human diseases including AD [38–41].
Electrochemiluminescence technology uses labels that
emit light when electronically stimulated, which improves
the sensitivity of detection of many analytes at very low
concentrations. Electrochemiluminescence measures have
well-established properties of being more sensitive and
requiring less volume than conventional ELISAs [40], the
gold standard for most assays. We recently reported the an-
alytic performance of each of these markers for.1300 sam-
ples across multiple cohorts and diagnoses (normal
cognition, MCI, AD) [29]. The assays are reliable and our
experience with these assays show excellent spiked recov-
ery, dilution linearity, coefficients of variation (CV), as
well as detection limits. Inter- and intra-assay variability
has been excellent. Internal QC protocols are implemented
in addition to manufacturing protocols, including assaying
consistent controls across batches and assay of pooled stan-
dards across lots. To further improve assay performance,
assay preparation was automated using a customized Ham-
ilton Robotics STARplus system. A total of 500 mL of
plasma was utilized to assay the following markers
(including CV and lowest level of detection [LLOD]) with
CVs and LLODs calculated from this automated system us-
ing the Meso Scale Discovery plates: fatty acid–binding pro-
tein (CV 5 2.2 LLOD 5 13.277 pg/mL), beta 2
microglobulin (CV5 7.4, LLOD5 32.5 pg/mL), pancreatic
polypeptide (CV 5 4.1, LLOD 5 390 pg/mL), CRP
(CV 5 2.4; LLOD 5 2.41 pg/mL), ICAM-1 (CV 5 4.6;
LLOD 5 1.8 pg/mL), thrombopoietin (CV 5 2.2;
LLOD 5 33.1 pg/mL), a2 macroglobulin (CV 5 2.8;
LLOD 5 5886 pg/mL), exotoxin 3 (CV 5 18.74
LLOD 5 3.25 pg/mL), tumor necrosis factor a
(CV 5 3.5; LLOD 5 0.077 pg/mL), tenascin C
(CV 5 3.7; LLOD 5 17 pg/mL), interleukin (IL)-5
(CV 5 12.1; LLOD 5 0.108 pg/mL), IL6 (CV 5 4.6;
LLOD 5 0.081 pg/mL), IL7 (CV 5 12.3; LLOD 5 0.206
pg/mL), IL10 (CV 5 6.7; LLOD 5 0.071 pg/mL), IL18
(CV 5 3.1; LLOD 5 6.07 pg/mL), I309 (CV 5 6.9;
LLOD 5 1.22 pg/mL), factor VII (CV 5 2.7;
LLOD 5 49.9 pg/mL), VCAM 1 (CV 5 2.3;
LLOD 5 6.13 pg/mL), TARC (CV 5 5.9; LLOD 5 0.21
pg/mL), and SAA (CV 5 4.4; LLOD 5 19 pg/mL). As
can be seen, analytic performance was excellent with the
average CVs across all plates for each analyte being well
below standard research use only assays; all CVs,10 and
62% were ,5%.
2.3. Statistical analysis

Statistical analyses were conducted using the R (V 3.3.3)
statistical software [42], SPSS 24 (IBM) and SAS. Support
vector machine (SVM) analyses were conducted to create
proteomic profiles specifically for control versus Lewy
body disease and then DLB versus PD. SVM is based on
the concept of decision planes that define decision bound-
aries and is primarily a classifier method that performs clas-
sification tasks by constructing hyperplanes in a
multidimensional space that separates cases of different
class labels. Diagnostic accuracy was calculated via
receiver operating characteristic (ROC) curves. First,
SVM analyses were used to discriminate controls from
Lewy body disease (i.e., DLB/PD) with resulting diagnostic
accuracy statistics generated (step 1). Next, SVM analysis
was restricted only to those with Lewy body disease to
discriminate DLB from PD (step 2) with resulting diag-
nostic accuracy statistics generated. This two-step process
was used to allow for the overall algorithm to be more
robust and avoid multilevel analyses simultaneously, which
reduces risk for error and sample overidentification. In addi-
tion, in our prior work, we have demonstrated that the over-
all profile differs among neurodegenerative diseases [32]
and, therefore, the multistep process capitalizes on these
overall proteomic profile fluctuations. Finally, samples
from n 5 53 AD cases were analyzed to provide prelimi-
nary analyses on a three-step approach to (1) detect neuro-
degenerative disease (AD/DLB/PD) from controls, (2)
discriminate dementia (AD/DLB) from PD and (3) discrim-
inate AD from DLB. These AD cases were also evaluated



Table 2

Diagnostic accuracy of blood test in step 1—discriminating control from

Lewy body disease

Confusion matrix for SVM classification for discriminating Lewy body

disease from normal controls

Predicted

SVM model

DLB and PD Normal control

DLB and PD 81 8

NC 8 48

Sensitivity 91.0%

Specificity 85.7%

Area under the ROC curve 0.9653

Abbreviations: SVM, support vector machine; DLB, dementia with Lewy

bodies; PD, Parkinson’s disease.
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and clinically diagnosed by the Mayo Alzheimer’s Disease
Research Center. Demographic characteristics of the AD
cases are provided in Table 1.
3. Results

Descriptive statistics of the sample are provided in
Table 1. The PD group was younger and included more fe-
males than the other two groups. As expected, the DLB
group had lower scores on the Mini-Mental State
Examination.

For the SVM analyses, a two-step analytic approach was
taken. First, the SVM profile was used to differentiate Lewy
body disease (DLB and PD) from controls. Second, the SVM
analysis was used to differentiate DLB from PD. This two-
step approach was used given our prior work suggesting
that our proteomic profile can be highly accurate in detecting
“neurodegenerative disease” in general [29] and therefore,
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Fig. 1. ROC curve and variable importance plot for step 1—discriminating Lewy

characteristic.
our analyses for discriminating among neurodegenerative
diseases could be refined even further without contamination
of normal controls in the analytics.

In step 1, our SVM-based proteomic profile was highly
accurate in detecting Lewy body disease (DLB and PD) as
compared with normal controls. The overall area under the
ROC curve (AUC) of the proteomic profile was 0.94 with
a sensitivity (SN) of 0.99 and specificity (SP) of 0.64. As
with our prior work, inclusion of demographic variables
(age, gender, education) increased the overall accuracy
somewhat with an overall AUC of 0.97 with a SN decrease
to 0.91 but SP increased to 0.86. Table 2 shows all of the cor-
rect and incorrect predictions, whereas the variable impor-
tance plot and ROC curve are presented in Fig. 1.

In the step 2, the overall SVM-proteomic profile also
showed good accuracy at distinguishing DLB from PD. In
this model, the AUC was 0.84 with SN 5 0.95 and
SN 5 0.68. Inclusion of demographic variables improved
the accuracy to AUC 5 0.92, SN 5 0.94 and SP 5 .88.
Table 3 shows all the classifications (correct and incorrect),
whereas the variable importance plot and ROC curve are
presented in Fig. 2.

Next we conducted preliminary analyses on a three-step
algorithmic approach. Here, the full algorithm was applied
(proteins 1 demographic variables). In the first step of the
model, we sought to detect neurodegenerative disease
(AD/DLB/PD) versus controls. With an optimized SVM
risk threshold cutoff of 20.753, the AUC was 0.96 with an
SN 5 0.90 and SP 5 .89. In the second step, we sought to
discriminate dementia (AD/DLB) from PD that yielded an
AUC 5 0.98, SN 5 0.96, and SP 5 .97. In the third step,
we sought to discriminate among dementias (DLB vs. AD)
and found an AUC 5 0.96, SN 5 0.96, and SP 5 .97.
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Table 3

Diagnostic accuracy of blood test in step 2—discriminating between

dementia with Lewy bodies and Parkinson’s disease

Confusion matrix for SVM classification for discriminating DLB from PD

Predicted

SVM model

DLB PD

DLB 46 5

PD 3 35

Sensitivity 93.9%

Specificity 87.5%

AUC 0.9204

Abbreviations: SVM, support vector machine; DLB, dementia with Lewy

bodies; PD, Parkinson’s disease; AUC, area under the ROC curve.
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4. Discussion

The present study demonstrates, for the first time, that a
multistep blood-based proteomic profile can accurately
distinguish neurodegenerative disease due to synucleinop-
athy (DLB and PD) from normal controls (AUC 5 0.97)
and DLB from PD (AUC 5 0.92). Recent work demon-
strates that a CSF-based a-synuclein seeding technology
can also achieve strong diagnostic accuracy in detecting
neurodegenerative disease due to synucleinopathy (93%
SN and 100% SP). Although that work requires cross-
validation in larger studies, the advancement of the current
work in tandem is promising for a sensitive and specific
time- and cost-effective multistep approach for broad-
based screening of DLB for prospective studies, clinical
trials, and routine clinical practice.

The accuracy of the approach is directly due to the differing
overall profiles, which is captured using advanced SVM ana-
lyses. Specifically, as can be seen from Figs. 1 and 2, the
variable importance plots are different in step 1 versus step
2. Therefore, by capitalizing on the complexity of the
neurodegenerative disease due to synucleinopathy and the
number of proteomics available, we can generate
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Fig. 2. ROC curve and variable importance plot. Abbr
bioinformatics profiles. When reviewing the variable
importance plots (Figs. 1 and 2), the overall profiles for
discriminating DLB/PD from controls was different
compared with the profile for discriminating DLB from PD.
The top 10 markers for discriminating DLB/PD from
controls were as follows: age, sVCAM1, IL5, B2M, IL6,
IL1, Adipo, Eotaxin, MIP1, and IL10. Not surprisingly, the
top variable was age in both models. However, the top 2
proteins in this profile were the bottom 2 in the profile for
discriminating DLB from PD. In fact, only age, B2M, IL6,
adiponectin, and eotaxin overlapped in the top 10 markers in
the algorithm (5 of top 10). Overall, the profile was a mix of
inflammatory, metabolic, and vascular dysfunction, but at
different levels between the categories. In our prior work,
we have found that the AD profile is heavily inflammatory
in nature as compared with PD and controls. In fact, the AD
in adults with Down syndrome is also heavily inflammatory
in nature. Therefore, while there are certainly disease-
overlapping pathological processes depicted in this work,
the profiles are different among categories. Prior work has
demonstrated that there is a range of biological dysfunction
across numerous neurodegenerative diseases. When tau and
Ab are present in DLB, they tend to occur at far less densities
than what is typically seen in AD. A recent study showed that
in DLB, a-synuclein is a key predictor of disease duration
independently and synergistically with tau and amyloid b
[Ferman et al., 2018]. It is possible that the proteomic profiles
here are picking up on different levels of biological dysfunc-
tion due to differing levels of a-synuclein, amyloid, and tau
pathology. Further work is needed to elucidate the patholog-
ical relevance of these overall proteomic profiles.

In our priorwork,wehave created and validated a proteomic
signature for detecting AD across cohorts, species (humans,
mice), and tissue (serum, plasma, brain) [26,28,29,32].
Subsequently, we have proposed a multitiered
neurodiagnostic process for detecting neurodegenerative
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disease beginning in primary care clinics using blood-based
biomarkers [29,30] which is now being prospectively studied
in primary care settings (i.e., Alzheimer’s Disease in Primary
Care study). We have also demonstrated that our multiprotein
algorithmic approach can discriminate AD from PD [32] as
well as controls from “neurodegenerative disease” (i.e., AD,
PD, DLB, Down syndrome) [29]. When the current work is
compared with our prior work in AD [32], the synucleinopathy
profile and DLB vs PD profile is different from the AD profile.
Additional preliminary analyses were provided here to support
the notion that the multimarker, multistep profile can also
discriminate DLB and PD from AD. Given the sample size,
these results are preliminary, but strongly supportive of further
work. Therefore, the current work takes a significant step for-
ward in the area of blood biomarkers for detecting neurodegen-
erative diseases as it sets the stage for a large-scale, multilevel
proteomic-bioinformatic model that takes into account
disease-specific profiles across numerous neurodegenerative
diseases. The current team is currently assaying large numbers
of samples across disease states to test this model.

There are weaknesses to the present study. First, the DLB
cases included in this study were responders to cholines-
terase inhibitors, who may be reflective of a specific subset
of DLB patients. These cases were selected based on our
prior work, suggesting that DLB cases that respond to
cholinesterase inhibitors likely do not have imaging markers
of AD. Therefore, it will be important to do additional work
with larger, mixed DLB cases. Second, despite being a
sizable proteomic study of Lewy body disease, the sample
size is still relatively small and must be cross-validated in
an independent sample. Therefore, the analyses were con-
ducted with internal five-fold cross-validation rather than
splitting the cohort into training and test samples. In addi-
tion, while the use of our previously validated proteomic
profile is a significant strength, it is also possible that the in-
clusion of additional markers will aid in the detection of
DLB as well as the discrimination of DLB from other neuro-
degenerative diseases. Given the recent resurgence of inter-
est in blood-based biomarkers of amyloid using novel
methodological advancements [43,44], these markers
should be considered in this work for additional
refinement of discrimination among neurodegenerative
diseases. In fact, the current team is currently including
ultrasensitive markers of blood amyloid (Ab40, Ab42) total
tau, neurofilament light chain, and a-synuclein in ongoing
assays to determine how these markers enhance the
accuracy of the models. Taken together, the current
findings add substantially to a rapidly growing line of
investigation suggesting that blood-based biomarkers can
serve in a multitiered neurodiagnostic process for detecting
a wide range of neurodegenerative diseases, including DLB.
Acknowledgments

This grant was supported in part by a grant from the
National Alzheimer’s Coordinating Center (NACC-2016-
04) and grants from the National Institute on Aging
(R01AG058537, R01AG054073, R01AG058252,
R01AG051848, P50AG016574). Z.K.W. is partially sup-
ported by the NIH/NIA (primary) and NIH/NINDS (second-
ary) 1U01AG045390-01A1, Mayo Clinic Center for
Regenerative Medicine, the gift from Carl Edward Bolch,
Jr., and Susan Bass Bolch, The Sol Goldman Charitable
Trust, and Donald G. and Jodi P. Heeringa.
RESEARCH IN CONTEXT

1. Systematic review: Literature was identified and re-
viewed using PubMed. Several articles described
the importance of rapid and cost-effective bio-
markers for neurodegenerative diseases. However,
no such blood-based biomarkers currently exist as a
first step in a multitiered neurodiagnostic process.

2. Interpretation: Our findings show that a blood-based
biomarker profile can detect neurodegenerative dis-
ease (dementia with Lewy bodies [DLB]/Parkinson’s
disease) and distinguish DLB from Parkinson’s
disease cases.

3. Future directions: This article provides support for
the notion that a blood-based biomarker profiles
can accurately detect DLB and even distinguish DLB
from Parkinson’s disease. Future work will be con-
ducted to expand the sample size and also include
other neurodegenerative disease categories such as
Alzheimer’s disease, Down syndrome, and traumatic
brain injury. A blood-based biomarker profile for
DLB would be of tremendous use for screening into
novel therapeutic trials.
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