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ABSTRACT 

Increased use of private patient rooms may be an important adjunct to traditional 

process-based interventions to prevent hospital-acquired infections (HAIs) in inpatient settings. 

We examined whether private room assignment lowers the risk of developing hospital-acquired 

methicillin-resistant staphylococcus aureus (HA-MRSA) infection and whether percent private 

rooms at the hospital level explain hospital-to-hospital variation in HA-MRSA incidence.  

We used 2016 Texas Department of State Health Services inpatient data from 340 acute 

care hospitals to evaluate HA-MRSA incidence. We used matched cohorts generated from 2.7 

million Texas inpatients to estimate attributable incidence and outcomes of HA-MRSA or other 

(methicillin-sensitive) staphylococcus infection. We also simulated potential financial impacts of 

an all-private room design for two dissimilar hospitals using the Monte Carlo method. MRSA 

and relevant conditions were assessed via ICD-10-CM diagnosis codes.   

We found a significant negative relationship between increased private room presence 

and use and HA-MRSA risk. The value of these protections can be quantified—we estimated 

each HA-MRSA infection prevented could have saved $12,100 in cost and reduced mortality risk 

by 4%. Additional simulation estimated substantial cost-savings, up to about $3 million, for a 

large public safety-net hospital if it were renovated to an all-private room design, with an 11% 

return on investment on average.  

Overall, our findings support renovation of existing bay-room oriented facilities to an all-

private room design as an effective and potentially efficient means to increase inpatient safety. 

Our methods provide a useful means for policy makers, hospital boards, and others to evaluate 
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the costs and benefits of such changes. Finally, we conclude that private room related metrics 

could provide an important quality indicator if included in public reporting. 
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CHAPTER I 

STATEMENT OF THE PROBLEM 

Overview 

The purpose of this chapter is to introduce the general topics of this thesis, related 

findings, and some unanswered questions in literature. While in-depth discussion regarding 

study-specific topics will follow in subsequent chapters, various foundational concepts of 

methicillin-resistant Staphylococcus aureus (MRSA) and related topics must be explained first. 

Therefore, this chapter presents a broad overview of MRSA and hospital-acquired infections 

(HAIs), including two different scopes of HAI, medical background of MRSA, known treatments 

and their cost nature, organizational risk factors of hospital-acquired MRSA (HA-MRSA), 

prevention and reduction programs, and existing study results and applicational challenges. 

Then, one recent work published in 2018, focusing on hospital-acquired central line-associated 

bloodstream infection (HA-CLABSI), is discussed regarding how this thesis details and enhances 

the prior work of HA-CLABSI. Finally, the specific aims of this thesis will be presented at the end 

of this chapter. 

Hospital-acquired vs. Healthcare-associated Infections 

When it comes to patient safety in hospitals, both “hospital-acquired infections” and 

“healthcare-associated infections” have often been interchangeably used despite their slight 

difference. To avoid any potential confusion regarding the terminology, we begin by defining 

the two terms and clarifying that we focus on the former throughout this thesis. 
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The term “hospital-acquired infection” (also known as “nosocomial infection”) was 

initially defined as an acute infection acquired by a patient during the hospital stay (Mayhall, 

2012). However, the definition and scope of “hospital-acquired infection” has since been 

expanded to include “healthcare-associated infection,” as these infections can also occur in 

non-hospital facilities, such as long-term care facilities, outpatient clinics, and home care 

services (Archibald & Gaynes, 1997; Mayhall, 2012). 

Compared to hospital-acquired infections, non-hospital infections of the same 

virus/bacteria are difficult to assess, and risk factors for these non-hospital infections are 

relatively unknown (Mayhall, 2012; Ostrowsky, 2013). While both routes of transmission (i.e., 

hospitals and non-hospital healthcare facilities) are equally important, this thesis focuses on 

applications from a hospital management perspective. Thus, the studies reviewed in this thesis 

are concerned with infections acquired in acute care hospital settings (henceforth abbreviated 

as “HAI”), excluding non-hospital routes of transmission. 

MRSA Infections as a Major Source of HAI 

One out of every 25 hospitalized patients are affected by at least one HAI in the United 

States every year (Magill et al., 2014). HAI causes complications, morbidity, and mortality, 

resulting in a substantial increase in healthcare costs (P. Pronovost et al., 2006; Slayton et al., 

2015). Staphylococcus aureus is one of the costliest and most dangerous human pathogens in 

the context of HAI. Staphylococcus aureus infections (also called “staph infections”) – including 

both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus 

(MRSA) – can commonly lead to fatal complications such as pneumonia and sepsis, which 
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spread locally and globally, colonize in numerous human body parts, and persist in various 

environments outside of hosts (Safdar & Abad, 2008). MRSA differs from MSSA in that MRSA 

bacteria is resistant to many cost-friendly antibiotics as the name (i.e., “methicillin-resistant”) 

suggests. Due to limited and costly treatments, MRSA has been one of the most feared strains 

of S. aureus. Hospitalized patients have an increased risk of developing MRSA infections 

because this population is more likely to have undergone surgeries and have reduced 

immunity, open wounds, and other post-surgical complications (Graffunder & Venezia, 2002). 

While MRSA infections have been declining in recent years (Office of Disease Prevention 

and Health Promotion, n.d.), statistics confirm that MRSA remains a major health threat (CDC, 

2016). More than 80,000 new hospital-acquired MRSA (HA-MRSA) cases are reported annually, 

resulting in more than 11,000 deaths of patients in healthcare facilities (CDC, 2016, 2018b). The 

Centers for Medicare and Medicaid Services (CMS) have monitored HA-MRSA and have 

adjusted reimbursement to penalize hospitals with high rates of various HAIs since 2015. 

Starting in 2017, HA-MRSA was added to this “penalizing” group of HAIs along with four other 

infections (CLABSI, surgical site infections, catheter-associated urinary tract infections, and 

clostridium difficile colitis) (CMS, 2017b). 

In practice, it is expense to implement most of the HA-MRSA prevention and reduction 

programs. Hence, these programs need to demonstrate significant cost savings to justify the 

expense to control HR-MRSA. However, the relationship among core constructs of HA-MRSA 

(i.e., predictors, infection risks, and healthcare outcomes) has not yet been clarified, so it is not 

obvious how much end-benefit (e.g., cost-saving) is expected from MRSA interventions (e.g., 
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compliance to hand hygiene).  Moreover, the validity of assessing cost-savings derived from 

economic analyses requires an elimination (or at least adjustment) of over- and under-

prediction risk in developing models, which introduce many theoretical and practical 

challenges. For those reasons, evidence found in the literature is mixed or inconsistent at best.  

Costly Nature of MRSA Treatments due to Resistance to Antibiotic Treatment 

The importance of MRSA studies should not be overlooked regardless of seemingly 

“green” signals – for example, public reports present already low incidence of a certain type of 

MRSA infections (e.g., 18 MRSA bloodstream infections per 100,000 patients in 2013) (Office of 

Disease Prevention and Health Promotion, n.d.) Apart from the appropriateness of current 

MRSA reporting measure (i.e., as of the time of this thesis), we believe that studying HA-MRSA 

is still of importance at least from two perspectives: 1) it may be a leading indicator of general 

antibiotic resistance; and 2) it serves as a driving factor of huge treatment costs (Grundmann, 

Aires-de-Sousa, Boyce, & Tiemersma, 2006). 

Speaking of the former, HA-MRSA rates may be particularly high in hospitals with both a 

high prevalence of staph infections (i.e., infections due to staph bacteria) combined with 

antibiotic resistance. Therefore, high incidence rates of HA-MRSA may be a "bellwether" 

signaling overuse of antibiotics and indicating a dangerous level of antibiotic resistance, which 

effectively limit the treatment options available to physicians. Our recent data shows MRSA and 

related conditions take a major percentage of drug-resistant (DR) conditions: 1) MRSA 

accounting for 49% of DR; 2) resistance to other beta-lactam antibiotics accounting for 7% (i.e., 

MRSA is a dominant beta-lactam resistant condition); and 3) vancomycin-resistant conditions 
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(i.e., vancomycin is mostly used in MRSA treatments – explained later in this section) 

contributing 6% (Figure 1).  This, combined with the alerts in literature (Ventola, 2015), 

suggests that understanding MRSA is connected to the general problem of antibiotic resistance, 

a significant threat to public health. 

Antibiotic resistance developed by staph bacteria causes problems, particularly in 

hospital settings (Ducel, Fabry, Nicolle, Organization, & others, 2002). In general, the 

mechanisms through which pathogens become antibiotic-resistant are largely categorized as 

either intrinsic or acquired. On one hand, intrinsic resistance may be caused by impermeability 

of the membrane to the agent or by the lack of the molecular target for an antibiotic. Acquired 

resistance, on the other hand, is caused by one or more of the followings: drug inactivation, 

reduced permeability, drug-efflux, and/or target modification (Lin et al., 2015). The bacteria 

that cause disease in hospitals typically achieve a significant level of resistance to antimicrobial 

therapies because many patients with such diseases receive antibiotics as preventative 

treatment during hospitalization. For example, in intensive care units (ICUs), more than 60% of 

patients receive antibiotics including penicillin and methicillin, potentially making the ICU a 

hazardous environment in which resistant pathogenic strains are developed (Lin et al., 2015). 

The antibiotic resistance of MRSA contributes to a significant rise in treatment costs, not 

to mention often fatal outcomes when delayed or not treated urgently (Ficalora & Mueller, 

2013; Mangiadi, Facs, & Morcovici, 2010). MRSA has multiple drug resistance (MDR) to beta-

lactam antibiotics, which are a broad-spectrum group including penicillin derivatives (e.g., 

methicillin and oxacillin) and cephalosporins (Gurusamy, Koti, Toon, Wilson, & Davidson, 2013). 
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Such MDR limits the effectiveness of these antibiotics. Vancomycin is a standard antibiotic used 

to treat MRSA patients (Schentag et al., 1998). However, using vancomycin also introduces 

newer practical problems: (1) vancomycin treatments can be complicated by the inconvenient 

route of intravenous administrations (Janknegt, 1997); (2) the treatment costs of vancomycin 

against MRSA is severely higher than that of cheaper penicillin beta-lactam antibiotics against 

MSSA (Chang et al., 2003; Siegman-Igra, Reich, Orni-Wasserlauf, Schwartz, & Giladi, 2005); and 

(3) several newly discovered MRSA strains develop antibiotic resistance even to vancomycin, 

named as vancomycin intermediate-resistant S. aureus (VISA) (Schito, 2006). Daptomycin, a 

costlier antibiotic than already expensive vancomycin, is required for VISA infections (Catherine 

Liu et al., 2011). According to a UK simulation study (Browne et al., 2016), daptomycin and 

vancomycin treatments cost $24,195 and $23,179, with an average lengths-of-stay (LOS) of 28 

and 42 days, respectively, to treat MRSA infections. 

Figure 1: Drug-resistant conditions for Texas inpatients (FY 2016) 

 
 

49%

7%6%

38%

MRSA-related conditions

Resistance to other beta-lactam AB

Vancomycin resistance
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Control and Prevention of HA-MRSA 

To encourage effective controls of HA-MRSA and multidrug-resistant pathogens, CDC 

released multiple guidelines for health care providers (Siegel, Rhinehart, Jackson, & Chiarello, 

2007; Siegel, Rhinehart, Jackson, Chiarello, et al., 2007). These guidelines emphasize hand 

hygiene, disinfection, and environmental cleaning and recommend implementing contact 

precautions and to place MRSA-colonized patients under contact precautions (Salgado & Farr, 

2006). Contact precautions require medical staff to wear gowns and gloves before entering the 

isolation rooms of infected or colonized patients. Antimicrobial stewardship, reducing hospital 

stays, ensuring a good staff-to-patient ratio, staff cohorting between cares for 

infected/colonized patients, and those for uninfected/uncolonized patients are also often 

suggested as effective control strategies (Henderson, 2006). The CDC guideline also 

recommends using multiple interventions together (e.g., contact precautions and 

environmental cleaning) to control transmissions of MDR pathogens – including MRSA (Siegel, 

Rhinehart, Jackson, Chiarello, et al., 2007). 

In the context of this thesis, it is worth noting that the CDC explicitly describes patient 

isolation in patient private rooms (PPRs) in their guidelines (Siegel, Rhinehart, Jackson, 

Chiarello, et al., 2007). A recent study examining the effectiveness of PPRs in controlling cross-

transmission of MDR bacteria confirmed the importance of PPR-ICU designs (Halaby et al., 

2017). 
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Inconsistent and Insufficient Empirical Evidence 

Ten benchmark studies from the literature on MRSA-attributable outcomes are 

presented in Table 1. As shown in Tables 1 and 2, a huge disparity is noticeable across the 

studies – mean attributable LOS ranges from 0.3 days (Adrian G. Barnett et al., 2009) to 15 days 

(Engemann et al., 2003a), and mean attributable costs range from $8,817 (Cosgrove et al., 

2005) to $33,077 (S. P. Kim et al., 2012) after adjusting to 2018 US dollars. These 

heterogeneous results, combined with the major issues discussed below, make it challenging 

for US hospitals to translate the existing findings into decision making process regarding MRSA. 

First, a half of the benchmark studies were conducted in European hospitals, which may 

differ from US hospitals in healthcare access and biological demographics (Adrian G. Barnett et 

al., 2009; Browne et al., 2016; De Angelis et al., 2011a; De Kraker et al., 2011; Macedo-Vinas et 

al., 2013). 

Second, seven studies were conducted with limited sample sizes (<10,000) and in one or 

(at most) two medical facilities. Only three studies used samples larger than 10,000 (S. P. Kim et 

al., 2012; Nelson, Samore, et al., 2015b; R. J. Rubin et al., 1999). 

Third, six studies did not identify the source of MRSA infection (i.e., hospital-acquired 

versus community-acquired) (Adrian G. Barnett et al., 2009; Cosgrove et al., 2005; De Angelis et 

al., 2011a; De Kraker et al., 2011; Engemann et al., 2003a; Macedo-Vinas et al., 2013). 

Community-acquired MRSA (CA-MRSA) and HA-MRSA are known to have discernable levels of 

impact on hospital costs (Beigi, Bunge, Song, & Lee, 2009; J. E. Brown, Dengler, & Lodise Jr, 
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2016; Hogea, Van Effelterre, & Cassidy, 2014; B. Y. Lee et al., 2013). Moreover, the impacts of 

HA-MRSA are of more concern from a patient-safety perspective for hospitals.  

Fourth, only three studies utilized matched controls. (De Kraker et al., 2011; Engemann 

et al., 2003a; Nelson, Samore, et al., 2015b). Methodological effort to minimize selection bias 

and endogeneity is essential due to an inherent nature of HA-MRSA infections (e.g., prolonged 

hospitalization due to HA-MRSA). 

Lastly, some studies investigated only the incremental effect due to antibiotic resistance 

(i.e., MRSA vs MSSA), rather than the total effect of MRSA (i.e., MRSA vs No MRSA) (Cosgrove et 

al., 2005; De Angelis et al., 2011a; R. J. Rubin et al., 1999). While antibiotic effects are still 

meaningful, management applications for hospitals require complete understanding about 

MRSA effects (i.e., both total and marginal effects), rather than only either piece.  

Table 1: Previous studies of attributable outcomes of MRSA infections 

Study HAI MRSA 
compared to Country 

Number of 
hospitals 
studied 

Sample 
size 

LOS results* 
(Mean, 95%CI) 

Cost results* 
 

Barnett et al. 
(2009) 

No No MRSA UK 2 4,569 APACHE2=10: 
+0.3 days (0.1, 0.5) 

APACHE2=30: 
+1.2 days (0.5, 2.0) 

 

Browne et al. 
(2016) 

No No MRSA UK Not applicable N/A Daptomycin used: 
28 days 

Vancomycin used: 
42days 

Daptomycin 
used: 

GBP 17,917 
Vancomycin 

used: 
GBP 17,165 

Cosgrove et al. 
(2005) 

No MSSA US 1 348 +2.2 days (1.8, 2.7) USD +6,916 
(5,390, 8,899) 

De Angelis et 
al. (2011) 

No No MRSA, MRSA 
colonization 

Swiss 1 1,041 Vs No-MRSA: 
+14.5 days (7.8, 21.3) 

Vs MRSA col: 
+5.9 days (0.1, 11.7) 

 

De Kraker et al. 
(2011) 

No MSSA, No MRSA 13 European 
countries 

Not reported 2482 Vs No-MRSA: 
+9,2 days (5.2, 13.5) 

Vs MSSA: 
+0.6 days (-3.7, 5.3) 
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Engemann et 
al. (2003) 

No MSSA, No MRSA US 2 479 Vs No-MRSA: 
+15 days (7, 30) 

Vs MSSA: 
+5 days (3, 13) 

Vs No MRSA: 
USD +23,336 

(13,437, 50,041) 

Kim et al. 
(2012) 

Yes No MRSA US 1,175 10,856 +30.73% of 
prolonged 

hospitalization 
(>90th-pct LOS) 

USD +30,500 
(19,059, 41,943) 

Macedo-Viñas 
et al. (2013) 

No No MRSA Swiss 1 26,350 +11.5 days (7.9, 15) CHF +10,166 
(6,984, 13,260) 

Nelson et al. 
(2015) 

Yes No MRSA US 114 386,794 Primary method: 
+11.43 days (10.44, 

12.43) 
Alt. method: 

+13.97 days (10.49, 
17.44) 

Primary method: 
USD +24,015 

(10,882, 37,149) 
Alt. method: 
USD +26,855 

(22,583, 31,126) 
Rubin et al. 

(1999) 
Yes MSSA US Not reported 1,351,362 

 
Total cost: 

USD 31,400 
Vs MSSA: 

USD +3,700 

* Values are presented with plus and minus signs if a study reported excess outcomes 
(compared to the baseline). Otherwise, results were presented without signs. 
 
Table 2: Previous studies of the effects of private rooms on MRSA infections 

Study Country 
Number of 
hospitals 
studied 

Sample 
size 

Number of 
beds studied 

Level of 
care 

MRSA reduction 
significance 

Bracco et 
al. (2007) 

Canada 1 2,522 14 ICU Significant 

Cepeda et 
al. (2005) 

England 2 866 28 ICU Not significant 

Ellison et al. 
(2014) 

Canada 1 1,687 35 Acute Not significant 

Julian et al. 
(2015) 

USA 1 1,823 73 ICU Not significant 

Levin et al. 
(2011) 

Israel 1 210 12 ICU Significant 

Teltch et al. 
(2011) 

Canada 2 19,343 49 ICU Significant 
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Vietri et al. 
(2004) 

USA 1 249 32 Acute/ICU Not significant 

 
 
Private-room Effects on MRSA 

In microeconomics, externality is defined as the external cost or benefit which affects 

society or larger economic groups but is not included in the individual-level (e.g., customer, 

producer) decision making process (Jaeger, 2012). External cost is called “negative” externality 

and external benefit is called “positive” externality. 

Pollution is a typical example of negative externality. When a factory generates water 

pollution, it may result in social costs such as cleaning cost or health problems in neighboring 

communities. But this social cost is not internalized in manufacturers’ decisions. Without 

regulations or legal punishment, they are not incentivized to reduce pollution. 

National safety is an opposite example (generally regarded as “positive externality”), 

resulting in social benefits (e.g., less mental stress) but not entering the individual decision-

making process as a benefit factor. 

Using this analogy, we believe PPRs may lead to both direct and indirect benefits, which 

we hereafter refer to as "positive externalities".  For example, multiple studies have argued that 

PPRs were associated with both higher patient satisfaction and improved patient safety 

(Devers, Brewster, & Casalino, 2003; Hall & Kamerow, 2013; Lenfestey, Denham, Hall, & 

Kamerow, 2013; Stiller, Salm, Bischoff, & Gastmeier, 2016). Some studies also concluded that 

PPRs were associated with a lower risk of HA-MRSA (Bracco, Dubois, Bouali, & Eggimann, 2007; 
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Levin, Golovanevski, Moses, Sprung, & Benenson, 2011; Teltsch et al., 2011). Contrary to such 

“direct” benefits (difference in benefits between “good” and “bad” rooms with a hospital being 

equal), however, little is known about “indirect” benefits (difference in benefits between 

“good” and “bad” hospitals with room types fixed) from the organizational effects of PPRs in 

preventing HA-MRSA.  

  Our conventional wisdom also favors systematic benefit of hospitals with more private 

rooms in terms of HAI-safety. As exemplified in the white paper of JPS Health Network (JPS 

Health Network, 2016), a hospital with more private rooms may position itself as a ‘safer’ 

hospital in the market, luring more consumers (patients) and generating greater revenue. This 

can stimulate the need of hiring more nurses and prioritizing safety-related issues. As a result of 

repetitions of such an iterative process, the hospital becomes actually safer. Note that this 

virtuous cycle affects hospitals on the organizational level, meaning that even patients in bad 

(non-private) rooms can enjoy benefit from increased safeties.  

This idea is in line with the analogy of “herd-immunity”, as an extension of positive 

externalities discussed above. HA-MRSA infections are infectious diseases that can be 

transmitted through doctors and nurses. PPRs are linked to many good traits of preventing HA-

MRSA through reductions of cross-transmissions of bacteria. More PPRs in a hospital mean 

larger personal space and less crowding which are associated with higher compliance with hand 

hygiene of staffs (Borg, Suda, & Scicluna, 2008; Salge, Vera, Antons, & Cimiotti, 2017). Better 

control of the aerial dispersion of pathogen and hand contamination are predicted in PPRs, 

compared with multi-bed rooms (King, Noakes, & Sleigh, 2015). Communication and 
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coordination among staffs are strongly encouraged in PPRs (Bartley & Streifel, 2010). Hospitals 

with fewer PPRs typically hire fewer nurses per bed, which may result in understaffing or 

excessive workload levels that can worsen the risk of HA-MRSA (Borg, 2003; Dancer et al., 

2006). One recent study examining UK hospitals argued the importance of stable and well-

isolated hospitalization to reduce MRSA transmissions (Tosas Auguet et al., 2018). All the above 

scenarios imply that HA-MRSA in a hospital with mostly PPRs may act as an infectious disease in 

a highly vaccinated society (i.e., analogy-wise, protective effects of PPR may play a similar role 

with those of vaccine.) 

Unfortunately, evidence from previous studies is both limited and mixed. We carefully 

reviewed seven benchmark PPR studies (Table 2) cited most frequently. These studies leave 

major potential problems unresolved. 

First, conclusions are mixed. Three studies found that PPRs significantly reduced HA-

MRSA (Bracco et al., 2007; Levin et al., 2011; Teltsch et al., 2011) while the other four studies 

found no significant effects (Cepeda et al., 2005; Ellison et al., 2014; Julian et al., 2015; Vietri et 

al., 2004). 

Second, most studies were conducted outside the US. Only two out of seven studied US 

hospitals (Julian et al., 2015; Vietri et al., 2004). This will be discussed with more details in the 

next section. 

Third, all the benchmarks examined relatively small samples and two facilities at most. 

Smaller samples and too few facilities prevent researchers from controlling organizational or 

environmental factors (e.g., staffing, physical spaces). Lacking adjustments to organizational 
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factors give rise to potential bias due to confounding or moderating effects of environments 

and may also be a serious drawback in generalizations. 

Last, only two studies studied non-ICU patients (Ellison et al., 2014; Vietri et al., 2004). 

However, the entire inpatient population is likely to better support hospitals’ management 

decisions of building new towers and expanding old rooms. 

Indeed, these four problems are largely related among one another. Mutually 

contradicting conclusions may be attributed to the discrepancy of varying and small 

experiments. Such challenges introduce the lack of validity and reliability required in practical 

applications.  

Needs of Representative Results 

As commonly shown in Tables 1 and 2, most literature comes from studies conducted 

outside of the US. We are concerned that this can give rise to serious lack of external validity 

(Marsh & Hau, 2004; Rothwell, 2005). In the context of this thesis, “external validity” is defined 

as the extent to which the study results and findings regarding HA-MRSA can be reproduced 

under situations in US hospitals, while “internal validity” is the extent to which the results avoid 

confounding and represent the causal relationship between HA-MRSA and the variables of 

interest in the study (i.e., either determinants or outcomes) (Black, 1996; Victora, Habicht, & 

Bryce, 2004). 

Compared to US studies, non-US study results may require tremendous cautions and 

strong assumptions in supporting US hospital management decisions regarding facility designs 

and organizational changes. Alongside the fundamental difference in healthcare delivery 
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structure, which is well discussed elsewhere (Van Doorslaer et al., 2000), US and European 

hospitals face very different environments and regulations regarding MRSA and HAI-safety 

(Aiken et al., 2012). The leading European countries1 have more aggressive and successful 

controls/policies for HA-MRSA (Kavanagh, Saman, & Yu, 2013; Klevens et al., 2006). The US and 

European countries also use different surveillance measures for HA-MRSA (Hansen et al., 2012). 

According to recent OECD statistics, organizational characteristics of US hospitals may also 

differ from leading European countries (OECD, 2017). For these reasons, we strongly believe 

that the results of HA-MRSA and PPR from European hospitals may introduce intensive 

challenges to transform into practical uses for US healthcare settings. 

One may make a similar criticism of lacking external validity (i.e., generalizability) 

toward this study, because we used Texas data. Hence, the result of this thesis may not be 

expanded to other US states. While we acknowledge such limitation, we would like to 

emphasize that it is much easier to disarm threats to external validity in this thesis. Analysis and 

modeling framework can be re-applied to newer data sets of other states (once such database 

becomes available to us) with zero or minimal changes (i.e., nearly the same set of variables 

and their definitions). On the contrary, this may not be the case for European findings (i.e., 

predictive models must change massively to apply such models to US hospitals) due to some 

inherent differences For example, the percentage of Medicaid-insured patients (highly 

associated with safety-net hospitals) in a hospital is neither controlled in European studies 

                                                      

1 Note that European countries themselves have a large within-Europe variation. 
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among our benchmark studies, nor discussed in the same analysis frameworks. Similar 

problems can be posed for many demographic (e.g., the percentage of Hispanic patients) and 

hospital variables (e.g., ownership type). 

Fallacy of “One size fit all” 

This thesis study intends to develop an expandable cost-benefit analysis (CBA) model 

(primarily expandable to US hospitals) to estimate the level of cost-saving benefits due to HAI 

reductions as justifying costly investments. We hypothesize that these benefits of PPRs are 

disproportionate to hospital characteristics and environmental factors (as opposed to invariant 

benefits across hospitals). Accordingly, CBA simulations which do not take these organizational 

and structural factors into consideration are likely to suffer limitations in applying to various 

hospitals. Such results are only held if we assume that interactions regarding PPR will not vary 

as a function of organizational or environmental elements, and that the benefits of PPR will be 

similar enough, no matter how hospital types and characteristics differ. Unfortunately, the 

current state of organizational science regarding PPR is more like a “collection of anecdotes.” 

Many studies including our benchmarks demonstrated whether or not a PPR is effective in a 

specific hospital (usually a large teaching hospital located outside of the US). We are concerned 

with that these one-size-fits-all approaches may lead to lack of comprehensive understanding 

and impose limitations on policy and management. For example, a base health policy in the US 

cannot be evidenced by studies performed at single or a small number of teaching Canadian 

hospitals. 
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One recent study simulating the economic benefit of PPRs conducted by one research 

team is worth discussing in this respect (Sadatsafavi, Niknejad, Zadeh, & Sadatsafavi, 2016). 

While this study made interesting points in modeling PPR effects on the financial outcome, 

there still leaves unfilled gap in translating the study result into real-life management decision 

making process in US hospitals. The authors of the mentioned study used only one infection 

study to estimate the probability distributions of MRSA infection risk, one of the critical 

information of the analysis. Moreover, the underlying infection model was derived from one 

Canadian hospital (Hôtel-Dieu de Montreal Hospital) with fewer than 3,000 patients (Bracco et 

al., 2007), which did not integrate any environmental, organizational, or structural factors into 

the model. Hence, other type of hospitals (e.g., safety net hospitals in Fort Worth, Texas, or 

small for-profit hospitals located in a rural area) may face immediate difficulties in extrapolating 

this simulation. As discussed earlier, different research design and setting cause varying 

conclusions in MRSA infection risk and costs. The simulation conclusion can flip easily with the 

choice of differently derived models. Taken together, even if the discussed simulation has a 

good internal validity, lacking external validity may be problematic – the results may not 

effectively facilitate practical uses in managements and policies. 

It is important to understand that what we argue in this section is indeed a practical 

problem which all the potential real-life applications immediately face, as opposed to trivial or 

minor limitations. If any policy makers or hospital managers use the simulation results 

discussed above, they might also have to accept an implicit assumption that the simulated 

reduction of MRSA can be obtained proportionately across different hospitals within the 
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estimated range. However, there found obvious evidence to counter the assumption, at least 

for Texas hospitals. For example, our data shows that nurse staffing (measured by nurse-to-

patient ratio) is correlated with MRSA incidence (Correlation coefficient=-0.19; p=0.0045; 

among 229 valid hospitals). What is worse, this measure varies intensively across hospitals, 

ranging from 0.12 to 7.44. It is highly likely that the simulation results may not fit applications 

for Texas. The issue of non-linear improvements potentially due to externality would aggravate 

the fit even further. The expected improvement (i.e., reduced MRSA infections) depends on 

how many PPRs currently exist in the hospital, as we found. In other words, MRSA reduction 

effects present non-linear and marginally decreasing response as more PPRs exist in the 

hospital. 

We seek to fill this gap in the literature. The results of this thesis might arguably achieve 

a stronger generalizability (i.e., external validity to Texas hospitals) by utilizing more than 300 

hospitals and by addressing the effect of environmental factors. Generalizability to all US 

hospitals will be obtained by reprocessing and recalibrating with nationally representative data 

(not available at the time of this study due to resource and time constraints). To increase 

internal and face validity, we also verified the results by closely working with JPS Hospital. 

Public Reporting and Induced Antibiotic Overuse 

Benchmarking of surveillance data for HAIs has been used for more than 30 years to 

inform prevention strategies and improve patient safety. In recent years, public reporting of 

HAI indicators such as incidence rates has been mandated in several states in the US (Talbot, 

2013). Other high-income countries with an emerging awareness of patient safety also force 
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public reporting of HAI indicators, but some countries report differently than the US. For 

example, the US and England have predominantly focused on reporting of infection rates, while 

France emphasizes process and structure indicators. For example, the incidence of bloodstream 

infections due to MRSA is publicly reported in the US, but not in France. Instead, the rate of 

isolation of MRSA from diagnosis specimens is publicly reported in France, not in the US 

(Haustein et al., 2011). A comparative study based on four countries – including the US – argues 

that mandatory public reporting has a strong benefit in an increasing commitment of hospital 

leadership to combat HAIs and providing external reinforcement for organizational changes  

(Haustein et al., 2011). 

Many researchers agree that public reporting of HAI would effectively lead to reductions 

of the infections as long as the reporting process is transparent and efficient (Allen, 2006; 

Daneman, Stukel, Ma, Vermeulen, & Guttmann, 2012; Haustein et al., 2011; Martin et al., 2013; 

Passaretti, Barclay, Pronovost, Perl, & Committee, 2011). However, studies have also warned of 

unintended consequences (Edmond & Bearman, 2007; Muller, 2010; Talbot, 2013). One of the 

risks commonly indicated is incentivized and induced under-reporting from hospitals (Haustein 

et al., 2011; Talbot, 2013). Also, public disclosure might impose the risk of skewing of priorities 

or misinterpretation by the public and the media (Haustein et al., 2011). Some researchers 

argued that the current reimbursement policies of HAI might not be as effective as intended 

mainly because the policy generally used individual case-based measures rather than structure-

based or process-based ones (J. Brown, Doloresco, & Mylotte, 2009). 
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The issue of antibiotic resistance becomes more complicated when combined with the 

negative side of public reporting and related regulations (i.e., when there are some players 

gaming “the regulation”). (See the section of “Costly nature of MRSA treatment…” in this 

chapter for general explanations.) MRSA was defined as one of “never events” by CMS and 

used for a quality payment adjustment, including Medicare nonpayment for HAI and Hospital-

acquired condition reduction program. While this policy achieved a success of HA-MRSA 

reduction (Waters, Daniels, & Bazzoli, 2015), the true story was confounded with the fact of 

increasing antibiotic overuse in recent years (Fleming-Dutra et al., 2016; Llor & Bjerrum, 2014; 

Ventola, 2015). Some researchers have suspected that the public reporting and regulation 

regarding never-events might “encourage” inappropriate use or overuse of antibiotics (Collins, 

2008; Chenxi Liu et al., 2016; Ventola, 2015). This indicates at least two important challenges: 

concept and methodology. Conceptually, hospitals and policy makers need stronger evidence 

regarding public reporting of HAIs in terms of effectiveness of reporting (i.e., “Does the 

reporting effectively incentivize hospitals to reduce HA-MRSA infections in right ways?”) as well 

as accuracy of reporting measure (i.e., “Do hospitals or governments measure and report the 

right thing linked to patient safety? Does such measure not induce serious side effects?”). 

Methodologically, the likelihood of receiving antibiotics must be controlled in research designs 

for any MRSA studies to minimize positive confounding (i.e., the observed association is biased 

away from the null). 
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We strongly believe that which indicators to measure, how to define a composite 

measure, and whether or not to disclose them publicly are all difficult problems. They must be 

verified with science evidence, not motivated by political arguments. 

In this regard, our studies aimed for better public reporting of MRSA in at least two 

aspects. First, impacts due to MRSA infections would be more accurately examined. As 

discussed in the previous sections, most of MRSA effects are evidenced by the studies lacking 

internal (i.e., not controlling organizational confounders) and external validity (not applicable 

for general US populations). In addition, only MRSA bloodstream infections are mandated to 

report. Our goal is to challenge the unanswered questions and to develop a more robust 

predictive model regarding health outcomes (will be discussed with more details in the 

following chapters).  Second, our result regarding PPR-MRSA relationships may hint the need of 

mandatory and public reporting of hospitals’ patient room information. This thesis shows that 

PPR serves as a good healthcare-safety indicator. Note that the unintended consequences of 

PPR public reporting would be presumably less problematic, due to the nature of structural 

measure (i.e., unlikely endogeneity/reverse causality), than the outcome reporting measures 

such as MRSA bloodstream incidence. Patients are likely to benefit from this information in that 

they can choose a safer place to get care. Hospitals are also incentivized to invest in improving 

the quality of patient rooms and facility safety to obtain competitive advantages on the market. 

Our Previous Work on CLABSI 

In recent years, Dr. Liam O’Neill and I have been examining on Texas inpatient discharge 

data to better understand private-room effects on HAI, focusing on CLABSI. In 2018, we 
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published our results confirming that there were non-linear but monotonically decreasing 

relationship between the risk of HAI and the percentage of PPRs in a hospital, regardless of 

which room an individual patient actually stayed (O’Neill, Park, & Rosinia, 2018). This suggests a 

new perspective of the built environments as a determining organizational factor associated 

with between-hospital difference in HAI risk, rather than a traditional view of within-hospital 

difference (i.e., a patient assigned to a private room vs a bay room). 

While this CLABSI work revealed many important relationships among HAIs, physical 

environment and organizational characteristics, we were also motivated to extend the lessons 

learned to the next stage, including the following points. First, there was a clear need to include 

other HAIs other than CLABSI in the analysis to get a more comprehensive picture of HAI-

associated patient safety. MSRA must be considered along with CLABSI due to the well-

established risk of mortality and/or its high cost of treatment (CDC, 2016; Salge et al., 2017). 

Second, analyzing aggregated data (i.e., by facility) can improve our understanding of both 

determinants and outcomes of HAIs at the hospital level, reducing potential bias due to 

inherent collinear interactions between internal and external effects: For example, a patient is 

affected not only by the patient’s own disease, but also hospital-wide disease level (i.e., the 

aggregation of individual disease status). Finally, cost-benefit analysis results presented as 

monetary term help potential stakeholders have a better sense in practical applications, 

compared to (academically oriented) statistical inferences. For example, there is a high demand 

to transform statistical point and interval estimates (e.g., conditional mean and 95% confidence 

interval of the adjusted incidence rate of HA-MRSA) to end-result predictions such as how many 
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dollars can be saved by converting a bay room to a private room. Note that point-value results 

are imperfect for comprehensive understanding, as many underlying factors are estimated 

within a certain uncertainty. Distributional presentations such as multi-variate confidence 

intervals and empirical distribution plots may help in this regard. 

All things considered, this thesis intends to extend our previous work in this area, 

address all the needs discussed above, and ultimately add to the emerging body of research by 

providing higher dimensional evidence. 

Specific Aims of This Thesis 

The aims of this thesis are three-fold: 

Aim 1. Develop hospital-level predictive models that link the effect of facility design to 

HA-MRSA reductions and hospital cost. Based on representative large data, this thesis will 

examine the association between facility design, primarily focusing on patient rooms, and HA-

MRSA infections. This thesis will also examine the attributable impact of the change of HA-

MRSA infections at the hospital level to hospital cost (measured by Medicare reimbursement). 

While it is known that HA-MRSA is associated with worse health outcomes, the evidence to 

date is insufficient to get practical and robust predictions for actual hospitals regarding facility 

constructions or renovations. Our thesis intends to reduce this gap in the literature by 

estimating how many infections can be prevented due to facility design factor, as well as the 

potential cost savings. 

Aim 2. Examine the effects of “positive externalities” of private patient rooms (PPRs) 

with regard to the risk of HA-MRSA at the patient level. Positive externality in this context is 
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defined as indirect hospital-wide effects on patients regardless of assigned room types. The 

hypothesis for this aim is that, the patients’ benefits due to PPR are decomposed into individual 

(direct) and hospital (indirect) effects. This implies that, even if a patient is assigned to a bay 

room, this patient would be safer against HA-MRSA compared to the equivalent patient 

assigned to non-PPR at a “worse” hospital (i.e., lower percentage of private rooms), other 

factors being equal.  

Aim 3. Develop a probabilistic cost-benefit analysis (CBA) simulation model and apply 

the simulation model for actual hospitals as a practical application of this thesis. This CBA 

intends to inform hospitals how much financial investments can be justified by cost-saving 

benefits from reduced HAIs by converting existing facilities to an all-private room design. While 

the main HAI scope of this thesis is HA-MRSA, we also included hospital-acquired MSSA and 

CLABSI2 to predict benefits to suggest more comprehensive and useful results for the 

stakeholders. Among the five specific HAIs monitored by the CMS (HA-CLABSI, HA-MRSA, HA-

C.Diff3, HA-CAUTI4, and SSI5) (CMS, n.d.), these two HAIs (HA-MRSA and HA-CLABSIs) were 

chosen based on the data availability. Our CBA simulation model was supported by the patient-

level predictive models for cost-saving from HA-MRSA reductions and the previous work of HA-

CLABSI. Note that we expect this simulation model to have a strong external validity due to 1) a 

                                                      

2 Central Line-Associated Blood Stream Infections 
3 Hospital-acquired clostridium difficile colitis 
4 Hospital-acquired catheter-associated urinary tract infection 
5 Surgical site infection 
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large representative sample and 2) possibly a better model-specification that includes structural 

and organizational factors. While two hospitals of different facility types are examined as 

examples, the simulation framework is flexible enough that it can be applied to any type of US 

hospitals. 

Next Chapters 

Chapters II through V include introductions to common methodologies, the study of the 

relationship between private rooms and MRSA, the analysis of the economic impact of MRSA 

on hospital cost, the study of the decomposed private-room effects at the patient level, and the 

cost-benefit simulation of private-room facility designs via HAI reductions. Chapter VI 

summarizes the common themes and implications of this thesis. 
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CHAPTER II 

RESEARCH METHODS AND DATA SOURCES 

Overview 

 The purpose of this chapter is to give readers a brief overview of the research methods 

for the studies of this thesis. Specifically, this chapter explains data sources, operational 

definitions, comorbidity measures, conceptual models, risk-adjustment models, and statistical 

models.  

Data Sources 

Texas inpatient discharges.  

The Texas Inpatient Public Use Data File (IP PUDF) (Texas Department of State Health 

Services, 2017) is the primary data source for this thesis. These data are collected by the Texas 

Department of State Health Services on a quarterly basis. The dataset includes all discharge 

records for more than 600 participating hospitals in Texas. It contains 266 data fields in a base 

data file, 13 data fields in a detailed charge file, and 12 data fields in a facility data file. The data 

include information of patient demographics, lengths of stay, discharge status, 26 diagnosis 

codes (i.e., containing 1 primary diagnosis, 1 admitting diagnosis, and 24 secondary diagnoses), 

25 surgery procedure codes, total patient charges, and separate charges for various utilizations 

(e.g., charges for patient rooms and charges for ICU). Each year of data includes about 2.5 - 3 

million patient records. 

 The current thesis focuses on the data obtained in the fiscal year 2016. This specific time 

point of data collection (i.e., the fourth quarter of calendar year 2015) was chosen because ICD-
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10-CM diagnosis code reporting was not available until October 2015. The data include 98.6% 

of all hospital discharges in the state excluding small hospitals (i.e., containing less than 25 

licensed beds). Specific inclusion and exclusion criteria will follow in subsequent chapters. 

Medicare payment data. 

 Medicare Provider Utilization and Payment Data (CMS, 2017b) was used to assess 

hospital costs. This database includes hospital-specific charges for the more than 3,000 US 

hospitals that receive Medicare Inpatient Prospective Payment System payments for discharges 

paid under Medicare based on a rate per discharge using the Medicare Severity Diagnosis 

Related Group (MS-DRG). For each MS-DRG, an average charge, an average total payment, and 

an average Medicare payment are calculated at the individual hospital level as well as at the 

state level. We merged this Medicare payment data with our IP PUDF to define and calculate 

hospital costs. 

Hospital annual survey. 

The American Hospital Association (AHA) annual survey is a database for in-depth 

analysis on hospitals and healthcare industry (AHA, n.d.). AHA annually conducts a survey of 

hospitals to compile a comprehensive database on hospitals. This database contains various 

hospital-specific organizational and structural data from more than 6,000 hospitals and more 

than 450 healthcare systems. The number of data fields included in this database exceeds 700. 

One practical problem in using this database for this thesis was that the hospital identifiers of 

AHA were not compatible with IP PUDF. To address this problem, two databases (i.e., DB1 and 

DB3) were matched by the similarity of hospital names. The distance between a geographical 
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location of a hospital (i.e., drawn from DB3) and two dominant patient counties (i.e., drawn 

from IP PUDF) was calculated to increase matching accuracy for otherwise ambiguously 

matched hospitals. Manual Internet inspections were conducted to check whether a hospital 

experienced serious business or operational changes (e.g., bankruptcy, M&A, and 

organizational integrations) during the data collection period (i.e., fiscal year of 2016). 

Income tax statistics. 

This thesis used the Individual Income Tax Return Statistics for 2016 (IRS, 2017), 

collected and archived by the Internal Revenue Service (IRS). The database contains income and 

tax items classified by state, zip code, and intervals of adjusted gross income. For each zip code, 

we defined a mean household income by using the sum of adjusted gross incomes and dividing 

the sum by the numbers of returns for each zip code. Although median incomes are known to 

be more robust against outliers, available data sources for median incomes (i.e., the United 

States Census Bureau data or community survey) have their own limitation – they are sampled 

investigations and present error margins of 10-15% (i.e., of estimated medians). In contrast, 

mean incomes are calculated by the United States tax return statistics and free from sampling 

errors by nature. In this thesis, we tried both income data (i.e., mean and median household 

incomes) and found only a small difference between the two income approaches. Therefore, 

we decided to use mean incomes because of its comparative completeness (i.e., population-

based statistics).  
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Consumer assessment of hospitals survey. 

The Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) 

survey is a national survey of patients' perspectives of hospital care (CMS, 2017d). Participants 

(i.e., discharged patients) are surveyed about their perceptions of hospital experience and 

satisfaction using 27 questions. For this thesis, we focus on perceived qualities (i.e., 

cleanness/quietness and whether the nurses communicated well) and patient satisfaction (i.e., 

overall satisfaction rating of hospital stay).  Because publicly released HCAHPS data set does not 

contain the exact distribution of 0-10 (i.e., 0 as the lowest satisfaction and 10 as the highest 

satisfaction) ratings6, we used percentages of respondents who rated highly (9 or 10 out of 10). 

This method also reduces ceiling and floor effects due to censoring that typically appeared in 

hospital quality surveys (Dell-Kuster et al., 2014). The same matching strategy used to match 

DB3 with DB1 (i.e., matching by hospital names and distances, with additional internet 

inspections) was used to match DB5 with the rest of the databases. 

Introduction to ICD-10-CM 

ICD-10 stands for the tenth revision of the International Statistical Classification of 

Diseases and Related Health Problems, a medical classification list established by the World 

Health Organization (WHO) (WHO, n.d.). It contains codes for diseases, signs and symptoms, 

abnormal findings, complaints, social circumstances, and external causes of injury or diseases. 

                                                      

6 Alternatively, HCAHPS provides percentages of survey participants: patients who gave their hospital a rating of 6 
or lower, 7 or 8, and 9 or 10 (highest). 
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The code set in the base classification allows for more than 14,400 different codes and permits 

the tracking of many new diagnoses compared to the legacy ICD-9 (WHO, n.d.). The number of 

codes can be expanded to over 16,000, with the use of optional sub-classifications. The 

International Classification of Diseases, tenth Revision, Clinical Modification (ICD-10-CM) was 

developed by the National Center for Health Statistics (NCHS), for medical coding and reporting, 

serving as a morbidity classification for classifying diagnoses and reason for visits in all 

healthcare settings (CMS, 2017c; NCHS, 2016). 

Administrative Data and ICD-10-CM 

Since HA-MRSA pathogen involves unmeasurable or unknown factors in infection and 

transmission processes, the ideal study design would be a randomized controlled trial (RCT) 

with sufficient sample size. However, conducting an RCT is not feasible to study HA-MRSA for 

many reasons that are well documented elsewhere (Benson & Hartz, 2000). Primary reasons 

are that covariates of MRSA are impossible to control and random allocation of participants to 

treatment groups are likely unethical. Thus, most research on MRSA has been observational 

studies based on primary data (i.e., data observed or collected directly from investigators). 

Despite known limitations of publicly available data, many researchers have suggested that a 

study of large-scale administrative data can serve as a viable alternative to an RCT and 

outperform smaller primary data-driven observational studies (Jhung & Banerjee, 2009; 

Schweizer et al., 2011). Note that large and representative samples of administrative data meet 

the criteria of this thesis (i.e., focusing on management and policy use). Nevertheless, 

administrative data still face practical challenges in identifying MRSA infections (Goto, Ohl, 
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Schweizer, & Perencevich, 2013; Schweizer & Rubin, 2012). (See the “Identifying MRSA 

infections” section.) A set of suggestions has been proposed to improve the quality of detecting 

HAI for studies using administrative data (Jhung & Banerjee, 2009). We followed these 

recommendations: 1) use of as many (up to 26) diagnosis fields; and 2) validation against other 

estimates (i.e., the number of HA-MRSA infections reported by the CMS). We also address 

endogeneity and distinguish direct effects from indirect effects in our analyses.  

In addition to well-established general benefits of using ICD-10-CM, such as higher 

sensitivity (sick people correctly identified as having the condition) and specificity (healthy 

people identified as not having the condition) due to increased details (Brooks, 2016), ICD-10-

CM improves the quality of MRSA research over ICD-9-CM for at least two reasons.  

First, the legacy ICD-9-CM contains multiple confusing MRSA definitions. Before 2008, 

there was a single ICD-9-CM code (V09.0 – “infection with microorganisms resistant to 

penicillin”) for generic MRSA infections. MRSA infections were assessed through combinations 

of this code with complicated infections (Tehrani, Cao, Kwark, & Huang, 2013). For example, 

pneumonia with MRSA was coded as 482.4 (Staphylococcus aureus pneumonia) plus V09.0. 

Newer recommendations – that replace V09.0 with a single combination code for MRSA and 

complications – were released in 2008 (CDC, 2011). For example, pneumonia due to MRSA is 

coded as 482.42. The biggest problem of such an approach (i.e., the combination of general 

MRSA code and separate diagnosis code) is that one patient may have multiple conditions. 

Thus, it is likely unclear whether or not a certain infection is induced by MRSA in practice. For 

this reason, the later guideline prohibited the outdated V09 MRSA code (CDC, 2011) and 
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instead required to code MRSA with newer set of codes (038.12, 482.42, 041.12, and V02.54) 

(See Table 3 for more). Nevertheless, our observation on IP PUDF revealed that hospitals used 

newer and older codes interchangeably and inconsistently as recently as in 2014, possibly due 

to the legacy billing software. This may introduce serious inaccuracies and biases that could 

undermine the validity of data.  ICD-10-CM eliminates the coding ambiguity of “generic MRSA,” 

and also integrates various MRSA infections into its structure in a more consistent way. 

However, to the best of our knowledge, few studies have used ICD-10-CM because this revised 

rubric has become available very recently. In Texas, for example, the first quarter of data that 

included ICD-10-CM (i.e., the fourth quarter of 2015) was not released until late 2016. 

Second, the validity of ICD-9-CM coded MRSA in research may be problematic. One 

study examined the accuracy and validity of the ICD-9-CM V09.0 code and concluded its low 

sensitivity (mean: 24%) and low positive predictive value (mean: 31%) (Schweizer et al., 2011). 

Another study reported low sensitivity (mean: 58%) but high positive predictive value (mean: 

93%) (Schaefer et al., 2010). These results suggest that MRSA might have been under-coded 

with the legacy coding system. While no studies have validated newer ICD-10-CM codes yet 

(Goto et al., 2013), a recent systematic review suggested that ICD-10-CM would better record 

some HAIs such as nosocomial pneumonia, and noted that the validity of ICD-10-CM coded data 

would increase as coders gain more experience with ICD-10-CM (Redondo-González, Tenías, 

Arias, & Lucendo, 2017). Another recent study performed at Canadian hospitals found a strong 

association (i.e., mean Pearson’s correlation coefficients ranging from 0.79 to 0.92) between 
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administrative data (coded with ICD-107) and surveillance result (Ramirez Mendoza et al., 2017) 

regarding MRSA infections.  

In other words, the legacy coding system (i.e., ICD-9-CM) has a potential risk of 

underreporting of MRSA and coding inaccuracy. By contrast, ICD-10-CM has clearer and more 

consistent definitions of MRSA with five separate codes, containing A41.02 (sepsis due to 

MRSA), J15.212 (pneumonia due to MRSA), B95.62 (MRSA infection as the cause of diseases 

classified elsewhere), A49.02 (MRSA infection, unspecified site) and Z22.322 (carrier or 

suspected carrier of MRSA).  Thus, a higher level of coding sensitivity is expected, because there 

will be fewer false negatives with ICD-10-CM than ICD-9-CM (e.g., MRSA pneumonia falsely 

coded with V09 versus correctly identified with J15.212). Moreover, the use of ICD-10-C<M in 

the present thesis allows for the comparison of our results with the MRSA rates that are 

reported by the CMS. Note that the current MRSA surveillance measure used by the CMS is 

based on a specific category of MRSA (i.e., lab-identified MRSA bacteremia), as opposed to 

entire MRSA conditions. 

HA-MRSA infections at both patient and hospital levels are included in our models of 

this thesis as key variables. We identified HA-MRSA at the patient level by using 26 diagnosis 

codes and 26 present-on-admission (POA) indicators corresponding to diagnoses. Table 3 

presents five MRSA conditions and corresponding ICD-10-CM codes – consistent with the CMS 

ICD-10-CM guidelines (NCHS, 2016). Note that this thesis does not consider “MRSA 

                                                      

7 ICD-10-CA (study conducted in Canada) 
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colonization,” because our purpose is to investigate cases when MRSA is acquired during 

hospitalization. Colonization of MRSA is typically determined by MRSA screening test, 

documentation of previous MRSA/MSSA colonization , and documentation of a disease process 

due to MRSA (Boyce, 2001; NCHS, 2016). However, multiple studies commonly indicated 

difficulty and inaccuracy in identifying the place at which MRSA is colonized, due to the non-

active nature of colonization (Boyce, 2001; Callejo-Torre et al., 2016; K. A. Davis, Stewart, 

Crouch, Florez, & Hospenthal, 2004). Furthermore, we are more interested with conditions that 

can significantly change end outcomes such as cost or mortality – colonization may be related 

only weakly at best. Note that HA-MRSA is defined with the combination of Present-On-

Admission (POA) indicators provided by IP PUDF (i.e., POA not contained in ICD-10-CM). For 

example, a septicemia due to HA-MRSA is defined if ICD-10-CM diagnosis code is A41.02 that is 

not present on admission (i.e., POA=0). For hospital-level analyses, all three types of patient-

level HA-MRSA infections (i.e., septicemia, pneumonia, and other infections) were aggregated 

to generate hospital-level HA-MRSA counts. 

Table 3: Various MRSA infections and ICD-CM codes 

Description 
ICD-9-CM 
(prior to 

2008) 

ICD-9-CM 
(after 
2008) 

ICD-10-CM Active 
infection Examined 

MRSA Septicemia - 038.12 A41.02 Yes Yes 

MRSA Pneumonia - 482.42 J15.212 Yes Yes 

Other MRSA 
infections 

Unspecified MRSA 
infections - - A49.09 Yes Yes 

MRSA as the cause of 
other disease - 041.12 B95.62 Yes Yes 

Generic MRSA V09.0 - - Yes No 
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MRSA colonization - V02.54 Z22.322 No No 

 

Costing Measure and Controversies 

Accurately assessing costs is desirable in order to estimate the economic impact of HA-

MRSA.  Scott et al. (2009) deconstructed the structure of HAI costs into three categories: 1) 

direct hospital costs of fixed (e.g., building, equipment) and variable (e.g., medications, 

treatments) parts; 2) indirect costs (e.g., lost wages); and 3) intangible costs (e.g., psychological 

effects, pain). There are also long-term effects of MRSA infections, such as diminished worker 

productivity and the loss of life. The report also found that most previous studies only 

considered direct hospital costs.  

Cost estimates can also vary depending on how they are measured.  For example, recent 

systematic reviews indicate that cost estimation from a top-down approach (e.g., direct charge 

multiplied by cost-to-charge ratio) can differ from a bottom-up approach, also known as micro-

costing (Hussey, Wertheimer, & Mehrotra, 2013; Macario, 2010).  

Consistent with cost benchmark studies in this area (Cosgrove et al., 2005; Engemann et 

al., 2003b; S. P. Kim et al., 2012; Macedo-Viñas et al., 2013; Nelson, Samore, et al., 2015a), 

presented in Table 4, the present thesis focused on the direct cost of hospital inpatient 

treatment primarily due to data limitations. Indirect costs also lack empirical evidence (Scott, 

2009). Furthermore, hospitals can directly appreciate benefits from investing in infection 

controls in that empirical evidence of direct costs of inpatient treatment for MRSA infections 

can support managerial decisions (e.g., building or expanding patient towers). 
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Cost benchmark studies mostly measured hospital charges to patients (Cosgrove et al., 

2005; Engemann et al., 2003b; S. P. Kim et al., 2012; Nelson, Samore, et al., 2015a; Robert J. 

Rubin et al., 1999) with a few exceptions (Browne et al., 2016; Macedo-Viñas et al., 2013). 

While there are some benefits of using hospital charges such as less ambiguity or easier data 

collection (Kaplan & Porter, 2011; Painter & Chernew, 2012), the charge measure is subject to 

critical biases in generalizability due to large between-hospital and between-department 

variabilities criticized by many researchers (Daffner, Beimesch, & Wang, 2010; Dormont & 

Milcent, 2004; Kaplan & Porter, 2011; Lave & Leinhardt, 1976; Painter & Chernew, 2012; 

Rapoport, Teres, Lemeshow, Avrunin, & Haber, 1990; Stover et al., 1998). One of the common 

criticisms of charge-based approaches is, as discussed by Painter and Chernew (2012), that 

charges are unrelated to actual costs. Kaplan and Porter’s analysis (2011) indicated that the 

charges were very likely inappropriate and misleading as a cost proxy, because the charges 

were often irrelevant to an actual allocation of resource (e.g., physicians, spaces). The patient 

charges are also very sensitive to billing and charging systems of hospitals (Dormont & Milcent, 

2004) as well as their cost reduction policy (Kaplan & Porter, 2011). A recent empirical study 

has verified extreme variations of hospital-charges across hospitals (Bai & Anderson, 2015), 

showing that the charges of the top 50 hospitals are about 10 times higher than their Medicare-

allowable costs (c.f. a national mode of 2.4 times). All the above evidence implies that hospital 

charges are inappropriate in assessing hospital cost for the purpose of this thesis due to low 

validity. 
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To address the limitation of charge-based cost assessments, alternative costing methods 

have been suggested in the literature: using relative resource allocation, like measuring 

reflected payments for healthcare services by health plans, beneficiary, or other payers (Hussey 

et al., 2013). This thesis used average Medicare payments by diagnosis-related groups (DRGs) 

as a proxy variable for hospital costs. We believe that this measure reflects resource allocation 

more consistently than hospital charges. Better performance as a cost measure is expected 

because Medicare payment weights by DRGs (DRG weights) are based on relative resource 

amounts used to treat patients in each DRG (CMS, 2017a) and because our simple analysis 

revealed that 98% of the average Medicare payments by DRGs are explained by those DRG 

weights (CMS, 2017a, 2017b). This method has also earned awareness of concerned 

researchers (Baicker & Chandra, 2004; Birkmeyer, Gust, Dimick, Birkmeyer, & Skinner, 2012; 

Englesbe, Dimick, Fan, Baser, & Birkmeyer, 2009). While such studies mostly targeted the 

relationship between hospital cost and quality rather than an association between MRSA and 

cost, there are at least four major advantages of using Medicare payments as a hospital costs 

approximation, regardless of some shared limitations with charge-based methods (e.g., true 

costs are independent from reimbursements). 

First, MRSA patients in Texas are dominantly (53%) eligible and insured by Medicare, 

followed by the uninsured (11%), those covered by Medicaid (10%), and those covered by 

commercial insurances (8%).  (See Figure 2 for details.)  In this respect, Medicare prices are 

representative of those which hospitals pay for MRSA treatments. 
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Second, Medicare price is a more consistent cost measure because it is derived from 

large data collections with standardized protocols and forms. Moreover, this information is 

transparent, in that the CMS publicly release average payments (i.e., prices) by providers along 

with summary statistics on a regular basis (CMS, n.d.-a). 

Third, the between-hospital consistency of Medicare payments (c.f., hospital charges 

vary massively across hospitals with different billing system and software) fits to analysis 

containing multiple hospitals and mixed payers. Note that Medicare prices also serve as a good 

reference. Non-Medicare patients can be adjusted by applying a payment ratio between 

Medicare and other payers, which enables consistent analyses of mixed patient pool no matter 

how each patient is insured. According to a recent survey (American Hospital Association, n.d.-

b), the Medicare payment rate represents approximately 89% of a hospital’s actual costs in 

2014. Using appropriate multipliers, we can estimate the actual payment to the hospital from 

Medicaid and commercial payers. For example, commercial payers are likely to use the amount 

paid by Medicare as a benchmark rate of payment so that they may negotiate to pay 162% 

(calculated from data points in 2014) of Medicare price for a given DRG (American Hospital 

Association, n.d.-a). Detailed ratios are presented in Table 5. Finally, even though Medicare 

payments are only approximations of the true costs of hospitals, they account for how much 

the entire society in the economy pays for HA-MRSA - Medicare payments are Medicare’s cost, 

mostly funded by taxpayers’ money, by definition (CMS, n.d.-c; Moeller, 2016).  

Some may pose concerns regarding Medicare non-payment policy. This policy of 

Medicare denies incremental payment for eight “never events” (i.e., serious but preventable 
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complications of hospital care), implemented in 2008 (NCSL, 2008). If HA-MRSA is not paid by 

Medicare, it may contradict our underlying assumption when using Medicare payments as cost 

proxy. However, many experts countered that this nonpayment policy might affect only a small 

portion of hospital reimbursement at best, because Medicare incremental payments to 

hospitals would only be rejected when HAI is the only factor causing a case to be reclassified 

into a more expensive payment (Stone et al., 2010). Moreover, Texas data for the fiscal year 

2016 failed to support that HA-MRSA nonpayment worked. The data indicated that HA-MRSA 

increased both LOS and covered charges (i.e., defined by the subtraction of non-covered charge 

from total charge) among Medicare patients even after adjusting demographics and medical 

confounders.  

 Admittedly, there is no consensus of “the right way” to assess hospital costs for HAI with 

administrative data to date (Painter & Chernew, 2012; Scott, 2009). Future studies may test and 

verify robustness and validity of various costing methods. However, it is beyond the scope of 

this thesis. 

Table 4: Cost literature 

Study Costing method Country Number of hospitals studied Sample 
size 

Cosgrove et al. 
(2005) 

Hospital charge – 
Patient charge 

adjusted by cost-
charge ratio 

US 1 348 

Browne et al. 
(2016) 

Accounting 
information 

UK N/A  
(decision-tree simulation) 

N/A 

Engemann et 
al. (2003) 

Hospital charge – 
Direct patient 

charge 

US 2 479 
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Kim et al. 
(2012) 

Hospital charge – 
Patient charge 

adjusted by cost-
charge ratio 

US 1,175 10,856 

Macedo-Viñas 
et al.(2013) 

Nationally 
collected cost-per-

case database 

Swiss 1 26,350 

Nelson et al. 
(2015) 

Hospital charge – 
Direct patient 

charge 

US 114 386,794 

Rubin et al. 
(1999) 

Hospital charge – 
Direct patient 

charge 

US Not reported 
(“I analyzed data for hospitals in the following 

New York City metropolitan area counties: 
Bronx, Dutchess, Kings, Manhattan, Nassau, 

Orange, Putnam, Queens, Richmond, Rockland, 
Suffolk, Ulster, and Westchester”) 

1,351,362 

 
Table 5: Percentages of reimbursements from various payers relative to costs 

Payer Payment-to-cost Ratio (%) 
Medicare 88.5 
Medicaid 90.0 

Private payers 143.7 
 
Figure 2: Texas MRSA patients by insurance (n=25,484) 
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Donabedian’s Structure-Process-Outcome Framework 

The conceptual model for this thesis comes from Donabedian’s classic framework of 

healthcare quality. Donabedian’s Structure-Process-Outcome (SPO) model defines three 

domains regarding health care quality (Donabedian, 1980, 1988). “Structure” is stable and fixed 

context in which healthcare services are delivered, including physical facility and information 

system. The structure is often easy to observe and may be an upstream cause of later problems 

identified in ”process” or “outcome” (Donabedian, 2005). “Process” denotes transactions and 

interactions between patients, healthcare providers, and hospital staff throughout the service 

delivery system, activities, and technical and interpersonal aspects of performance (Hearld, 

Alexander, Fraser, & Jiang, 2008). Process is more variable and controllable in the short term 

than structure. “Outcome” refers to all the effects of healthcare on patients, including changes 

to health status, behavior, or knowledge, as well as patient satisfaction and health-related 

quality of life (Donabedian, 1988). Note that these three categories are not attributes of 

quality; they are rather classifications for the types of information that can be obtained in order 

to infer whether the quality of healthcare is good, fair, or poor. 

While many researchers in this study area agree with conceptualization of the SPO 

model, the importance of structural measures has been overlooked and ignored: 

documentations regarding structure-outcome relationships being rare (Gray, 1986; 

Hammermeister, Shroyer, Sethi, & Grover, 1995; L. Moore, Lavoie, Bourgeois, & Lapointe, 

2015), and quality recommendations ignoring structural measures (Akachi & Kruk, 2017; 

Corrigan, Swift, & Hurtado, 2001; Harvey et al., 2016; Lohr, 1997). Meyer and Massagli (2001) 
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suggest that the continuing development of structural measures would be helpful because 

generalization of studies of process and outcome requires equalizing heterogeneous 

environments under which relationships are tested and found. These authors also emphasize 

the need of measuring aspects of physical environment, working conditions, organizational 

culture, and provider satisfactions. We try to address this gap in the following ways. 

Using the SPO framework as a hypothetical way of modeling private room effects, we 

conceptualize private patient rooms (PPRs) in two domains: structure and process. On the one 

hand, a patient in a PPR has a lower risk of developing HA-MRSA than in a bay room. Many 

favorable traits of PPR (i.e., direct benefits) regarding MRSA safety are verified by multiple 

studies, including better hand hygiene compliance (Borg et al., 2008; Salge et al., 2017) and 

more effective communications among staff (Bartley & Streifel, 2010). Note that these 

interactions are categorized as process measure in the SPO model. On the other hand, the 

proportion of private rooms in a hospital is a structural consideration that may affect all the 

patients systematically (i.e., effects not restricted within patients assigned to PPRs). This 

structural characteristic may reduce HA-MRSA risk by affecting multiple processes – including 

(1) a room assignment process (i.e., the more PPRs in a hospital, the higher chance of being 

assigned to a PPR) and (2) other processes potentially related to HA-MRSA (e.g., decreased 

nurse work load). With this decomposition of structure-process domains regarding private 

rooms, it is interesting to see a clear distinction of related decisions. Structural decisions 

include a new hospital design and an existing facility renovation. These decisions are made for a 

relative long-term period (5 to 10 years) by hospital management board and/or architects. By 



 

  

43 

 

comparison, process-related decisions are made on a shorter-term basis (e.g., daily operations, 

monthly or quarterly reflections) by physicians and nurses and include developing priority rules 

for bed assignments and applying such rules to patients. See Table 6 for details.  

Unlike many other previous studies in this study area, which did not consider patient 

rooms as a modelling factor, this thesis explicitly includes private rooms in the model of patient 

safety (i.e., MRSA-safety) and outcomes as a major structural variable from a “fixed-effect”8 

perspective, implying a certain part of private-room effects is constant over patients in the 

same hospital.  There are several studies that examine the difference between patients in bay 

rooms and those in private ones, like Bracco et al. (2007). Such analyses can shed a light on the 

effect of private rooms as a “process”. However, we hypothesize a patient’s MRSA-safety (or 

hospital-wide MRSA-safety as an extension) is affected not only by a room assignment process, 

but by external effects of patient rooms. The latter is unable to test or investigate without the 

aid of large-scale data collected from multiple facilities. Hence, we regard the percentage9 of 

private rooms in a hospital as an important variable. Furthermore, employing this structural 

variable may also benefit practical applications, because structural consideration usually needs 

more careful justification than process-related issues in the context of patient rooms. For 

                                                      

8 Note that there are various (at least five) and mutually-different definitions about fixed-effects and random-
effects (Gelman, 2005). We follow more intuitive interpretations in the literature (Kreft & De Leeuw, 1998; Searle, 
Casella, & McCulloch, 2009) – summarized as “Fixed effects are constant across individuals, and random effects 
vary.”  
9 We use “percentage” rather than “count” of private rooms, because an absolute count of rooms may introduce 
collinearity issues (i.e., all our models contain licensed beds) while relative quantity like percentages is 
independent from a hospital volume/size. (i.e., also included in the model.)  
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example, assigning a patient to a private room is much less controversial (i.e., mostly prioritized 

based on clinical criteria and resource availability at the decision moment) than renovating an 

existing facility and legacy rooms. It is also worth noting that our studies try to incorporate 

other various organizational variables – including but not limited to medical staffing, patient 

satisfactions, physical space for patients, and ownership styles. This is in line with 

recommendations in the literature, discussed earlier in this section. 

In this thesis, we intend to deliver a comprehensive understanding of private rooms 

regarding MRSA-safety. To meet this need, studies detailed in Chapters 3 and 4 (i.e., hospital-

level analyses) examine the effect of private rooms on MRSA-risk and MRSA-induced costs, 

considering the structural effect of private rooms as granted. Patient-level analysis detailed in a 

subsequent chapter tests the presence of structural (external) effect of private rooms and 

illustrates how two different aspects (process and structure) of private room effects differ and 

interact. 

Table 6: Structure and process aspects of private patient rooms 

Criterion Structure Process 

Decision maker Hospital management board, CEO, 
architects/designers Physicians, nurses 

Decision frequency Low 
(Once every five or ten years) 

High 
(relatively shorter-term: daily, weekly, 

monthly, or quarterly) 

Decision type Designing a new hospital 
Renovating an existing facility 

Developing priority rules for bed 
assignments 

Assigning patients to beds 
Sustainability of 

effects Long (almost permanently) lasting Subject to fail to continue in the long run 
(e.g. management/policy changes) 

Assessment of 
effects 

between-hospital difference 
(i.e., hospitals with different private room 

percentages) 

within-hospital difference 
(i.e., patients with different room 

assignments) 
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# of Hospitals to 
verify 

Multiple (at least more than 50) hospitals 
needed One (or a few) may be enough 

Measurability of 
effects Very difficult Relatively easy 

Repeatability of 
effects Impossible Possible 

Previous literature Very rare Many 

 

Estimating the Percentage of PPR 

 Regarding the use of private rooms as a structural measure, studies using large-scale 

data have suffered from the lack of available data in secondary datasets – even the potential 

value of such data has been overlooked. In order to address this major obstacle, the present 

thesis use “hospital charges” at the patient level, which is drawn from IP PUDF. This approach is 

suggested and introduced by our previous work (O’Neill et al., 2018). While the referred study 

focuses on HA-CLABSI10, we assume that the underlying logic of assessing the built-in 

environment remain unchanged across different HAIs.  

 IP PUDF contains hospital room charges. The database includes several pre-defined11 

variables regarding patient rooms: private room charges, semi-private room (i.e., often called 

“bay room”) charges, ward charges, and intensive care unit (ICU) charges. We are able to infer 

the hospital’s physical layout by examining the percentage of patients who were assigned to 

private rooms among all hospitalized patients. Suppose that 90% of a hospital’s acute-care beds 

are in private rooms. The probability to assign a patient to a private room would be 

                                                      

10 Hospital-acquired Central-Line Associated Bloodstream Infection 
11 Calculated using Medicare Provider Analysis and Review (MEDPAR) algorithm 
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asymptotically 90% -- implying that we can expect 90% of patients to be assigned to PPR if a 

sufficient sample is given. Note that actual PPR assignment rate may be affected by numerous 

factors: bed assignment rules, occupation rates, and intra-hospital transfers (O’Neill et al., 

2018). Nonetheless, this thesis regards the percentages of PPR as a robust approximation of 

hospitals’ physical layout for currently available databases.  

 Operationally, the percentage of PPR is defined as the percentage of patients who are 

assigned to a PPR and remain in the same room throughout their hospital stay. Thus, the 

numerator for each hospital consists of the number of patients assigned to a PPR (i.e. positive 

private room charges and zero charge for other room types) while the denominator consists of 

the number of patients assigned to either a PPR or a non-PPR (i.e. bay room or ward room).  

Note that we exclude intra-hospital transfers (i.e., defined as positive charges on multiple room 

types) from the denominator. Also, ICU is excluded from both the numerator and the 

denominator because IP PUDF did not have the information on whether ICU beds were located 

in private rooms.    

Controlling Comorbidity 

In developing predictive models regarding MRSA, patients with different medical 

conditions must be adjusted against comorbidity before being compared (i.e., ideally only 

similar conditions should be compared.) This is also important for hospital-level analyses, 

because the distribution of clinical burdens for a hospital may significantly differ across 

hospitals (e.g., rural clinics vs. specialized cardiac hospitals). In addition to controlling facility 

types and medical burdens, we controlled comorbidity in the following approach. 
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First, among various ways to define comorbidity, we follow the Elixhauser comorbidity 

definitions according to the “Elixhauser Comorbidity Software for ICD-10-CM” (AHRQ, 2018). 

The Elixhauser comorbidity measure, proposed in 1998, was initially developed with California 

inpatient data containing more than one million patients to predict hospital resource use and 

in-hospital mortality (Elixhauser, Steiner, Harris, & Coffey, 1998). This comorbidity measure 

contains 29-3112 comorbidity conditions relying on ICD-9-CM and ICD-10-CM coding systems. 

Recent studies further developed and validated weighted indices (i.e., presented as a score) (B. 

J. Moore, White, Washington, Coenen, & Elixhauser, 2017; Sharabiani, Aylin, & Bottle, 2012). 

There are alternative definitions of comorbidities – including Charlson comorbidity index 

(Manitoba Centre for Health Policy, n.d.),  Johns–Hopkins Adjusted Clinical Group Indices 

(“Concept: Adjusted Clinical Groups® (ACG®) - Overview,” n.d.), Chronic Disease score, and the 

crude number of diagnoses. All the referred approaches along with Elixhauser were carefully 

tested and reviewed with literature as well as actual data. Finally, we decided to follow 

Elixhauser’s definition regardless of wide acceptance and handy implementations of Charlson 

index13 (Quach et al., 2009; Southern, Quan, & Ghali, 2004). Our decision was made based on a 

number of recent comparative studies and systematic reviews (Menendez, Neuhaus, van Dijk, 

& Ring, 2014; B. J. Moore et al., 2017; Sharabiani et al., 2012; van Walraven, Austin, Jennings, 

Quan, & Forster, 2009; Velu et al., 2018). One common conclusion of such studies was that the 

                                                      

12 The number of conditions differ slightly across comorbidity software versions. 
13 When this thesis was first proposed, we planned to use Charlson index to assess comorbidity. 
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Elixhauser comorbidity index outperformed other alternatives in terms of true positive rates 

(i.e., statistical power) at the same cost of false positive rates (i.e., type-1 error). We also tested 

both comorbidity measures with Texas inpatient data and found that Elixhauser comorbidity 

yielded a better suitability (i.e., greater explanatory power for both HA-MRSA risk and 

healthcare outcomes.  

In this thesis, the 29 separate conditions (defined by the most recent software of AHRQ) 

were controlled in our patient models, while the weighted index was used in generating 

matched groups for patient-level analysis and between-hospital comparison (as well as hospital 

models). 

Risk-Adjustment Model 

The purpose of a risk adjustment process is to account for disproportionate conditions 

across patients in terms of medical (e.g., chronic conditions) and healthcare-access (e.g., how a 

patient is insured) aspects, and to ensure a certain level of unbiasedness throughout statistical 

inferences. Risk-adjustments also address several shortcomings of administrative data and 

quasi-experimental designs – including contamination by confounding variables and lacking 

control over extraneous variables (DiNardo, 2010; Harmon, Morgan, Gliner, & Harmon, 2000). 

Note that risk adjustment is particularly of importance for the research design of the present 

thesis – relying on large data collected from many facilities with different characteristics. For 

example, safety-net hospitals contain numerous patients with severer medical conditions. By 

contrast, other types of hospitals (e.g., rural for-profit hospital) have relatively healthier 

patients. If medical severity is not properly controlled in analyses, the prediction such as 
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private-room effect on MRSA would be biased and overestimated. Hence, we need as a good 

risk-adjustment model as possible. 

In this thesis, covariates are grouped into several categories: demographic, socio-

economic, medical (burden/status), organizational, and structural factors. Please note that 

“organization” and “structure” are often interchangeably used in this study area.  For 

convenience, the studies of this thesis distinguished these two in that structural variables are 

more directly involved in design and construction of new hospitals (e.g., the percentage of PPR 

among patient rooms) while organizational variables are other variables related to hospitals’ 

nature and characteristic (e.g., ownership style). This is largely to focus on the main purpose of 

this thesis – to predict the effect of facility designs. 

Demographic (patient age and gender) and socio-economic (health insurance and ZIP 

income) factors were controlled in this thesis. Elixhauser comorbidity indicators were used to 

control individual patients’ medical burden. (See Table 7 for details.) A composite index of the 

weighted sum was used to control the average clinical burden of hospitals (in hospital analyses) 

and generate matched groups (in patient analyses). For definitions of each comorbidity 

condition and weights of a composite index, we follow the Elixhauser Comorbidity Software for 

ICD-10-CM (AHRQ, 2018) and the Elixhauser Comorbidity Index Program developed by the 

AHRQ (AHRQ, 2017). Procedure classes (i.e., containing major diagnostic procedure, minor 

diagnostic procedure, major therapeutic procedure, and minor therapeutic procedure), as 

defined by the Healthcare Cost and Utilization Project (HCUP) (AHRQ, n.d.-a, n.d.-b), were 
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adjusted in the models. Urgent/emergency admissions, transferred patients, and the presence 

of local skin infections were also controlled. 

A recent study validated risk adjustment factors in modeling HA-MRSA and tested 

reliability of the model (Callejo-Torre et al., 2016). This study confirmed independent risk 

factors of HA-MRSA, including patient age, patient gender, severity of medical burden, previous 

antibiotic treatments, transferred patients, local skin infections. Most of these risk factors are 

included in our risk models, except previous antibiotic treatments. While it is possible to infer a 

patient’s antibiotic resistance (i.e., as a proxy of antibiotic treatments) by assessing drug 

resistance-related diagnosis codes, the cross-sectional nature of our studies could not ensure 

that such resistance precedes the onset of MRSA infections. Also, the preliminary analysis result 

indicated that HA-MRSA incidences might have an endogenous relationship with general drug-

resistance. Hence, we decided not to include previous antibiotic treatments due to the inability 

to establish a causal linkage. That is, the antibiotic resistance may only be evident in hindsight, 

after MRSA has been diagnosed.  

Table 7: List of Elixhauser comorbidity conditions 

Acquired immune deficiency syndrome Drug abuse Peptic ulcer disease 

Alcohol abuse Fluid and electrolyte disorders Peripheral vascular disease 

Chronic blood loss anemia Hypertension Psychoses 

Chronic pulmonary disease Hypothyroidism Pulmonary circulation disease 

Coagulopathy Liver disease Renal failure 

Congestive heart failure Lymphoma Rheumatoid arthritis 

Deficiency Anemias Metastatic cancer Solid tumor w/out metastasis 
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Depression Obesity Valvular disease 

Diabetes w/ chronic complications Other neurological disorders Weight loss 

Diabetes w/o chronic complications Paralysis  

 

Negative-Binomial Regression Model 

The negative binomial model (NBM) has been widely adopted for analyzing count 

outcomes when a dependent variable shows an over-dispersed distribution (i.e., the sample 

variance is much greater than the mean) (Cameron & Trivedi, 2013). In healthcare and medical 

context, previous studies from various research areas used NBM, ranging from epidemiology of 

infectious diseases  (An, Wu, Fan, Pan, & Sun, 2016) to hospital adverse events (Kovner, Jones, 

Zhan, Gergen, & Basu, 2002, 2008) and HAI (Morton et al., 2001; Waters et al., 2015; Yin, 

Schweizer, Herwaldt, Pottinger, & Perencevich, 2013). The popularity of NBM is largely due to 

its ability to model varying degrees of overdispersion. The distribution is expressed in terms of 

the mean m and dispersion parameter k such that the probability of observing a non-negative 

integer x (e.g., the specific count of “bad but rare” hospital event X) is expressed as follows: 

Pr(X = x) = Γ(k+x)
x! Γ(𝑘𝑘)

� 𝑚𝑚
𝑚𝑚+𝑘𝑘

�
x
�1 + 𝑚𝑚

𝑘𝑘
�
−𝑘𝑘

 , m > 0 and k > 0  14 (Eq 1) 

 The variance of negative binomial distribution is m �1 + 𝑚𝑚
𝑘𝑘
�, and hence decreasing 

about k, the dispersion parameter. Because of this characteristic, NBM can also be viewed as a 

                                                      

14 In this section, the gamma function (represented by Γ,the capital Greek alphabet letter gamma) is defined as an 
extension of the factorial function. See Davis (1959) for more details. 
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generalized version of major discrete probability distributions. Note that the probability mass 

function of the Poisson distribution can be obtained as the dispersion parameter approaches 

infinity. Similarly, the logarithmic distribution is obtained when the dispersion parameter 

approaches zero. Geometric distribution is derived from the unit dispersion parameter (i.e., 

k=1). Therefore, the dispersion parameter k is also known as the "shape” parameter, as it 

determines the shape of the distribution. 

 Assuming the dependent variable Y follows the negative binomial distribution, NBM is 

expressed: 

ln𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝 ,    (Eq 2) 

where the predictor variables 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑝𝑝 are given, and the regression coefficients 

𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽𝑝𝑝 are to be estimated. Given a random sample of size n (i.e., n observations), we 

observe for subject i the dependent variable yiand the predictor variables 𝑥𝑥1𝑖𝑖, 𝑥𝑥2𝑖𝑖, … , 𝑥𝑥𝑝𝑝𝑝𝑝. 

Utilizing a matrix notation, we let β = �𝛽𝛽0 𝛽𝛽1 …𝛽𝛽𝑝𝑝�
𝑇𝑇

, and the design matrix X, the collection of 

predictors, as follows: 

X =  

⎣
⎢
⎢
⎡
1 𝑥𝑥11 𝑥𝑥12 ⋯ 𝑥𝑥1𝑝𝑝
1 𝑥𝑥21 𝑥𝑥22 ⋯ 𝑥𝑥2𝑝𝑝
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑥𝑛𝑛1 𝑥𝑥𝑛𝑛2 ⋯ 𝑥𝑥𝑛𝑛𝑛𝑛⎦

⎥
⎥
⎤
 

 Designating the i-th row of X to be xI, we can get the probability distribution of Y by 

combining (Eq 1) and (Eq 2): 

Pr(Y = yi) =
Γ(1/α + yi)

Γ(yi + 1)Γ(1/𝛼𝛼)
�

1
1 + 𝛼𝛼𝑒𝑒𝑥𝑥𝑖𝑖 ∙𝛽𝛽

�
1/α

�
𝛼𝛼𝑒𝑒𝑥𝑥𝑖𝑖 ∙𝛽𝛽

1 + 𝛼𝛼𝑒𝑒𝑥𝑥𝑖𝑖 ∙𝛽𝛽
�
yi

 , i = 1,2, … , n. where α = 1/k 
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 The regression coefficients 𝛽𝛽 and the inversed dispersion parameter 𝛼𝛼 are estimated 

using the maximum likelihood estimation, which seeks the values of 𝛼𝛼 and 𝛽𝛽 that maximize the 

log-likelihood function. The likelihood and log-likelihood functions are expressed as (Eq 3) and 

(Eq 4) respectively: 

 

𝐿𝐿(𝛼𝛼,𝛽𝛽) = ∏ Pr(Y = yi)𝑛𝑛
𝑖𝑖=1 = ∏ Γ(1/α+yi)

Γ(yi+1)Γ(1/𝛼𝛼)
� 1
1+𝛼𝛼𝑒𝑒𝑥𝑥𝑖𝑖 ∙𝛽𝛽

�
1/α

� 𝛼𝛼𝑒𝑒𝑥𝑥𝑖𝑖 ∙𝛽𝛽

1+𝛼𝛼𝑒𝑒𝑥𝑥𝑖𝑖 ∙𝛽𝛽
�
yi

𝑛𝑛
𝑖𝑖=1  (Eq 3) 

ln 𝐿𝐿(𝛼𝛼,𝛽𝛽) = ∑ �𝑦𝑦𝑖𝑖 ln𝛼𝛼 + 𝑦𝑦𝑖𝑖(𝑥𝑥𝑖𝑖 ∙ 𝛽𝛽) − �𝑦𝑦𝑖𝑖 + 1
𝛼𝛼
� ln�1 + 𝛼𝛼𝑒𝑒𝑥𝑥𝑖𝑖 ∙𝛽𝛽� + ln Γ �𝑦𝑦𝑖𝑖 + 1

𝛼𝛼
� −𝑛𝑛

𝑖𝑖=1

ln Γ(𝑦𝑦𝑖𝑖 + 1) − ln Γ �1
α
��  (Eq 4) 

 In this thesis, we used the negative binomial regression model to compare the 

difference in infection rates across hospitals. (See Chapters 3 and 4 for more details). This 

regression model was chosen over the Poisson regression model because the count dependent 

variable (i.e., the count of HA-MRSA infections) was overly dispersed (i.e., the variance was 13.6 

times larger than the mean). When such overdispersion exists, many hospital-level HAI studies 

including the standardized infection ratio (SIR) model, also employ NBM. Various statistical 

tests, such as the likelihood ratio test, confirmed the choice of NBM, as compared to similar 

models, such as Poisson regression. 
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CHAPTER III 

HOW THE BUILT ENVIRONMENT AFFECTS MRSA AT THE HOSPITAL LEVEL 

Background  

 With emerging awareness about patient safety and hospital-acquired infections (HAIs), 

an increasing number of consumers (patients) and suppliers (hospitals) may want to know how 

to identify a “safe” hospital. Public reporting can be one useful tool to fulfill such need – it 

provides patients with an actual incidence of HAIs for individual hospitals and incentivize 

hospitals to reduce HAIs. For example, the Hospital Compare website (CMS, n.d.-b), created and 

operated by the Centers for Medicaid and Medicare Services (CMS), is a large public-reporting 

program that measures and reports hospital outcomes such as heart failures and acute 

myocardial infarctions. 

However, the current “case-oriented” public reporting approaches in the United States 

(i.e., mainly focusing on incident infections or adverse events) have been criticized for 

unintended consequences: hospitals may skew priorities or game reporting to avoid negative 

financial or other consequences. Reported examples include inappropriate under-reporting 

(Haustein et al., 2011; Talbot, 2013) and antibiotic overuse (Collins, 2008; Chenxi Liu et al., 

2016; Ventola, 2015). At the same time, research suggests that structure-based reporting and 

reimbursement may result in stronger and more robust results (e.g., long lasting 

improvements) (J. Brown et al., 2009). 
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Unfortunately, evidence from literature establishing the relationship between structural 

factors (also called “built-in environment” or “design factors”) and HAI15/HA-MRSA16 (needed 

for proposing a better way of structure-based public reporting) remains weak.17 Previous 

results have insufficient external validity due to their small sample sizes and potential 

confounding bias. The lack of multisite studies potentially weakens the transition from 

knowledge to practice (e.g., applications in managerial decision-making or to support health 

systems policy).  

The goal of this chapter is to suggest a feasible public reporting measure based on 

structural components. This is partially driven by a frequently-asked question during practical 

construction projects – “for our hospital, how many MRSA infections can be prevented if we go 

for an all-private room design?” We examined how design factors affect HA-MRSA, developed a 

statistical model to predict HA-MRSA incidence at a hospital level, and paid particular interest 

to the effect of private patient rooms (PPRs) on HA-MRSA incidence.  

Method 

Unit of analysis. 

 This analysis differs from previous studies of the PPR-MRSA relationship in that the unit 

of analysis is the hospital. We hypothesized that the relationship between PPR and HA-MRSA 

has at least two distinct dimensions: (1) decreased MRSA risk by being assigned to a PPR (i.e., 

                                                      

15 Hospital-acquired Infection 
16 Hospital-acquired methicillin resistant staphylococcus aureus 
17 See the “Private-room Effects on MRSA” section in Chapter I for more details. 



 

  

56 

 

internal effect) and (2) hospital-wide reduced cross-transmissions (i.e., external effect).  These 

two dimensions introduce methodological challenges at the patient-level analysis, including 

measuring difficulty and collinearity (i.e., interaction between external and internal effects), 

which may cause inaccuracy in estimating PPR effects. By contrast, hospital-level analyses with 

total18 PPR effects can prevent potential challenges, though at a cost of inability to distinguish 

internal and external effects of PPR. Therefore, we believe that both hospital-level and patient-

level analyses are complimentary, and that together may allow comprehensive understanding 

of the topic. The analysis in this chapter focuses on the hospital level19. 

Data. 

 The Texas Inpatient Public Use Data File (IP PUDF) for the 2016 fiscal year (Texas 

Department of State Health Services, 2017) was used to obtain patient demographics and 

diagnoses while hospital information (e.g., ownership) was accessed via the American Hospital 

Association (AHA) annual survey (AHA, n.d.).20 To validate our data and model, the observed 

and expected HA-MRSA bacteremia events during the 2016 fiscal year were also accessed from 

the Hospital Compare Data Archive (CMS, n.d.-b)  

                                                      

18 combining both direct and indirect benefits 
19 This does not imply that we overlook the importance of patient-level modeling. A patient-level model is 
developed and estimated in the study detailed in Chapter V to compare internal and external effects of PPRs. 
20 See the “Data Sources” section in Chapter II for detailed explanations of each database. 
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Variables.  

 We used the count of HA-MRSA infections as a key dependent variable and the 

percentage of PPR in a hospital as a key independent variable. Our operational definitions of 

HA-MRSA included MRSA septicemia, MRSA pneumonia, and other types of MRSA infections, as 

presented in Table 3.  

PPRs are defined as single-bed (private) patient rooms, and “bay rooms” (non-PPRs, 

operationally defined as the union of semi-private rooms and ward rooms) as patient rooms 

with equal to or more than two beds. Consistent with our prior work (O’Neill et al., 2018), the 

percentage of PPRs in a hospital was calculated by dividing the count of regular private room 

discharges by the count of regular room (i.e., non-ICU) discharges. Each patient room 

assignment was identified from hospital room charges. 

 We adjusted numerous confounding factors of HA-MRSA in our multivariate model, 

based on established associations in the literature. Comorbidities, as defined using the 

Elixhauser comorbidity score definition (B. J. Moore et al., 2017), were controlled in the model 

because of known association with high risk of HA-MRSA (Callejo-Torre et al., 2016; Goto et al., 

2017; Nelson, Stevens, Jones, Samore, & Rubin, 2015). Percentages of black and Hispanic 

race/ethnicity were also controlled because these populations had higher MRSA incidences in 

multiple studies and surveys (Bakullari et al., 2014; Bratu et al., 2006; Graham, Lin, & Larson, 

2006). We controlled some hospital characteristics that were known to be associated with 

MRSA (Edelsberg et al., 2009; Panlilio et al., 1992; Wakefield, Pfaller, Massanari, & Hammons, 

1987), such as teaching facility, ownership, hospital location (rural or metropolitan), and 
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licensed beds. The percentage of uninsured or Medicaid-insured patients were controlled as a 

proxy indicator of safety net hospitals (Kovner & Gergen, 1998; G. M. Lee et al., 2012). Nurse 

staffing levels, as defined by patient-to-nurse ratio21, were adjusted based on previously 

revealed associations with MRSA (Afif, Huor, Brassard, & Loo, 2002; Hugonnet, Harbarth, Sax, 

Duncan, & Pittet, 2006; Penoyer, 2010). We also included occupancy rates and physical area per 

bed based on our previous work (O’Neill et al., 2018). 

Note that all the unbounded continuous variables (e.g., licensed beds) were log-

transformed before putting into regression analyses. Percentage variables (i.e. ranged from 

zero [0] to 1) were multiplied by 100 to make a unit marginal change being 1 (i.e., a range from 

zero [0] to 100). 

Statistical analysis. 

 In our descriptive analysis, we compared various characteristics across 3 different 

groups22 of hospitals: (1) Group 1 hospitals (n=113) contain fewer than 62% PPRs among all 

patient rooms; (2) Group 2 hospitals (n=114) contain 62%-82% PPRs; and (3) Group 3 hospitals 

(n=114) are those where more than 82% of patient rooms are PPRs.  

 Our multivariate regression used the negative binomial model (NBM) to compare the 

difference in infection rates across hospitals with various PPR rates. NBM was chosen over the 

                                                      

21 Productive nursing hours (including both registered nurses and licensed practical nurses) – nurse full-time 
equivalents times 1,788 – divided by patient days times 24; definition comes from literature (Spetz, Donaldson, 
Aydin, & Brown, 2008) 
22 Hospitals were grouped into three categories of the same size, based on the percentage of PPR, so that each 
group has nearly the same number of hospitals.   
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Poisson model because the dependent variable (HA-MRSA count) was overly dispersed, as the 

variance was 13.6 times larger than the mean, potentially due to the nature of HAI in terms of 

unobserved heterogeneity and clustering (Kelly, Bull, Russo, & McBryde, 2008; Morton et al., 

2001). We also performed likelihood-ratio test of the inversed overdispersion parameter and 

confirmed that NBM was more suitable for our regression (p<0.001). 

Results 

Descriptive results. 

Table 8 presents the full descriptive and unadjusted results. One-way analysis of 

variance (ANOVA) tests show that hospital Groups 1-3 significantly differ in the following ways 

(all p<0.001): (1) ownership types, (2) percentages of publicly insured or uninsured patients, (3) 

racial patient-mix, (4) average medical burden, (5) nurse staffing, (6) dominant procedure class, 

and (7) physical occupancy. Group 1 hospitals – relatively low PPR facilities – were 

predominantly located in rural areas (31.6%) and contained more public hospitals (Group 

1=26.3% versus Group 2=2.9% and Group 3=11.5%). Group 1 also showed the largest portion of 

Hispanic patients (Group 1 = 34.1% versus Group 2=15.6% and Group 3=27.4%) but the smallest 

portion of African American patients (Group1=9.2% versus Group2=10.6 and Group3=11.4%). 

Group 1 hospitals were characterized by lower comorbidity and lower occupancy rate than 

Groups 2 and 3. Group 3 hospitals – relatively high PPR facilities – were located largely in urban 

areas (87.1%) and contained many for-profit hospitals (61.4%). Distinct characteristics of Group 
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3 include the least percentage of publicly insured or uninsured patients (55.3%)23, the fewest 

patients, the most nurses (1.6 nursing hours per patient-hour), and the largest percentage of 

major therapeutic procedures (46.2%). 

We also found that the incidence of HA-MRSA was associated with PPR per our grouping 

categories. Group 1 presented the highest incidence rate of HA-MRSA with mean incidence of 

536 per 100,000 cases (95% CI=346-726 per 100,000 cases). Group 3 showed the opposite: the 

lowest mean incidence rate of 251 per 100,000 cases (95% CI=146-355 per 100,000 cases). A 

one-way ANOVA test also verified that the three groups differed in HA-MRSA incidence 

(p<0.001). Additionally, pairwise t-tests confirmed that Group 1 is risker than Groups 2 and 3 in 

terms of HA-MRSA (Group 1 versus Group 2: p=0.008; Group 1 versus Group 3: p<0.0001). 

Table 8: Descriptive results 

Variable 

Group 1 
(PPR<62%) 

Group 2 
(PPR=62-82%) 

Group 3 
(PPR>82%) P-value 

Mean and 
95%CI 

Mean and 
95%CI 

Mean and 
95%CI All G1 vs 

G2 
G2 vs 

G3 
G1 vs 

G3 

# Hospitals 113 114 114     

# Discharges 900,340 1,154,687 615,828     

Teaching facilities (%) 5.5 7.0 5.7     

Rural location (%) 31.6 17.2 12.9     

Ownership type (%) 
- Public 
- Non-profit 
- For-profit 

26.3 
27.6 
46.1 

11.5 
50.6 
37.9 

2.9 
35.7 
61.4 

0.000 
   

HA-MRSA incidence 
(per 100,000 cases) 536 (346, 726) 341 (236, 447) 251 (146, 355) 0.000 0.008 0.116 0.000 

# Licensed beds 262 (181, 343) 259 (213, 306) 185 (124, 247) 0.175 0.479 0.027 0.071 

Publicly insured or 
uninsured (%) 63.9 (60.1, 67.6) 63.1 (60.3, 65.8) 55.3 (61.2, 59.3) 0.001 0.366 0.001 0.001 

                                                      

23 possibly associated with safety-net hospitals 
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Race and ethnicity (%) 
- Hispanic 
- Black 
- Asian 

34.1 (28.2, 40.1) 
9.2 (7.3, 11.1) 
1.8 (0.3, 3.3) 

27.4 (22.1, 32.6) 
11.4 (9.5, 13.3) 

2.1 (1.5, 2.6) 

15.6 (12.1, 19.1) 
10.6 (8.5, 12.7) 

1.8 (0.3, 3.3) 

0.000 
0.298 
0.052 

0.046 
0.055 
0.363 

0.000 
0.281 
0.000 

0.000 
0.175 
0.052 

Physical space per bed 
(sqft) 

2,045 (1,549, 
2,541) 

2,147 (1,970, 
2,325) 

3,663 (1,606, 
5,720) 

0.084 0.343 0.052 0.057 

Mean Elixhauser score 2.6 (2.2, 3.0) 3.4 (3.1, 3.6) 2.7 (2.2, 3.2) 0.018 0.001 0.002 0.355 

Nurse-to-patient ratio 0.9 (0.8, 1.1) 0.7 (0.6, 0.8) 1.6 (1.2, 2.0) 0.000 0.000 0.000 0.001 

Major therapeutic 
procedures (%) 33.2 (29.5, 36.8) 28.8 (27.5, 30.1) 46.2 (41.7, 50.8) 0.000 0.013 0.000 0.000 

Occupancy rate (%) 34.1 (30.3, 37.9) 45.4 (41.9, 48.9) 37.6 (32.9, 42.4) 0.000 0.000 0.004 0.122 

 

Multivariate results. 

As shown in Table 9, the protective effect of PPR on the risk of HA-MRSA was confirmed 

again in our multivariate analysis. After adjusting potential confounders, each 1% increase of 

PPR as a proportion of all rooms was associated with 0.8% decrease of log count of HA-MRSA 

infections (p<0.001). 

Other factors associated with the count of HA-MRSA include licensed beds (IRR=1.616; 

p<0.001), African American patients (IRR=1.006; p<0.001), major therapeutic procedures 

(IRR=1.007; p<0.001), nurse-to-patient ratio (IRR=0.536; p<0.001), average medical burden 

(IRR=1.034; p=0.038), occupancy rates (IRR=1.012; p<0.001), and teaching facility (IRR=1.257; 

p=0.001). Additionally, compared to for-profit hospitals (as reference), public and not-for-profit 

ownership styles were also associated with more HA-MRSA infections (IRR=1.235 and 1.129 

respectively; p=0.004 and 0.019 respectively). Physical space per bed in square feet is also 

negatively associated with HA-MRSA incidence, but with slight variability across hospitals 

(IRR=0.941; p=0.056). 
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We also examined predictive margins to estimate marginal effects of PPR on HA-MRSA 

incidences. As presented in Figure 3, a non-linear relationship between the percentages of PPR 

and the counts of HA-MRSA is observed. There is a marginal “improvement” in relation to a unit 

increase (i.e., 1%) of PPR percentage became smaller as a hospital already contained more 

PPRs. If an “average”24 hospital with zero PPR renovates all its legacy rooms to private ones, the 

expected annual count of HA-MRSA would be reduced from 19.7 to 9.17.  

Finally, we examined variance-inflation factors (VIFs) to test collinearity among our 

model variables. All our variables had VIFs well below 5, implying that there is no critical 

collinearity in our model.  

Table 9: Negative binomial regression results for predicting HA-MRSA infections (n=340)  

Variable β IRR 
(Exp β) P-value Lower Upper 

Percentage of PPR 0.008 0.992 0.000 0.991 0.994 
Licensed beds (log-transformed) 0.480 1.616 0.000 1.524 1.713 

Publicly insured or uninsured patients (%) 0.003 1.003 0.049 1.000 1.006 
African American patients (%) 0.006 1.006 0.009 1.001 1.010 

Hispanic patients (%) 0.000 1.000 0.949 0.998 1.002 
Major therapeutic procedures (%) 0.007 1.007 0.000 1.004 1.011 

Nurse-to-patient ratio (log-transformed) 0.624 0.536 0.000 0.892 0.356 
Physical space per bed (sqft; log-transformed) 0.061 0.941 0.056 0.885 1.002 

Mean Elixhauser score 0.034 1.034 0.038 1.002 1.068 
Occupancy rate (%) 0.012 1.012 0.000 1.009 1.016 

Teaching facility 0.229 1.257 0.001 1.102 1.434 
Rural location 0.070 1.072 0.380 0.918 1.252 

Public ownership (ref: for-profit) 0.211 1.235 0.004 1.070 1.425 
Not-for-profit ownership (ref: for-profit) 0.122 1.129 0.019 1.021 1.250 

                                                      

24 other parameters except PPR, such as beds, being mean 
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* Goodness-of-fit was tested in two ways: (1) likelihood test passed with p=0.001 (i.e., negative binomial model is more suitable than 
Poisson model); and (2) McFadden’s adjusted pseudo R2 was 0.284 
 

Table 10: Negative binomial regression results for predicting HA-MRSA infections, by hospital group 

Variable 

Group 1, n=113 
(Fewer PPRs than 62%) 

Group 2, n=114 
(PPR between 62%-82%) 

Group 3, n=114 
(More PPRs than 82%) 

IRR 
(Exp β) P-value Lower Upper IRR 

(Exp β) P-value Lower Upper IRR 
(Exp β) P-value Lower Upper 

Percentage of PPR 0.993 0.001 0.989 0.997 0.986 0.051 0.972 1.000 1.007 0.485 0.988 1.027 
Licensed beds (log-transformed) 1.715 0.000 1.560 1.885 1.558 0.000 1.393 1.744 1.743 0.000 1.514 2.007 

Publicly insured or uninsured patients (%) 1.002 0.338 0.998 1.007 1.005 0.052 1.000 1.011 1.004 0.251 0.997 1.010 
African American patients (%) 1.006 0.112 0.999 1.013 1.005 0.246 0.997 1.013 1.010 0.070 0.999 1.021 

Hispanic patients (%) 1.001 0.599 0.998 1.003 1.000 0.908 0.997 1.003 0.998 0.537 0.993 1.004 
Major therapeutic procedures (%) 1.007 0.003 1.002 1.012 1.009 0.118 0.998 1.021 1.002 0.676 0.994 1.010 

Nurse-to-patient ratio (log-transformed) 0.406 0.001 0.239 0.691 0.692 0.221 0.383 1.249 0.628 0.045 0.399 0.990 
Physical space per bed (sqft; log-transformed) 0.984 0.766 0.888 1.091 0.950 0.627 0.773 1.168 0.867 0.012 0.775 0.969 

Mean Elixhauser score 1.076 0.003 1.024 1.129 1.053 0.091 0.992 1.117 0.867 0.001 0.799 0.941 
Occupancy rate (%) 1.007 0.041 1.000 1.014 1.013 0.000 1.008 1.018 1.016 0.000 1.008 1.024 

Teaching facility 1.001 0.993 0.794 1.262 1.541 0.001 1.203 1.974 0.862 0.365 0.626 1.188 
Rural location 1.021 0.871 0.796 1.309 1.085 0.555 0.827 1.424 1.140 0.514 0.769 1.690 

Public ownership (ref: for-profit) 1.117 0.333 0.893 1.397 1.302 0.082 0.967 1.751 2.707 0.000 1.764 4.155 
Not-for-profit ownership (ref: for-profit) 1.113 0.213 0.940 1.317 1.220 0.024 1.027 1.449 1.291 0.054 0.996 1.674 

 



Figure 3: Predictive margin of HA-MRSA infections regarding percent private rooms with 95% 
confidence intervals 

 
 

Discussions 
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surveillance measure in the US, because a huge result discrepancy among MRSA studies is often 

caused by measure difference (CDC, 2014; Kavanagh, Abusalem, & Calderon, 2017; Klein, Sun, 

Smith, & Laxminarayan, 2013). 

While various infections due to MRSA exist, the MRSA tracking system in the US adopts 

only bloodstream or invasive infection metrics detected by laboratory-based case finding (CDC, 

2018b). Severe infections might be mostly captured by this definition. However, there are still 

significant number of MRSA-induced/associated infections which would not necessarily be 
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al., 2017). Recent studies report that such a narrow definition may cause potential and 

unintended bias. One interesting example is a contradiction between a Veterans Administration 

study reporting an 80% reduction in non-ICU MRSA infections during 2007-2015(Evans, 

Kralovic, Simbartl, Jain, & Roselle, 2017) and a Hospital Compare-based study that identified 

little change in the rate of MRSA bloodstream infections during 2010-2015(Kavanagh et al., 

2017). 

In addition to MRSA-event measure discrepancy, risk-adjusted MRSA measure is also 

different between the US surveillance relative to our methods. The Centers for Disease Control 

and Prevention (CDC) and the national Healthcare Safety Network (NHSN) use the standardized 

infection ratio (SIR) to compare HA-MRSA across hospitals (CDC, 2018b). They argue:  

“The SIR adjusts for various facility and/or patient-level factors that contribute to HAI 

risk within each facility.”  

How an SIR is generated is very similar with the calculation of an SMR25. HA-MRSA SIR is 

derived by dividing the count of observed HA-MRSA bloodstream events by the predicted 

count. In predicting HA-MRSA bloodstream infections, NBM is used with the following risk-

adjustment factors: (1) inpatient community-onset prevalence rate, (2) outpatient community-

onset prevalence rate, (3) average length of stay, (4) medical school affiliation, (5) facility type, 

and (6) number of ICU beds. Many of those variables are not available in our data (IP PUDF), 

which may cause a departure from the SIR predictions. We tested estimation consistency 

                                                      

25 The standardized mortality ratio 
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between our model and the SIR, because the target audience of this thesis would be sensitive 

to the SIR predictions (i.e., Medicare/Medicaid reimbursement is adjusted by the SIR results). 

We found that our HA-MRSA definition was correlated with the reported MRSA 

bacteremia events (i.e., Pearson correlation coefficient=0.78; p<0.001). Considering that our 

definition covers more HA-MRSA conditions (i.e., not restricted within bloodstream infections), 

this result seems to suggest a good level of consistency26.  

To test predictions between the two models, we developed a proxy measure of CMS 

MRSA measure.27 After trying all the possible combinations among MRSA-related ICD-10-CM 

codes, we determined the weighted sums of A41.01 (MRSA septicemia) and A49.09 (MRSA 

bacterial infections) counts as the proxy of the reported MRSA bacteremia (i.e., Pearson 

correlation coefficient>0.9; p<0.001). Figure 4 indicates that this proxy measure tends to 

underestimate MRSA incidence. This may be explained in one or more of the following ways: (1) 

inherent difference in data collection process, (2) possible difference in coding for some 

bacteremia events (e.g., coded as “MRSA other”), and (3) inaccuracy of present-on-admission 

(POA) indicators. Admittedly, there is also a chance that hospitals may under-code or under-

report HA-MRSA to avoid financial disadvantages. 

                                                      

26 Note that this statement is rather a conjecture or speculation, because consistency between MRSA measures 
have never been defined and verified operationally. Interpretations of correlations largely differ relying on context. 
27 As discussed, there were no exactly matched single ICD-10-CM code to MRSA bloodstream bacteremia lab-
identified event (i.e., MRSA measure used by the SIR). 
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By incorporating this proxy measure into our model, we obtained a strong correlation 

between the two models (Pearson correlation coefficient=0.79, p<0.001), as presented in 

Figure 5.  

Figure 4: Observed HA-MRSA bacteremia from CMS and this thesis; Pearson correlation 
coefficient=0.919; p<0.001 
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Figure 5: Expected HA-MRSA bacteremia from CMS and this thesis; Pearson correlation 
coefficient=0.791; p<0.001 

 

Interpretation of the findings. 

Our results are strong evidence that private rooms provide substantial protection from 

MRSA, and predict an 0.8% decrease of expected incidence for each 1% increase in PPR as a 

proportion of all rooms, with the average facility expected to enjoy an over 50% reduction in 

incidence should it transition from wholly non-PPR to fully PPR.  It is worth noting that these 

effects are not linear. For instance, a 10% increase of private rooms (i.e., 10 times 1%) may not 

result in 8% of MRSA reductions (i.e., 10 times 0.8%). 
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Our findings are consistent with previous studies (Bracco et al., 2007; Levin et al., 2011; 

Teltsch et al., 2011), while our much more broad data sample counters the limited 

generalizability, constrained settings, and non-representative samples of these.  

As shown in Table 8, the protective effect of private rooms is disproportionate across 

hospital groups. When a hospital reaches to a certain PPR percentage, the private-room effect 

is no longer significant. This discrepancy is better displayed in our plot of predictive margins28, 

presented in Figure 5. The marginal change in HA-MRSA depends on how many private rooms 

currently exist in a hospital – the diminishing marginal rate of improvement. 

Importantly, small changes of PPR may not suffice to induce significant improvements. 

All the adjacent confidence intervals largely overlap with each other (e.g., PPR=10% versus 

PPR=20%). However, larger changes in PPR percentages are significantly associated with HA-

MRSA reductions (e.g., PPR=30% versus PPR=50%), which may hint at the need for large-scale 

construction or renovation projects to obtain a tangible benefit. 

Overall, for an average hospital (i.e., all model parameters except PPR are at the mean 

of the study hospitals), HA-MRSA infections will be prevented by 54% if it goes for an all-PPR 

facility design, compared to zero-PPR design. This non-linear and diminishing marginal effect of 

private rooms can be explained by positive externality that we discussed in Chapter I. All the 

patients in a hospital with the higher percentage of private rooms may benefit from a safer 

environment, both directly and indirectly (Borg et al., 2008; Salge et al., 2017).  

                                                      

28 Predictive margins track the effect of one parameter with fixed setting for the other regressors. 
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 We also found that physical space in a hospital plays an important role in preventing 

MRSA infections. Interestingly, physical space was less distinct among hospital groups in our 

descriptive result: one-way ANOVA was insignificant potentially due to huge variance, although 

Group 3 (having the most private rooms) differed from Groups 1 and 2 (p=0.052 and 0.059 

respectively). The effect became more evident after risk-adjustments. Our result indicates that 

unit marginal increase in log count29 of a patient room space may result in approximately 6% 

reduction of HA-MRSA.  

Space is indeed another core design parameter in healthcare facility design. Our finding 

is consistent with literature in justifying spacious private rooms for patients – particularly 

previous studies and reviews arguing that both workspace and patient space can contribute to 

reducing errors, falls, and infections (Huisman, Morales, van Hoof, & Kort, 2012; Lateef, 2009; 

Reiling, Hughes, & Murphy, 2008). The effect of space, as argued by literature, may be highly 

correlated with human error and cognitive functioning by design. Space-related issues were 

frequently reported by nurses as performance obstacles, including insufficient workspace for 

completing paperwork (Gurses & Carayon, 2007), the available space for medical equipment, 

and the available space for charting (Varni et al., 2004). It is also worth noting that nurse 

managers and unit directors have reported the benefit of private rooms as enhanced patient 

safety and reduced unnecessary transfers (Rashid, 2007). 

                                                      

29 Due to the characteristic of log function, this means “2.7 times” (multiplicative increase). 
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Nevertheless, our result of physical space must be interpreted with caution as we found 

that the “space” factor affects MRSA-safety differently across hospital groups. As presented in 

Table 10, the effect of physical space is robust only for Group 3. This implies that return on 

better and larger patient space would be more meaningful only when germ transmissions from 

“roommates” barely occur (i.e., average patient in Group 3 hospitals).  Another implication is 

that hospitals would better prioritize to secure enough number of private rooms before caring 

room space, to maximize facility efficiency. 

Management and policy implications. 

 Evidence-based design for constructing new facilities or renovating existing ones is 

growing (Dettenkofer et al., 2004; Lenfestey et al., 2013). While private rooms are now 

considered as the minimum standard for newer hospitals, some legacy hospitals (e.g., rural 

hospitals, public hospitals, or safety-net hospitals) still contain many bay rooms. And patients 

who are forced to choose such hospitals for geographical or financial reasons must face a 

greater risk of HA-MRSA. Our results encourage such hospitals to proactively renovate their 

facilities and build safer environments, and suggest that the cost for such renovation may be 

offset by safety benefits and reimbursement gains obtained from HA-MRSA reductions.  

 From a policy perspective, this study may shed light on some neglected aspects in public 

reporting and surveillance. To be specific, the current thesis emphasizes the following two 

issues. 

First, a MRSA surveillance measure should be expanded to cover a more comprehensive 

set of whole infections, as opposed to a narrowed definition of bloodstream infections. This is 
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consistent with unintended consequences alerted by recent studies (Kavanagh et al., 2017; 

Schuts et al., 2016; Winters et al., 2016). Our results support that expanding the MRSA 

definition does not necessarily lose surveillance consistency.30  

Second, hospitals should publicly disclose how many private rooms they contain. We 

found that the number and percentage of private rooms were significantly associated with the 

risk of HA-MRSA. However, as of the time of this manuscript, it is impossible to easily access 

patient room information without complicated analyses as outlined in this thesis31. From a 

public health perspective, this might be a meaningful “opportunity cost” because a tangible 

improvement on patient decisions and informational transparency could have been achieved if 

a publicly available measure for patient rooms of each hospital existed. 

Limitations. 

This study has methodological and other limitations that may influence the practical 

applications of findings. 

First, due to data limitations, we had to assess private room percentages of each 

hospital based on charge data. This is likely affected by room utilizations and/or occupancy. 

While this approach has its own validity (i.e., only count actually assigned rooms), future 

                                                      

30 For example, the distinction between better performing hospitals and worse performing hospitals does not 
dramatically change as MRSA definitions expand. 
31 We could define a proxy measure for a patient room based on hospital charges. However, doing so required a 
significant amount of data processing, certain assumptions, and variable modeling – not suitable for general 
population.  
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research should verify the robustness of our conclusion if “real” figures of private room data 

are used. 

Second, the cross-sectional nature of this study has inherent limits and our predicted 

improvement is better understood as a comparative result (i.e., hospital A versus hospital B), 

rather than an actual improvement within the same hospital (i.e., time-series study design may 

be needed for this verification). 

Third, both private room effects and hospital-acquired infections involve complicated 

interactions among staffs, patients, and facilities and it is likely that the effect of hidden 

predictors and confounders is not fully controlled for in our analyses. 

Finally, the majority of our focus is only one aspect of private rooms – the protective 

effect for preventing HA-MRSA. Yet there are many other potential benefits of private rooms, 

including patient privacy, reduced errors, increased nurse and patient satisfaction, etc. (Habib 

Chaudhury, Mahmood, & Valente, 2005, 2006; Huisman et al., 2012; Reiling et al., 2008) Future 

research should extend our analysis to include a broader and comprehensive scope of patient 

safety and satisfaction.   
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CHAPTER IV 

EFFECT OF PRIVATE ROOMS ON HOSPITAL COSTS 

Background 

Overview 

The goal of Chapter IV is to explore nosocomial staphylococcus aureus infections (Staph 

infections) and related conditions at the patient level, particularly focusing on the patient’s 

perspective of a full pathway from private rooms to end healthcare outcomes. Specifically, this 

chapter aims to assess the following two domains: private room effects on the incidence and 

rate of hospital acquired staph infections and attributable healthcare outcomes. 

Private rooms to staph infections. 

 One of our core hypotheses is that private rooms may benefit patients directly and 

indirectly, where direct benefits are defined as the difference of benefit (e.g., better patient 

safety) between private (marked as “good” in this thesis) and bay (marked as “bad”) rooms; 

indirect benefits are defined as the difference of benefit between “good” and “bad” hospitals32, 

no matter where patients stay.  We already recognized these two distinct benefits in our 

previous study regarding CLABSIs33 (O’Neill et al., 2018) although these effects were assessed in 

separate models, leaving single-model integration as a further recommendation. Unfortunately, 

                                                      

32 In this context, good hospitals are conceptualized as hospitals with a high percentage of private rooms while bad 
hospitals are those with high percentage of bay rooms. Operationally this concept is deeply linked to hospital 
Groups 1-3 defined in Chapter III. 
33 Central-Line Associated Blood Stream Infections 
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as of the date of this thesis, no study has specifically focused on the ‘external34’ effect of private 

rooms.  We extended our previous CLABSI work, to develop an integrated statistical model to 

simultaneously evaluate internal and external effects and predict the risk of hospital acquired 

staph infections, including MRSA35 and MSSA36. 

Staph infections to healthcare outcomes. 

 It is of interest to obtain representative and accurate assessments of the attributable 

impact of hospital acquired (HA) staph infections on healthcare outcomes. In the context of this 

thesis, such an assessment is required to examine cost as an end outcome attributable to 

predicted infections. As discussed earlier, previous findings regarding HA staph infection 

outcomes in the literature have been mixed, inconsistent, and non-generalizable (mostly 

conducted at 1 or 2 sites) (Chacko et al., 2017; Stone, Braccia, & Larson, 2005; Zimlichman et 

al., 2013). We believe many such limitations faced by extant outcome studies are effectively 

addressed or at least remedied with large and representative data and a bias-resistant 

statistical method such as an optimal matching algorithm. Thus, the second purpose of Chapter 

IV is to estimate and examine the attributable impacts of staph infections on three major 

healthcare outcomes – in-hospital death risk, inpatient length of stay, and hospital costs, 

enabling subsequent cost-benefit analysis without the need for patching incompatible results. 

                                                      

34 Throughout this thesis, we call systematic differences between private and bay rooms as “internal” effects and 
hospital-wide protective benefits as “external” effects. 
35 Methicillin-Resistant Staphylococcus Aureus 
36 Methicillin-Sensitive Staphylococcus Aureus 
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Method 

Two-fold analyses. 

 The analyses detailed in Chapter IV are two-fold to obtain a comprehensive causal 

pathway from private rooms to patients’ end outcomes – patient rooms to infections and 

infections to outcomes. We developed two separate models for each part of the process: (1) 

the first statistical model (Model 1) predicts the likelihoods of HA-MRSA and HA-MSSA for a 

given patient and room assignment; and (2) the second model (Model 2) estimates excess costs 

based on different staph infection states.  

Unit of analysis and model logic. 

The unit of analysis in either model is the patient, largely due to the nature of our 

Models 1 and 2. 

The analysis compares infection conditions across different patient levels and hospital 

levels to evaluate our hypothesis that private rooms may affect patient outcomes for those 

assigned to private rooms vs those not (internal effect) and/or outcomes for patients admitted 

to hospitals with many private rooms vs those not (external effect). Furthermore, our main 

outcome variables for Model 2 are defined and measured more clearly at the patient level. For 

example, in defining excess costs, at the patient level, the presence of staph infections and 

related conditions can be modeled as two-level discrete status (Staph present or not). Thus, an 

excess cost is estimated as the cost difference between case and compatible control (a similarly 

conditioned patient only differing in undiagnosed staph infections). This definition can be 

flexibly extended to multiple states (e.g., MSSA and MRSA) because the baseline (control) is 
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already defined as the absence of MSSA and MRSA infection (i.e., no staph infection). By 

contrast, infections at the hospital level are technically a continuous count variable as modeled 

in Chapter III. Defining excess costs in such context may introduce new ambiguities or 

arbitraries at least, leaving the individual patient as a more suitable unit of analysis for this 

study.  

Data. 

 The Texas Inpatient Public Use Data File (IP PUDF) for the 2016 fiscal year (Texas 

Department of State Health Services, 2017) continued to serve as our primary data to obtain 

patient demographics and diagnoses. Hospital parameters like ownership or nurses were 

accessed via the American Hospital Association (AHA) annual survey (AHA, n.d.). See Chapter III 

for the validation of these data. 

We used Medicare provider utilization and payment data to assess hospital costs. These 

include hospital-specific charges for the more than 3,000 US hospitals that receive Medicare 

Inpatient Prospective Payment System payments for discharges (CMS, 2017b). Such payments 

based on a rate per discharge adjusted for the Medicare Severity Diagnosis Related Group (MS-

DRG) (CMS, n.d.-a; Hartmann et al., 2012). For these MS-DRGs, average charges, average total 

payments, and average Medicare payments are reported at the individual hospital level. We 

merged this data set with IP PUDF to define a proxy of hospital costs, as discussed in Chapter II. 

Variables. 

Staph infection category (STAPH CAT). Extending our HA-MRSA definitions in the 

previous chapter, we define a new variable, staph infection category (STAPH CAT), to add 
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“finer” steps between No MRSA and HA-MRSA to achieve more meaningful details. STAPH CAT 

is defined as a 5-level cardinal categorical variable including the following states: (1) neither 

MSSA nor MRSA diagnosed (as the baseline; STAPH CAT=0), (2) MSSA present on admission 

(STAPH CAT=1), (3) MSSA acquired in the hospital (STAPH CAT=2), (4) MRSA present on 

admission (STAPH CAT=3), and (5) MRSA acquired in the hospital (STAPH CAT=4). This variable is 

operationally defined as the combination of ICD-10-CM MRSA/MSSA diagnosis codes, as 

presented in Table 3, and present-on-admission (POA) indicators. For example, if MRSA was 

diagnosed but not present on admission, we assigned “4” to STAPH CAT variable, meaning 

“MRSA acquired in the hospital”. 

It is worth mentioning that we used POA indicators to define whether a staph infection 

is not a nosocomial onset (i.e., an infection developed before being hospitalized). Reversely, if 

POA indicator is off (meaning not present on admission or NPOA), the diagnosed staph 

infections is developed after admission – this state is defined as “Hospital-acquired”, which will 

further be split into either HA-MSSA or HA-MRSA. This POA variable is reported in IP PUDF data, 

and has gained acceptance from a wide variety of recent studies of HAIs and hospital adverse 

events in the literature to ensure that events of interest is occurred in hospitals (Coomer & 

Kandilov, 2016; Kawai et al., 2015; Miller, Polgreen, Cavanaugh, & Polgreen, 2015; Smith, 

Snyder, McMahon Jr, Petersen, & Meddings, 2018; Van Mourik, van Duijn, Moons, Bonten, & 

Lee, 2015). 

Including this new STAPH CAT variable allows evaluation of useful but potentially easy to 

overlook conditions such as antibiotic resistance. For example, if confounding conditions are 
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carefully adjusted, MRSA-MSSA difference is associated with antibiotic resistance impact, as 

frequently argued by literature (Cosgrove et al., 2005; De Angelis et al., 2011b; R. J. Rubin et al., 

1999). In addition, the place of infection acquisition may have important implications (e.g., 

MRSA POA versus HA-MRSA).   

Professional fee ratio. We used the concept and data of professional fee ratio (PFR) to 

examine how hospital costs are decomposed into facility-based and service-related 

components (Peterson, Xu, Florence, Grosse, & Annest, 2015). PFR is defined as the total cost 

of an admission as a function of the hospital facility cost for specific procedures and diagnoses. 

For example. PFR of 1.3 applies when a $130 of total cost contains both $30 of professional 

services (e.g., physician involved in care) and $100 of hospital facility cost. The cited study 

analyzed a retrospective cohort of 2004–2012 inpatient admissions and reported the estimates 

of PFR by various criteria, including major diagnostic category, diagnostic related group, clinical 

classification software, and ICD-9-CM diagnosis code (Peterson et al., 2015). We merged37 this 

data with IP PUDF to assign PFR to each individual observation.  

Key dependent and independent variables. In Model 1, the presences of MSSA and 

MRSA acquired in hospitals (STAPH CAT=2 and 4 respectively) were considered as the two key 

dependent variables. Other category values (e.g., STAPH CAT=3 as MRSA present on admission) 

were excluded from consideration because they are less likely related to hospital structure and 

built environment. Patient-level room assignment (i.e., whether a patient stays in a private 

                                                      

37 Because our data was coded with ICD-10-CM, we used MS-DRG as the merging variable. 
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room) and hospital-level private room percentages were considered as the key independent 

variables: the former was regarded as internal effect while the latter as external effect. 

In Model 2, the three key dependent variables were considered, including inpatient 

length of stay (LOS), in-hospital death likelihood, and average Medicare payments (per patient 

and DRG). STAPH CAT was used as the key independent variable. 

Covariates. Medical burden and healthcare-access can vary. We sought to address 

shortcomings of administrative data and cross-sectional design and account for 

disproportionate conditions across patients (DiNardo, 2010; Harmon et al., 2000). Analyses 1 

and 2 were both adjusted using patient age, race and ethnicity, admission sources, admission 

types, procedure classes, private room medically required, ICU stay, and 29 Elixhauser 

comorbidity conditions. We also adjusted hospital-level covariates as fixed effects by including 

rural location, teaching facility, major therapeutic procedures (Edelsberg et al., 2009; Panlilio et 

al., 1992; Wakefield et al., 1987), nurse-to-patient ratio (Afif et al., 2002; Hugonnet et al., 2006; 

Penoyer, 2010), uninsured and Medicaid patients38, occupancy rates, and physical space per 

bed (O’Neill et al., 2018). 

Our choice of risk adjusting covariates is consistent with validated risk-adjustment 

models of MRSA (Callejo-Torre et al., 2016) which confirmed significant and independent risk 

factors of MRSA include patient age, patient gender, severity of medical burden39, previous 

                                                      

38 as a proxy indicator of safety net hospitals (Kovner & Gergen, 1998; G. M. Lee et al., 2012) 
39 measured by Acute Physiology, Age, Chronic Health Evaluation III (APACHE III) score 
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antibiotic treatments, transferred patients, and local skin infections. Note that all these 

variables except skin infections and medical burden severity were controlled in our models. To 

properly adjust individual medical burden, we adjusted Elixhauser comorbidity conditions40.  

Statistical analysis. 

Analysis for Model 1 (Analysis 1). Descriptive statistics are presented to compare 

patient characteristics by individual private room assignments (private room assigned vs not) 

and by hospital groups. Hospital groups are identical with Groups 1-3 detailed in Chapter III: (1) 

Group 1 hospitals (900,340 patients from 113 facilities) contain fewer than 62% private patient 

rooms (PPRs) among all patient rooms; (2) Group 2 hospitals (1,154,687 patients from 114 

facilities) contain 62%-82% PPRs; and (3) Group 3 hospitals (615,828 patients from 114 

facilities) are those where more than 82% of patient rooms are PPRs. Patient characteristics 

compared in the descriptive analysis include race/ethnicity, gender, procedure classes, disease 

severity, and length of stay. 

A multivariate statistical model to predict the risk of developing staph infections during 

hospitalizations were developed by utilizing logistic regressions. To minimize heteroskedastic 

bias, M-estimators  were used to calculate confidence intervals (Huber, Lechner, & Wunsch, 

2013). Any model predictors were considered as statistically significant if type-1 error is less 

probable than 5%.  

                                                      

40 And for this reason, we could not include skin infections because of collinearity. Moreover, we believe Elixhauser 
conditions to serve an equivalent or even better control than APACHE III score – we could not test this because 
APACHE III was impossible to obtain in our IP PUDF database.  
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Analysis for Model 2 (Analysis 2). Descriptive statistics were used to summarize patient 

characteristics of each Staph condition (STAPH CAT=1,2,3, and 4) and non-Staph controls 

(STAPH CAT=0). We then conducted the multivariate analysis using propensity-score matching 

(PSM) approaches to examine the attributable impacts of staph infections on healthcare 

outcomes of interest.  

 PSM was used in Analysis 2 because ordinary regressions are limited to handle critical 

statistical challenges usually observed in the context of hospital-acquired infections. These 

limitations are possibly caused by hidden variables, selection bias, and endogeneity. (A. G. 

Barnett et al., 2009; De Angelis et al., 2011b; Nelson, Samore, et al., 2015a) To allow enough 

flexibility for the analysis, we generated comparable cohort groups by matching the nearest 

neighbors to each patient in the HA-MRSA cohort (of the smallest size among all the 

conditions). For better matching accuracy, we applied caliper41 of 0.242 to guarantee that 

matched patients did not largely differ from the target HA-MRSA patients. 

Welch’s t-tests (also known as unequal variance t-tests) were conducted over matched 

cohorts to get attributable outcomes and evaluate statistical significances. Generalized linear 

regression model with log-link was applied to matched samples (all cohorts combined) for 

multivariate analysis purposes.  Note that all these tests and regressions were processed over 

the weighted samples with frequency weights derived by the matching software. 

                                                      

41 Caliper means the maximum tolerated difference as a function of standard deviation.  
42 This is from the conclusions of Austin (2011) based on intensive numerical simulations regarding various 
matching methods and their performances. 
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 Analyses 1 and 2 were processed with Stata software, version 13.0. Propensity score 

matching in Analysis 2 was done with PSMATCH2 Stata add-on module revised in 2018 

(originally released in 2003) (Leuven & Sianesi, 2018).  

Results 

Analysis 1. 

 Tables 11 and 12 present descriptive characteristics of 2,670,855 patients categorized by 

patient room assignment and by hospital Group. Multivariate analyses of individual and 

hospital-wide effects of private rooms predict both internal and external effects as well as 

possible interactions between these (Table 13). These include a respective 23% and 20% 

reduced risk to develop HA-MSSA and HA-MRSA for patient assigned a private room and similar 

risk reductions among patients using hospitals with higher proportions of private rooms. The 

protective external effects were maximized in Group 3 hospitals, showing a respective 

reduction of MSSA and MRSA risks by 27% and 32% from the baseline (Group 1). It is worth 

noting that all the internal, external, and interaction effects were statistically significant (all p-

values less than 0.05).  We estimate that combining all private rooms effects could drive a 

cumulative 38% and 52% risk reduction for HA-MSSA and HA-MRSA respectively.  

 Patient characteristics associated with higher risk of HA-MSSA include younger ages (β’s 

< -0.56 for aged 18+ in comparison with the baseline of underaged group; p≤0.001), male 

gender (female β=-0.542; p<0.001), more procedures received (βranged from 0.126 to 0.277 

depending on procedure classes, p<0.001), and ICU stay (β=1.332; p<0.001). Patient-level risk 

predictors of HA-MRSA may include the followings: non-Hispanic African American race 
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(β=0.105; p=0.002), urgent or emergency admission (β=0.033; p=0.027), transfer from other 

hospitals (β=0.039; p=0.012), more procedures received (βvaried from 0.156 to 0.275 

depending on procedure classes, p≤0.024), and ICU stay (β=1.101; p<0.001) (Table 13). 

 Model 1 also indicates that the effects of comorbidity intensively varies. Predicting 

conditions for HA-MSSA include alcohol abuse (β=0.407; p<0.001), deficiency anemias (β=0.296; 

p<0.001), drug abuse (β=0.465; p<0.001), electrolyte disorders (β=1.006; p<0.001), neurological 

disorders (β=0.713; p=0.001), paralysis (β=0.673; p=0.001), and pulmonary circulation diseases 

(β=0.354; p=0.052). By comparison, more Elixhauser conditions were associated with higher risk 

of HA-MRSA, including the followings: deficiency anemias (β=0.327; p<0.001), rheumatoid 

arthritis (β=0.470; p=0.003), congestive heart failure (β=0.350; p<0.001), chronic pulmonary 

disease (β=0.334; p<0.001), drug abuse (β=0.545; p<0.001), liver disease (β=0.271; p=0.015), 

electrolyte disorders (β=0.636; p=0.001), neurological disorders (β=0.589; p<0.001), obesity 

(β=0.375; p<0.001), paralysis (β=0.725; p<0.001), pulmonary circulation disease (β=0.532; 

p=0.001), solid tumors (β=0.350; p=0.013), and weight loss (β=0.378; p<0.001). 

 Hospital-level risk predictors (as fixed43 effects) were examined in Model 1. While some 

disparity between HA-MSSA and HA-MRSA were observed, it is worth noting that there are 

common consistent predictors for higher risk of HA-Staph infections: public hospitals (β’s=0.648 

and 0.300; p<0.001 and p=0.012), percentages of major therapeutic procedures relative to total 

procedures in hospitals (β’s=0.027 and 0.021; p’s<0.001 both), and percentages of uninsured 

                                                      

43 These variables remain fixed among patients in the same hospital. 
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and Medicaid patients (β’s=0.012 and 0.013; p’s<0.001 both). Similarly, common protective 

predictors were identified as the followings: higher nurse-to-patient ratio (β’s=-1.292 and -

1.445; p’s<0.001 both) and larger physical space per bed (β’s=-0.032 and -0.021; p=0.048 and 

p<0.001). 

Table 11: Patient characteristics by patient room assignment 

Variable 
Bay rooms Private rooms 

(n=1,373,633) (n=1,297,222) 
Age category (col %) 

  
 

Younger than 18 30.70% 2.66%  
18-44 19.03% 37.42%  
45-64 21.83% 25.77%  
65-74 12.82% 15.89%  
75 or more 15.61% 18.26% 

Female gender (%) 51.98% 63.77% 
Race and ethnicity (%) 

  
 

NH White 44.05% 52.26%  
NH Black 12.93% 12.81%  
NH Asian 2.38% 2.07%  
NH Other 6.60% 6.18%  
Hispanic 34.03% 26.69% 

Urgent or emergency admission (%) 56.11% 68.26% 
Admission source (col %) 

  
 

No transfer 55.50% 71.14%  
Transfer from Clinics 10.07% 22.91%  
Transfer from Hospitals 4.31% 3.71%  
Transfer from SNF ICF ALF 27.55% 0.42%  
Transfer from another HC facility 1.25% 0.86%  
Other 1.32% 0.97% 

Procedures by class (mean) 
  

 
Minor Diagnostic 0.364 0.305  
Minor Therapeutic 0.783 0.786  
Major Diagnostic 0.015 0.026  
Major Therapeutic 0.363 0.673 

Private room medically required (%) 0.79% 1.95% 
ICU stay during hospitalization (%) 34.28% 13.83% 
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Elixhauser mortality score (mean, pts) 2.93 3.12 
 

Table 12: Patient characteristics by hospital group 

Variable 
Group 1 
hospitals 

Group 2 
hospitals 

Group 3 
hospitals 

(n=900,340) (n=1,154,687) (n=615,828) 
Age category (col %)    
 

Younger than 18 19.79% 18.83% 9.85%  
18-44 30.40% 29.13% 22.22%  
45-64 22.91% 21.92% 28.39%  
65-74 12.33% 13.67% 18.41%  
75 or more 14.56% 16.46% 21.12% 

Female gender (%) 57.60% 59.50% 54.60% 
Race and ethnicity (%)    
 

NH White 38.31% 48.24% 61.86%  
NH Black 12.25% 13.42% 12.76%  
NH Asian 2.20% 2.74% 17.43%  
NH Other 5.24% 7.17% 1.33%  
Hispanic 42.00% 28.43% 6.62% 

Urgent or emergency admission (%) 60.31% 62.21% 64.11% 
Admission source (col %)    
 

No transfer 62.10% 62.64% 65.42%  
Transfer from Clinics 15.03% 15.62% 19.44%  
Transfer from Hospitals 4.24% 3.39% 4.85%  
Transfer from SNF ICF ALF 15.63% 16.90% 7.81%  
Transfer from another HC facility 1.42% 0.61% 1.38%  
Other 1.59% 0.83% 1.10% 

Procedures by class (col %)    
 

Minor Diagnostic 0.320 0.313 0.399  
Minor Therapeutic 0.749 0.832 0.748  
Major Diagnostic 0.018 0.020 0.026  
Major Therapeutic 0.748 0.026 0.614 

Private room medically required (%) 0.90% 1.94% 0.92% 
ICU stay during hospitalization (%) 23.51% 24.09% 26.06% 
Elixhauser mortality score (mean, pts) 2.60 2.99 3.71 
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Table 13: Logit regression results regarding nosocomial MSSA and MRSA risks 

Variable 
HA-MSSA infection HA-MRSA infection 

Adj. OR 
Exp β p Lower 

β 
Upper 

β 
Adj. OR 
Exp β p Lower 

β 
Upper 

β 

PPR assigned “Internal effect" 0.77 0.000 -0.30 -0.23 0.80 0.000 -0.23 -0.22 
Hospital PPR Category (ref: Group 1)  
"External effect"                 
  Group 2 (61.6%-82.9%) 0.75 0.008 -0.49 -0.08 0.76 0.010 -0.48 -0.06 
  Group 3 (>82.9%) 0.73 0.011 -0.55 -0.07 0.68 0.003 -0.64 -0.13 
Interaction  
between internal and external effects                 
  PPR assigned at Group 2 hospitals 1.11 0.039 0.01 0.21 0.85 0.000 -0.24 -0.09 
  PPR assigned at Group 3 hospitals 1.11 0.015 0.02 0.19 0.88 0.046 -0.24 0.00 
Age category (ref: younger than 18)                 
  18-44 0.57 0.001 -0.90 -0.22 1.31 0.323 -0.26 0.80 
  45-64 0.52 0.000 -1.02 -0.31 1.15 0.600 -0.39 0.68 
  65-74 0.48 0.000 -1.10 -0.36 1.22 0.479 -0.35 0.75 
  75 or more 0.35 0.000 -1.44 -0.67 1.45 0.185 -0.18 0.91 
Female gender 0.58 0.000 -0.69 -0.40 0.70 0.000 -0.49 -0.21 
Race and ethnicity (ref: NH White)                 
  NH Black 0.81 0.030 -0.41 -0.02 1.11 0.002 0.04 0.17 
  NH Asian 0.88 0.621 -0.61 0.37 0.72 0.257 -0.89 0.24 
  NH Other 1.01 0.915 -0.24 0.27 1.27 0.036 0.02 0.47 
  Hispanic 0.98 0.837 -0.18 0.15 0.86 0.087 -0.34 0.02 
Urgent or emergency admission 0.98 0.812 -0.22 0.17 1.03 0.027 0.00 0.06 
Admission source (ref: no transfer)                 
  From Clinics 0.74 0.016 -0.54 -0.06 0.93 0.553 -0.30 0.16 
  Transfer from hospitals 0.89 0.298 -0.35 0.11 1.04 0.012 0.01 0.07 
  Transfer from SNF ICF ALF 0.34 0.000 -1.55 -0.60 0.88 0.658 -0.70 0.44 
  Transfer from another HC facility 1.20 0.400 -0.24 0.60 0.62 0.127 -1.10 0.14 
  Other 0.94 0.837 -0.71 0.57 1.07 0.819 -0.51 0.65 
Procedures (by class)                 
  Minor Diagnostic 1.22 0.000 0.18 0.22 1.18 0.000 0.14 0.19 
  Minor Therapeutic 1.32 0.000 0.26 0.29 1.32 0.000 0.26 0.29 
  Major Diagnostic 1.13 0.147 -0.04 0.28 1.18 0.024 0.02 0.31 
  Major Therapeutic 1.13 0.000 0.10 0.15 1.17 0.000 0.14 0.18 
Elixhauser comorbidity condition                 
  AIDS 0.77 0.462 -0.94 0.43 1.50 0.164 -0.17 0.98 
  Alcohol abuse 1.50 0.000 0.19 0.63 1.03 0.811 -0.24 0.31 
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  Deficiency Anemias 1.35 0.000 0.15 0.44 1.39 0.000 0.18 0.47 
  Rheumatoid arthritis/collagen vas 1.19 0.351 -0.19 0.53 1.60 0.003 0.16 0.78 
  Chronic blood loss anemia 0.65 0.073 -0.90 0.04 0.91 0.637 -0.51 0.31 
  Congestive heart failure 1.06 0.495 -0.11 0.23 1.42 0.000 0.19 0.51 
  Chronic pulmonary disease 1.09 0.345 -0.09 0.26 1.40 0.000 0.18 0.49 
  Coagulopathy 1.08 0.422 -0.11 0.27 1.13 0.214 -0.07 0.31 
  Depression 1.01 0.960 -0.21 0.22 1.07 0.499 -0.14 0.28 
  Diabetes w/o chronic cc 0.79 0.025 -0.45 -0.03 1.12 0.246 -0.08 0.30 
  Diabetes w/ chronic cc 1.06 0.509 -0.12 0.24 1.05 0.632 -0.14 0.23 
  Drug abuse 1.59 0.000 0.20 0.73 1.72 0.000 0.25 0.84 
  Hypertension 1.10 0.256 -0.07 0.26 0.98 0.772 -0.19 0.14 
  Hypothyroidism 0.93 0.539 -0.29 0.15 0.84 0.118 -0.38 0.04 
  Liver disease 0.89 0.338 -0.35 0.12 1.31 0.015 0.05 0.49 
  Lymphoma 1.32 0.256 -0.20 0.76 1.00 0.991 -0.55 0.55 
  Fluid and electrolyte disorders 2.73 0.000 0.85 1.17 1.89 0.000 0.48 0.79 
  Metastatic cancer 0.91 0.603 -0.44 0.26 1.06 0.752 -0.29 0.40 
  Other neurological disorders 2.04 0.000 0.56 0.87 1.80 0.000 0.43 0.75 
  Obesity 0.93 0.447 -0.26 0.11 1.45 0.000 0.21 0.54 
  Paralysis 1.96 0.000 0.47 0.87 2.06 0.000 0.53 0.92 
  Peripheral vascular disease 0.79 0.046 -0.47 0.00 1.11 0.333 -0.10 0.31 
  Psychoses 0.88 0.426 -0.46 0.19 1.27 0.121 -0.06 0.54 
  Pulmonary circulation disease 1.42 0.052 0.00 0.71 1.70 0.001 0.21 0.86 
  Renal failure 1.00 0.986 -0.19 0.19 1.00 0.983 -0.18 0.18 
  Solid tumor w/out metastasis 0.79 0.199 -0.58 0.12 1.42 0.013 0.07 0.63 
  Peptic ulcer Disease x bleeding 0.90 0.638 -0.53 0.32 0.97 0.891 -0.43 0.37 
  Valvular disease 1.13 0.364 -0.14 0.37 0.88 0.327 -0.39 0.13 
  Weight loss 1.17 0.103 -0.03 0.34 1.46 0.000 0.20 0.56 
Hospital ownership (ref: for-profit)                 
  Public hospitals 1.91 0.000 0.42 0.88 1.35 0.012 0.07 0.53 
  Non-profit hospitals 1.33 0.001 0.12 0.45 1.12 0.182 -0.05 0.28 
Rural location 0.55 0.029 -1.14 -0.06 1.32 0.129 -0.08 0.63 
Teaching facility 1.06 0.525 -0.11 0.22 1.05 0.000 0.04 0.05 
(log) Nurse-to-Patient ratio 0.27 0.000 -1.92 -0.66 0.24 0.000 -2.10 -0.79 
Major therapeutic procedures (%) 1.03 0.000 0.02 0.04 1.02 0.000 0.01 0.03 
Uninsured and Medicaid patients (%) 1.01 0.000 0.01 0.02 1.01 0.000 0.01 0.02 
Occupancy rates (%) 1.01 0.096 0.00 0.02 1.01 0.016 0.00 0.02 

(log) Average physical space per bed 0.97 0.048 -0.06 0.00 0.98 0.000 -0.03 -0.02 
* McFadden’s adjusted pseudo R2 = 0.179 (HA-MSSA) and 0.210 (HA-MRSA) 
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Analysis 2. 

 Analysis 2 examined how healthcare outcomes relate to and differ by staph infection 

types. Table 14 presents descriptive characteristics of patients (the same sample size as 

Analysis 1) categorized by staph infection type. Table 15 presents patient characteristics of 

matched cohorts. Our unadjusted results presented in Table 16 show that any kind of staph 

infections – regardless of methicillin-sensitivity and no matter whether they are acquired in 

hospitals – increased length of stay, in-hospital death risk, and Medicare payment. Both MSSA 

and MRSA were linked to more serious outcomes when those infections were developed during 

hospitalization. Compared to the baseline (no staph infection), HA-MSSA and HA-MRSA groups 

showed roughly four times higher payments ($33k and $39k respectively; baseline=$9.4k), 5 

times longer stays (24.9 and 25.2 days respectively; baseline=5.1 days), and a 9 times higher in-

hospital death rate (12.7% and 14.1% respectively; baseline=1.5%). It is worth noting that with 

any measure, the following inequalities hold consistently: (1) staph infections acquired in 

hospitals are associated with worse outcomes in comparison with those present on admissions; 

and (2) MRSA is associated with worse patient outcomes than MSSA. 

 After Staph cohorts are matched based on propensity scores, the differences in 

healthcare outcomes become smaller but still meaningful. Compared to Medicare payments at 

the baseline (no staph infections; Mean payment= $17,766; 95% CI= [$16,938, 18,635]), MRSA 

POA44, HA-MSSA, and HA-MRSA caused excess costs by +$4.2k, +$6.6k, and +$12.1k 

                                                      

44 Present on admission 
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respectively (all p’s lower than 0.001). Similarly, staph infections increased inpatient length of 

stays by an additional 2-9 days: +1.8 days for MSSA POA, +2.0 days for MRSA POA, +8.6 days for 

HA-MSSA, and +8.9 days for HA-MRSA respectively (baseline = 9.2 days; all significant and 

p<0.001). Only HA-MSSA and MRSA significantly increased in-hospital death risk: +4.04%p for 

HA-MSSA (p=0.002) and +4.83%p for HA-MRSA (p<0.001). 

Table 14: Patient characteristics by staph cohort (unmatched) 

Variable No Staph POA-MSSA HA-MSSA POA-MRSA HA-MRSA 

 Age category (col %)      
 Younger than 18 16.49 3.20 8.16 2.68 4.48 
 18-44 27.66 23.74 23.19 22.3 17.47 
 45-64 23.42 32.08 37.76 36.9 33.38 
 65-74 14.58 16.01 18.15 18.37 20.63 
 75 or more 17.86 13.97 12.74 19.75 24.03 
 Female gender (%) 58.30 37.24 34.01 42.62 39.56 
 Race and ethnicity (col %)      
 NH White 47.81 51.35 47.98 55.09 50.7 
 NH Black 13.3 11.62 14.57 13.33 17.23 
 NH Asian 30.05 30.77 29.37 26.01 24.19 
 NH Other 2.36 1.11 1.75 0.97 1.16 
 Hispanic 6.47 5.15 6.33 4.6 6.72 
 Urgent or emergency admission (%) 62.73 85.7 77.87 85.43 78.05 
 Admission source (col %)      
 No transfer 62.27 78.06 72.01 78.54 70.87 
 Transfer from Clinics 16.24 11.79 9.38 10.89 11.28 
 Transfer from Hospitals 4.14 6.80 10.37 6.65 10.24 
 Transfer from SNF ICF ALF 14.02 0.61 4.27 1.25 3.79 
 Transfer from another HC facility 1.09 1.65 2.75 1.61 1.62 
 Other 1.23 1.09 1.22 1.07 2.16 
 Procedures by class (mean count)      
 Minor Diagnostic 0.352 0.582 1.844 0.536 1.625 
 Minor Therapeutic 0.815 1.346 4.028 1.33 3.776 
 Major Diagnostic 0.021 0.043 0.087 0.04 0.085 
 Major Therapeutic 0.526 0.909 1.586 0.771 1.631 
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 Private room medically required (%) 1.41 1.77 1.75 2.09 2.39 
 ICU stay during hospitalization (%) 25.44 33.17 75.51 34.02 72.64 
 Elixhauser mortality score (mean pts) 3.30 5.45 11.41 5.75 11.76 
 

Table 15: Patient characteristics by staph cohort (matched) 

Variable No Staph POA-MSSA HA-MSSA POA-MRSA HA-MRSA 

Age category (col %)      
 Younger than 18 3.21 3.36 6.22 3.21 3.26 
 18-44 13.60 15.64 22.15 16.59 17.34 
 45-64 34.32 36.47 33.99 32.63 34.33 
 65-74 23.61 20.63 19.58 22.00 20.69 
 75 or more 25.25 23.90 18.06 25.57 24.38 
Female gender (%) 37.06 40.3 38.69 39.13 39.78 
Race and ethnicity (col %)      
 NH White 52.78 52.98 50.53 51.42 52.11 
 NH Black 15.48 16.31 17.00 18.79 16.37 
 NH Asian 22.67 23.61 25.80 22.00 23.94 
 NH Other 1.17 0.86 1.06 1.56 1.06 
 Hispanic 7.90 6.24 5.61 6.23 6.51 
Urgent or emergency admission (%) 80.29 79.17 76.32 79.56 79.57 
Admission source (col %)      
 No transfer 73.03 70.06 71.32 70.21 72.1 
 Transfer from Clinics 8.84 12.09 10.93 11.55 11.36 
 Transfer from Hospitals 11.49 9.88 9.41 10.82 10.04 
 Transfer from SNF ICF ALF 2.74 2.88 4.70 3.67 2.73 
 Transfer from another HC facility 1.49 2.02 1.37 1.92 1.58 
 Other 2.42 3.07 2.28 1.83 2.2 
Procedures by class (mean)      
 Minor Diagnostic 1.462 1.37 1.766 1.4 1.427 
 Minor Therapeutic 3.271 3.153 3.887 3.144 3.384 
 Major Diagnostic 0.087 0.074 0.068 0.069 0.084 
 Major Therapeutic 1.524 1.543 1.65 1.426 1.505 
Private room medically required (%) 1.87 1.72 1.36 1.46 2.55 
ICU stay during hospitalization (%) 61.76 53.93 74.5 55.36 71.91 
Elixhauser mortality score (mean, pts) 12.65 11.35 11.33 12.08 11.21 
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Table 16: Mean healthcare outcomes by staph cohort (unmatched results) 

Staph cohort 
Charges (USD) Medicare payment (USD) 

LOS (day) Mortality 
Total Facility Professional Total Facility Professional 

No Staph 55,803 46,314 9,489 9,416 7,815 1,601 5.1 1.50% 

MSSA POA 96,595 84,044 12,551 15,269 13,285 1,984 9.3 3.23% 

HA-MSSA 374,621 325,844 48,777 32,623 28,375 4,248 24.9 12.70% 

MRSA POA 99,976 87,267 12,709 15,140 13,215 1,925 9.5 3.70% 

HA-MRSA 431,752 375,422 56,330 38,972 33,887 5,085 25.2 14.10% 
 

Table 17: Adjusted (matched) results of hospital cost and relative differences by staph cohort 

Staph cohort 
Adjusted cost (USD) Relative to C1 Relative to C5 

Mean Lower Upper Delta p Delta p 
No Staph (C1) 20,058 19,123 21,039   13,612.91 0.000 

POA-MSSA (C2) 21,255 20,278 22,279 1,196.72 0.094 12,416.20 0.000 
HA-MSSA (C3) 27,547 26,213 28,950 7,489.11 0.000 6,123.80 0.000 

POA-MRSA (C4) 24,780 23,705 25,904 4,721.89 0.000 8,891.02 0.000 
HA-MRSA (C5) 33,671 31,409 36,096 13,612.91 0.000   

 

Table 18: Adjusted (matched) results of inpatient length of stay and relative differences by 
staph cohort 

Staph cohort 
Adjusted LOS (day) Relative to C1 Relative to C5 

Mean Lower Upper Delta p Delta p 
No Staph (C1) 9.2 7.2 11.2   8.9 0.000 

POA-MSSA (C2) 11.0 9.0 13.0 1.8 0.000 7.2 0.000 
HA-MSSA (C3) 17.7 15.7 19.8 8.6 0.000 0.4 0.520 

POA-MRSA (C4) 11.2 9.2 13.2 2.0 0.000 6.9 0.000 
HA-MRSA (C5) 18.1 16.1 20.1 8.9 0.000   

 

Table 19: Adjusted (matched) results of mortality risk and relative differences by staph cohort 

Staph cohort 
Adjusted Mortality (%) Relative to C1 Relative to C5 

Mean Lower Upper Delta p Delta p 
No Staph (C1) 9.5% 7.8% 11.1%   4.83% 0.000 

POA-MSSA (C2) 10.0% 8.2% 11.8% 0.52% 0.676 4.31% 0.002 
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HA-MSSA (C3) 13.5% 11.5% 15.5% 4.04% 0.002 0.79% 0.582 
POA-MRSA (C4) 10.2% 8.4% 12.0% 0.71% 0.566 4.12% 0.003 
HA-MRSA (C5) 14.3% 12.3% 16.3% 4.83% 0.000   

 

Table 20: Matched regression results for adjusted hospital costs 

Variable β Exp (β) p Lower Upper 

Staph infection category 
(ref: No Staph) 

     

    POA-MSSA -0.101 0.904 0.037 -0.196 -0.006 
    HA-MSSA 0.176 1.192 0.000 0.082 0.270 
    POA-MRSA -0.020 0.980 0.690 -0.119 0.079 
    HA-MRSA 0.280 1.323 0.000 0.171 0.388 
Hospital ownership 
(ref: For-profit hospitals) 

     

    Public hospitals 0.119 1.126 0.048 0.001 0.237 
    Not-for-profit hospitals 0.075 1.078 0.062 -0.004 0.154 
Rural location -0.370 0.691 0.000 -0.513 -0.226 
Teaching facility 0.156 1.169 0.000 0.079 0.232 
(log) Nurse-to-patient ratio -0.454 0.635 0.005 -0.773 -0.135 
Major therapeutic procedures (%) 0.020 1.021 0.000 0.015 0.026 
Medicaid + Uninsured (%) 0.000 1.000 0.665 -0.002 0.003 
* McFadden’s adjusted pseudo R2 = 0.191 
 
Discussion 

Externality of private rooms. 

 Our findings from Model 1 supports our key aim to identify indirect benefits, or 

“positive externalities” driven by private rooms’ protections against cross-transmission of staph 

infection. 

Our results revealed that more private rooms in hospitals could reduce the risk of HA-MSSA and 

MRSA infections by up to 34%. Note that this external effect worked separately from the 
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benefit due to private room assignment (i.e., “internal” effect), which contributed to reduce 

infection risks by 20-23%. Figure 6 summarizes how infection risks can vary across patients with 

6 different situations (combinations between two room types and three different hospital 

groups).  

Our Model 1, specifically regarding internal effects, is in line with previous findings 

regarding general benefits of private rooms regarding HAI-safety in the literature such as higher 

hand hygiene compliance (Borg et al., 2008; Salge et al., 2017), superior aerial control (King et 

al., 2015), better staff communication (Bartley & Streifel, 2010), and lower nursing loads (Borg, 

2003; Dancer et al., 2006). Our results are also consistent with a private room’s impact on 

MRSA reductions empirically assessed by the most-cited previous studies (Bracco et al., 2007; 

Levin et al., 2011; Teltsch et al., 2011)45 while countering generalizability concerns and other 

common limitations using richer data samples of IP PUDF. Although our findings from Model 1 

should be further validated46, we strongly believe that they could add the missing piece of 

hospital-wide private room effects (“externality”) to the literature.  

Similar to our observations in prior study of CLABSIs47, interaction between the internal 

and external effects seem to exist (O’Neill et al., 2018).  When there are all or zero private 

rooms, the likelihood of a patient to be assigned a private room is also 100% or 0% without any 

                                                      

45 Our results are generally smaller than these studies, largely because (1) we decomposed private room effects 
into internal and external aspects, and (2) the mentioned studies examined ICU while ours focused on acute beds. 
46 Current literature cannot do this because, to best our knowledge, no previous study examined hospital-wide 
private room effects distinctly.  
47 Central-Line Associated Blood Stream Infections 
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ambiguity. However, if private and bay rooms are mixed, say 50-50, how to assign patients to 

each room type depends on clinical or operational decisions from hospital staffs (physicians and 

nurses), which results in higher freedom of degree. While efficient hospital bed allocation has 

been discussed in the literature (Dumas, 1984; He, Madathil, Oberoi, Servis, & Khasawneh, 

2019; Mackay & Millard, 1999; Schmidt, Geisler, & Spreckelsen, 2013), hospitals seem to handle 

limited resources inconsistently, which means that a similarly-conditioned patient can be 

assigned to a private room in one hospital while the patient should stay in a bay room in 

another similar hospital. To summarize, our results of significant interactions in Model 1 clearly 

indicate that there exists an inter-dependence between the both effects to a certain extent. 

However, readers should also be cautious in that such dependence may reflect hidden or 

unmeasurable causal factors. Without knowing each hospital’s room/bed assignment rule, it 

may be difficult to differentiate multiple underlying mechanisms behind such dependence and 

non-linearity. Future studies should verify them with a more detailed data set. 

As hypothesized, we found that patients assigned to bay rooms can reduce their MRSA 

risk by going to better hospitals (i.e., Group X to Y when Y>X) (Figure 7). It is worth noting that 

marginal reductions with regard to moving to higher-tiered groups indicate two noticeable 

remarks: (1) risk reduction for bay-room patients is higher when they move to Group 2 from 

Group 3 than to Group 1 from Group 2, which is largely because safety benefits of hospitals 

would follow the diminishing marginal rate of return regarding private room percentage, and 

(2) bay-room patients can enjoy even more benefit than private-room patients when they move 

to Group 3 hospitals (12% of risk reduction for bay-room patients vs 9% for private-room 
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patients; p<0.001). The latter point is due to interactions between internal and external effects 

of private rooms and is also consistent with our analogy of “herd-immunity” using infectious 

disease in a vaccinated society as discussed in Chapter I. We strongly believe that HA-MRSA risk 

of bay-room patients asymptotically converge to the same level of MRSA risk of private-room 

patients, though this may need to be verified by time-series analyses with multi-year data set.  

Figure 6: HA-Staph risk comparison across different combinations between hospital groups and 
room assignments (normalized: 100% as the most dangerous combination) 
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Figure 7: HA-MRSA risk comparison between PPR assigned and not with regard to hospital 
groups (normalized) 

 

Cost and outcome impacts.  

 As discussed earlier, we believe charges might be inappropriate cost measure for HAIs, 

mainly due to huge within- and between- hospital variances in the US healthcare system. This is 

empirically verified by our data. For all Texas inpatients in the fiscal year 2016, patient charges 

exceed average Medicare payments by more than 300% at the median (i.e., charges being 4 

times Medicare payments) and 1200% at the 95th percentile. For the matched samples, the 

variance gets much larger: charges being 7 times larger than Medicare payments at the median 

and 28 times at the 95th percentile. Our validation is consistent with the recent finding that the 

charges of the top 50 hospitals are about 10 times higher than their Medicare-allowable costs 

(Bai & Anderson, 2015). 
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 To get more practical estimates of hospital costs, our measure of Medicare payments 

should be properly adjusted to give a more realistic estimate of actual costs, which Medicare 

payments largely fall short of in most hospitals. According to a recent survey (American Hospital 

Association, n.d.-b), the Medicare payment rate represents approximately 89% of a hospital’s 

actual costs. Equivalently, average hospital costs are 1.13 times (inverse of 89%) higher than 

average Medicare payments. Thus, hospital costs can be assessed if the multiplier of 1.13 is 

applied to our regression predictions of Medicare payments. Using this approach, staph 

infections add an attributable cost per case of $1,197 for MSSA POA (p=0.094; not statistically 

significant), $4,721 for MRSA POA (p<0.001), $7,489 for HA-MSSA (p<0.001), and $13,612 for 

HA-MRSA (p<0.001) (Figure 8). Our estimates are generally smaller than previous cost findings 

from US studies (Cosgrove et al., 2005; S. P. Kim et al., 2012; Nelson, Samore, et al., 2015a; R. J. 

Rubin et al., 1999). However, with serious challenges of methodological differences (e.g., 

matched versus not), smaller sample sizes (including single-site studies), and problematic 

costing measures (i.e., patient charges being used by all the cited studies), directly comparing 

our results with cost literature may introduce another bias. 

 Defining various categories in staph infections could reveal impacts attributable to 

antibiotic resistance as well as nosocomial onset. We found that the most meaningful burdens 

of antibiotic resistance are cost-related relative to other outcomes measured such as LOS and 

in-hospital mortality. Antibiotic resistance increased hospital cost an average of 18% above 

baseline per patient (equivalent to +$3,500) when infections were not nosocomial (not 

statistically significant; p=0.226), and 31% (equivalent to +$6,100) for hospital-acquired 
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infections (p=0.015). This discrepancy between nosocomial and non-nosocomial cases may not 

be surprising because antibiotic resistance developed by Staph bacteria has been known to 

cause more problems in hospital settings due to various reasons including intensive uses of 

antibiotics (Ducel et al., 2002; Lin et al., 2015; Ventola, 2015). However, our analysis could not 

verify antibiotic resistance impact on LOS and in-hospital deaths (p-values all exceeding 0.5). It 

is possible that the statistical insignificancy might be a result of our use of ICD-10-CM to identify 

drug resistance. ICD-9-CM, the previous version of ICD, has been criticized for its low accuracy 

in detecting drug-resistant infections (Burnham, Kwon, Babcock, Olsen, & Kollef, 2017; Thorpe, 

Joski, & Johnston, 2018): there are approximately 8 or more undiagnosed antibiotic-resistant 

infections for every one identified via ICD-9-CM codes (Burnham et al., 2017). While ICD-10-CM 

may outperform the legacy coding system in many aspects, accuracy and validity for identifying 

antibiotic resistance remains unverified to date. Inherent limitations of IP PUDF data, including 

ICD codes that could mis-identify antibiotic-resistant infections as antibiotic-treatable ones, 

have the potential to allow underestimates of resistance-attributable effects. 

Compared with antibiotic-resistance, nosocomial onset of staph infections showed more 

dramatic differences with important implications for healthcare priority setting. Nosocomial 

MRSA increased patients’ hospital costs by 29% (equivalent to +$8,900; p<0.001), inpatient 

stays by 19% (equivalent to +6.9 days; p<0.001), and in-hospital death risk by +3.6%p (in 

absolute difference; p=0.022). Nosocomial MSSA also resulted in +$6,300 in costs (p<0.001), 

+6.8 days in LOS (p<0.001), and +3.1%p in death risk (p=0.030). While reducing HAIs and 

lowering inappropriate antibiotic uses in hospitals are both important, analytical limitations for 
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the former is a challenge to reliable comparison. On the other hand, our findings around the 

protections private patient rooms allows against HAIs are robust and substantial, and provide 

strong support for healthcare agencies, policy makers, and others to prioritize investments in 

the built environment.  

 To our knowledge, this thesis study is the first examination of how hospital costs could 

be decomposed into facility-based and service-related aspects. Figure 9 presents the result of 

decomposition after applying PFRs for each corresponding MS-DRG in our 5 Staph cohorts. 

Mean PFRs range from 1.134 (MRSA POA) to 1.158 (No staph infections), with statistically 

significant distinction between each category (Welch’s t-test p-values lower than 0.05). It is 

worth noting that costs due to staph infections are dominated by facility-based elements rather 

than professional services (87-88% of total costs). This may imply that Staph patients need 

more hardware resources such as better patient rooms, longer room stays, and/or costlier 

diagnostic/therapeutic technologies (Grundmann et al., 2006). Note that our results of longer 

adjusted48 LOS may partly demonstrate that staph infections increase LOS by +2-9 days 

compared to the baseline. 

                                                      

48 Adjustments done via matching 
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Figure 8: Mean costs and confidence intervals by staph infection cohort 

 

Figure 9: Decomposed mean costs by staph infection cohort 
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Antibiotic resistance in staph infections. 

 While our results indicate that the impact of antibiotic resistance in staph infections is 

not substantial at least in the short run, we believe that this issue should not be overlooked, as 

such resistance may cause long term critical effects on patients (Ventola, 2015). Our data show 

that, in Texas, resistance-gained staph infections already exceed half of the diagnosed cases. 

Considering concurrent overuses of antibiotics in US hospitals (CDC, 2017; Ventola, 2015), the 

time trend is expected to keep increasing. 

 Interestingly, with the aid of newly defined STAPH CAT variable in this study, we could 

analyze patient-level risk factors or predictors of MRSA in comparison with MSSA, from both 

general and nosocomial infections’ perspective. Our unadjusted analyses indicate that the risk 

of antibiotic resistance, as measured by the ratio of MRSA to MSSA, significantly (Chi-square 

test P-value lower than 0.05) differ across different groups characterized as the followings: (1) 

Those aged 75 or more had 90% higher chance of antibiotic resistance of staph infections, 

compared to underaged group; (2) females showed 30% higher risk of antibiotic resistance than 

males; (3) African-American races and White races (both non-Hispanic origins) race and 

ethnicity presented 39% or 30% respective higher risk of resistance than Hispanic origins; and 

(4) patients transferred from skilled nursing facilities showed the most drastic level of 

resistance (MRSA incidence more than doubled MSSA incidence), hugely differed from patients 

referred from clinics (90% higher risk). Admission types and ICU experiences did not 

significantly affect this risk. Even after restricting within nosocomial infections, the categories of 

age, gender, race and ethnicity were significantly associated with the antibiotic resistance. Note 
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that, for general inpatients, MRSA incidence is 30% higher than MSSA, and for nosocomial staph 

infections, MRSA incidence was very close to MSSA incidence. 

 As presented in Table 21, our multivariate results adjusted for comorbidity conditions 

detailed and reiterated our unadjusted results. The risk of antibiotic resistance was significantly 

higher in the following groups: aged 75 or more (63% higher risk than the underaged), African-

American (9% higher risk than White and 22% higher risk than Hispanics), female (17% higher 

risk than male), and transfers from skilled nursing facilities (38% higher risk than no transfer 

and 46% higher risk than clinic referrals). There can be various explanations of such 

discrepancy. For example, female was more associated with antibiotic resistance than male 

possibly because for some woman-specific infections, there may be higher chance of receiving 

antibiotic treatments. A study from the CDC49 found that about 4 in 10 women with urinary 

tract infections during early pregnancy filled a prescription for antibiotics (nitrofurantoin or 

trimethoprim-sulfamethoxazole) (Ailes, 2018). Also, the fact that transferred from skilled 

nursing facility, intermediate care facility, or assistant livings were associated significantly 

higher risk of antibiotic resistance is in line with recent examinations. CDC recently identified 

the most common prescribing problems in nursing homes as using antibiotics in inappropriate 

ways (used when not needed, wrong drugs chosen, and/or wrong dose or duration) (CDC, 

2017). CDC’s medical examinations confirmed the followings (CDC, 2015): (1) 11 percent of 

nursing home residents were on antibiotics on any single day; (2) every three antibiotic 

                                                      

49 Centers for Disease Control and Prevention 
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prescription was for the treatment of urinary tract infections; at least half of these prescriptions 

were for either the wrong drug, dose, or duration; and (3) 38 percent of orders for antibiotics 

lacked documentation of one or more important prescribing elements. 

 Our results were also consistent with three conditions that are inherently less risky than 

other comorbidity conditions: alcohol abuse, fluid and electrolyte disorders, and valvular 

diseases. First, most antibiotic medications are packaged with a warning to avoid alcohol during 

treatments for various reasons (i.e., heavy drinking may impair immune system function) 

(National Institute on Alcohol Abuse and Alcoholism, 2014; Weathermon & Crabb, 1999). 

Second, current practice guideline generally does not recommend using antibiotics for valve-

related conditions such as mitral valve prolapse (Nishimura et al., 2008). Third, use of 

antibiotics is often limited by associated renal toxic effects (e.g., decreased glomerular filtration 

rate), which may reduce antibiotic uses for fluid and electrolyte disorders (Pazhayattil & Shirali, 

2014). 

Table 21: Logit regression results for MRSA presence among staph infections and nosocomial 
staph infections 

Variable 
MRSA relative to staph infection MRSA relative to HA-staph infection 

Adj. OR p Lower Upper Adj. OR p Lower Upper 

Age category (ref: younger than 18)         

  18-44 1.16 0.016 1.03 1.32 1.22 0.314 0.83 1.81 
  45-64 1.07 0.258 0.95 1.22 1.29 0.207 0.87 1.93 
  65-74 1.35 0.000 1.18 1.54 1.56 0.039 1.02 2.39 
  75 or more 1.63 0.000 1.43 1.86 2.91 0.000 1.88 4.49 
Race and ethnicity (ref: NH White)         

  Black 1.09 0.011 1.02 1.16 1.21 0.127 0.95 1.53 
  Hispanic 0.87 0.000 0.83 0.91 0.89 0.270 0.73 1.09 
  Asian 0.80 0.027 0.66 0.98 0.79 0.462 0.41 1.49 
  Other 0.88 0.006 0.80 0.96 1.12 0.498 0.80 1.57 
Female gender 1.17 0.000 1.12 1.23 1.10 0.287 0.92 1.31 
Admission source (ref: no transfer)         
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  2 From Clinics 0.92 0.017 0.87 0.99     

  3 Transfer from hospitals 0.96 0.344 0.89 1.04     

  4 Transfer from SNF ICF ALF 1.38 0.001 1.14 1.68     

  5 Transfer from Another HC fac 0.89 0.135 0.76 1.04     

  6 Other 0.93 0.480 0.77 1.13     

Comorbidity         

  AIDS 1.18 0.106 0.97 1.43 1.13 0.778 0.48 2.64 
  Alcohol abuse 0.72 0.000 0.65 0.80 0.62 0.003 0.45 0.85 
  Deficiency Anemias 1.05 0.027 1.01 1.10 1.10 0.312 0.92 1.31 
  Rheumatoid arthritis/collagen vas 0.91 0.055 0.82 1.00 0.98 0.931 0.63 1.52 
  Chronic blood loss anemia 1.05 0.616 0.88 1.25 1.76 0.046 1.01 3.07 
  Congestive heart failure 1.15 0.000 1.08 1.21 1.22 0.051 1.00 1.50 
  Chronic pulmonary disease 1.30 0.000 1.23 1.37 1.32 0.008 1.07 1.61 
  Coagulopathy 0.86 0.000 0.80 0.92 0.94 0.541 0.75 1.16 
  Depression 1.16 0.000 1.09 1.23 1.12 0.420 0.86 1.45 
  Diabetes w/o chronic complications 1.10 0.003 1.03 1.17 1.38 0.012 1.08 1.78 
  Diabetes w/ chronic complications 0.88 0.000 0.84 0.93 0.99 0.956 0.79 1.25 
  Drug abuse 1.19 0.000 1.08 1.30 1.14 0.468 0.80 1.63 
  Hypertension 0.97 0.301 0.93 1.02 0.91 0.353 0.75 1.11 
  Hypothyroidism 1.04 0.245 0.97 1.11 0.87 0.322 0.65 1.15 
  Liver disease 1.00 0.981 0.92 1.08 1.36 0.037 1.02 1.81 
  Lymphoma 1.06 0.606 0.86 1.30 0.73 0.381 0.35 1.49 
  Fluid and electrolyte disorders 0.86 0.000 0.82 0.90 0.72 0.000 0.61 0.86 
  Metastatic cancer 0.87 0.056 0.76 1.00 1.39 0.130 0.91 2.13 
  Other neurological disorders 1.07 0.024 1.01 1.14 0.95 0.577 0.79 1.14 
  Obesity 1.03 0.332 0.97 1.08 1.61 0.000 1.29 2.01 
  Paralysis 1.39 0.000 1.28 1.50 1.01 0.929 0.80 1.28 
  Peripheral vascular disease 1.06 0.058 1.00 1.13 1.45 0.005 1.12 1.88 
  Psychoses 1.26 0.000 1.15 1.40 1.15 0.499 0.77 1.70 
  Pulmonary circulation disease 1.03 0.708 0.89 1.19 1.13 0.581 0.73 1.76 
  Renal failure 1.10 0.002 1.04 1.17 1.01 0.906 0.80 1.29 
  Solid tumor w/out metastasis 0.90 0.108 0.80 1.02 1.76 0.009 1.15 2.70 
  Peptic ulcer Disease x bleeding 0.96 0.659 0.79 1.16 0.90 0.693 0.52 1.55 
  Valvular disease 0.79 0.000 0.72 0.86 0.73 0.050 0.53 1.00 
  Weight loss 1.12 0.000 1.06 1.20 1.32 0.009 1.07 1.62 

* McFadden’s adjusted pseudo R2 = 0.125 (all) and 0.109 (nosocomial only) 
 

Comparison with the hospital model developed previously. 

 Like our study detailed in Chapter III, the study in Chapter IV also serves as an underlying 

support for evidence-based designs. The biggest difference is increased detail and degree of 

freedom. For example, the hospital model detailed in Chapter III can predict MRSA reductions 

based on hospital parameters, but not end outcomes attributable to MRSA. Thus, for business 
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decisions where all considerations should be converted to calculable monetary quantity, the 

hospital model must rely on other supporting evidence (e.g., MRSA cost studies) to transform 

reduced infections to dollars saved. That often introduces various problems such as study 

population discrepancy or incompatible research design: challenges in synthesizing evidence 

are well documented for general data science (B. J. Becker et al., 2017, 2017; Cao, 2017) as well 

as for health service research area (Bravata, McDonald, Shojania, Sundaram, & Owens, 2005; 

Johnstone, 2004). By comparison, estimates from our Models 1 and 2 can be integrated more 

smoothly (i.e., identical data source and consistent variable setting) and utilized toward a 

“complete” cost-benefit analysis, in that together these models account for the entire cycle 

from private rooms to end outcomes (e.g., costs). As a practical application example of Models 

1 and 2, we will conduct a Monte-Carlo simulation of cost-benefit analysis for two different 

hospitals in the subsequent chapter. Furthermore, Model 1 enables to analyze multi-

dimensional nature of private rooms (i.e., internal, external, and interactive effects), which may 

shed a light on underlying mechanisms and pathways. Our hospital model (Chapter III) and 

patient model (Model 1 in Chapter IV) can mutually validate each other by aggregating patient-

level outcomes (MRSA risk) by hospital and comparing with hospital-level estimates of MRSA 

incidence. 

Limitations. 

Our analyses and models detailed in this chapter still face methodological challenges. 

Hence, potential readers should raise cautions in interpreting and applying our results. 
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First, all the limitations discussed in Chapter III applies to this chapter: including 

estimation of private room percentages, cross-sectional study designs, and bias due to 

unmeasurable variables. 

Second, potential misspecification can be a limitation in our matching approach. We 

largely relied on the assumption that all the relevant differences across staph infection 

categories were captured in model variables. In practice, staph infections might be caused by 

highly complicated interactions among various environmental, psychological, and structural 

factors (e.g. hygiene status of physicians, nurse quality, private patient rooms), which our 

administrative database (IP PUDF) could only assess to the limited extent. Although future 

studies should examine these with more detailed data, we did our best to use the most 

effective set of variables of IP PUDF to capture significant impacts on MRSA infections. Even if 

there were some misspecification error, we treated each complication in a consistent way. 

Therefore, we believe that relative differences would be still meaningful. 

 Third, the PFR approach is rather exploratory and still needs more verification and 

validation. We are particularly concerned that PFRs were originally calculated from commercial 

and Medicaid insurances – without including Medicare payments – in the original study 

(Peterson et al., 2015). A later special commentary in the same year indicated that PFRs for 

Medicare patients could be biased (De Lissovoy & Landon, 2015). For this reason, readers 

should carefully interpret our results regarding facility-related costs. 
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CHAPTER V 

A SIMULATION STUDY OF THE COSTS AND BENEFITS OF PRIVATE HOSPITAL ROOMS 

SHOWING THE IMPORTANCE OF ORGANIZATIONAL CONTEXT 

Background 

Study purpose. 

In recent years, there have been two general approaches to reducing hospital-acquired 

infections (HAIs; also known as nosocomial infections). The first is to change the behavior of 

physicians, nurses, and other healthcare providers in broad and sometimes subtle ways that 

yield better outcomes. The managerial tools employed to achieve better outcomes include 

performance feedback (Rosenthal, Guzman, & Pezzotto, 2003), physician-led multidisciplinary 

teams (Jain, Miller, Belt, King, & Berwick, 2006), and maintaining a safety culture (P. J. 

Pronovost et al., 2008). The second emphasizes standardizing best clinical practices for 

preventing infections. Examples of this approach include establishing protocols for hand 

hygiene compliance and the use of personal protective equipment, such as wearing a mask and 

latex gloves, or the management of multidrug-resistant infections (Siegel, Rhinehart, Jackson, & 

Chiarello, 2007; Siegel, Rhinehart, Jackson, Chiarello, et al., 2007). Despite these efforts, the 

overall rate of improvement over time in preventing nosocomial infections has slowed 

significantly since 2010. Between 2006 and 2010, nosocomial infections50 decreased by up to 

                                                      

50 As measured by nosocomial methicillin-resistant Staphylococcus aureus infections and nosocomial central-line 
associated bloodstream infections 
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41%. Yet from  2011 to 2015, there was only a 9% further decrease (Office of Disease 

Prevention and Health Promotion, n.d.). The diminishing yield from well-established 

interventions suggests that the ‘low hanging fruit’ of HAI reduction as currently understood 

may be dwindling, and that a rethinking of HAI management is key to renewed progress. 

Due to the multifactorial nature of nosocomial infections, there is a consensus that no 

single intervention will be effective in reducing HAIs. Instead a multidimensional approach is 

needed, including an emphasis on the built environment. There have been many improvements 

in hospital design that are believed to reduce the risk of a HAI. These include improved 

ventilation systems, the use of antimicrobial surfaces, improved hand hygiene, and private 

hospital rooms along with private bathrooms. We paid a specific attention to the last element, 

private hospital rooms. In addition to expected improvement in patient safety, hospitals 

generally have a surplus number of beds (McDermott, Elixhauser, & Sun, 2017) and a declining 

patient census (American Hospital Association, 2019) in recent years. This can be another 

reason for hospitals to convert legacy bay rooms to private rooms (H. Chaudhury, Mahmood, & 

Valente, 2016). In practice, however, it is difficult to assess the incremental benefit of private 

room conversion relative to their cost, which stands as a critical barrier to important 

investments in the built environment as a major tool for infection control. Moreover, patient 

room design cannot be easily modified but must be planned, budgeted, and built into facilities 

many years before they are ever used, which cause methodological challenges in research. In 

this respect, our emphasis in this chapter will be on private hospital rooms and their potential 

“protective effects,” including a consideration of selected unmeasured design features, such as 
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the age of the physical facility and renovation. Unfortunately, only a few studies have examined 

or investigated the return on investment (ROI) from improving the built environment 

(Sadatsafavi et al., 2016; Sadler et al., 2011; Shepley, Smith, Sadler, & White, 2014), and none 

have been performed for a new construction or at a large-sized renovation level. Therefore, the 

primary purpose of Chapter V is to investigate both the costs and benefits of a hospital 

renovation project to transform existing bay rooms into private rooms.  

In Chapters 3 and 4 we demonstrated that nosocomial staph infections can be 

prevented at both the hospital and patient level, through two distinct effects of private rooms, 

including the protective effect of being assigned to a private room (the marginal effect), and the 

effect of selecting a hospital with mostly private rooms regardless of subsequent room 

assignment. The results reported in Chapters 3 and 4 reinforce growing evidence that PPR is 

one of the key elements in designing safer hospitals and healthcare facilities. We also estimated 

the attributable costs (along with other health outcomes) of nosocomial staph infections 

(Chapter IV). In the present chapter, we examine the financial costs and benefits of choosing an 

all-private room design. In terms of costs, we will consider both the capital investment 

(construction) costs, as well as the ongoing, variable costs, such as increased nurse staffing. The 

financial benefits will be realized primarily from preventing costly HAIs, such as CLABSI, MRSA, 

and MSSA.  

Projected savings were primarily derived from expected HAI reductions. We used the 

statistical models developed in Chapter IV and our previous research on CLABSI to estimate ROI 

from such renovation projects.  
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Empirical staffing model. 

 We assume that hospitals with an all-private room design would require more nurses 

per bed than a comparable hospital with mostly bay rooms. Hospitals’ possible concern is that, 

if more nurses are required after renovation to private rooms, the increased operational costs 

from additional nurse staffing may cause some hospitals to opt out an all-private room design. 

Note that renovation (to all-private room design) does not systematically change nurse-to-

patient ratio51. Therefore, federal and state-regulations that mandate minimum nurse staffing 

levels do not enforce hospitals with an all-private room design to hire more nurses. Our 

hypothesis is that hospitals with mostly private rooms may require additional nurses per bed 

due to increased walking distances and workloads, as has been reported in the literature 

(Mooney, 2008; A. Moore, 2009; Young & Yarandipour, 2007). Patient rooms in an all-private 

room facility are typically designed to be so spacious that they resemble a hotel room (Figure 

10) and typically include a fold out couch for family members. Thus, all-private room design 

makes patient care more challenging for nurses due to increased distances between rooms 

(Hendrich & Chow, 2008; Maben et al., 2016). This applies to both patients requesting help and 

nurses needing assistance from another staff member, particularly when timing should be 

taken into consideration (Flowers, 2008). It is generally agreed in the literature that nursing 

workloads are expected to be higher in private rooms than in bay rooms (Flowers, 2008; 

                                                      

51 There can possibly come more incoming patients in better designed hospitals (e.g., better marketing potentials), 
which is not incorporated in this logic development due to unclear and indirect relationships. 
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Lawson, Phiri, & Wells-Thorpe, 2003; Maben et al., 2016). By contrast, a bay room may enable 

economies of scale that allow hospitals to employ fewer nurses. 

An analysis of hospital workspace design must also consider the relationships between 

patient care, room design, and the nursing station, which have long been the core of nursing 

care activities in hospitals. The nursing station is a primary work area assigned to a specific unit 

and typically includes unit reception along the records storage and charting work areas 

(Gurascio-Howard & Malloch, 2007). The following elements are considered as critical issues in 

the nursing station and nurse labor efficiency: walking distances, accessibility, visibility, and 

supervision difficulty (Hamilton, 1993). More recently, and with the aid of information 

technologies, enterprising designers have downsized the traditional, centralized nurse stations 

(formerly the heart of a hospital unit; see left picture of Figure 11) and replaced it with smaller 

alcoves and workstations situated closer to patient rooms (Figure 11; right picture). This design, 

commonly known as decentralized nursing station, is considered better in several key criteria if 

stations are strategically situated: improved nurses’ visibility, increased patient care time, 

reduced nurses’ administration task, and lowered environmental noise level (Fay, Cai, & Real, 

2019). Note that just as hospital design trends have shifted toward using an all-private room 

design, there has been a similar shift toward decentralizing nursing stations. Therefore, the 

hospitals built within the last decade are likely to have both private rooms and decentralized 

nursing stations. Studies in the literature have shown that decentralized nursing stations 

generally increase walking distance (Fay, Carll-White, Schadler, Isaacs, & Real, 2017; Gurascio-
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Howard & Malloch, 2007; Pati, Harvey Jr, Redden, Summers, & Pati, 2015), which leads 

hospitals to hire more nurses and presumably offsets ROI (Gurascio-Howard & Malloch, 2007).   

 Despite the obvious, more subtle cost burdens from higher capital costs, increased 

nurse staffing, and other factors, private rooms (and all-private room design by extension) may 

provide benefits to nurses as well as to patients that are unrelated to improved infection 

control. Traditional bay rooms are often regarded as performance obstacles by nurses – 

insufficient workspace for completing paperwork (Gurses & Carayon, 2007), charting, and 

operating medical equipment (Varni et al., 2004). Nurses also see the benefit of an all-private 

room design in that unnecessary internal transfers can be reduced  (Rashid, 2007). However, 

there are potentially negative perceptions toward private rooms as well – such as stress, 

isolated work environment, and decreased teamwork (A. Moore, 2009). Considered together, 

staffing issues in all-private room design might be complicated by various factors, which turned 

a design decision into a multi-dimensional problem that needs scientific and data-driven 

approaches. 

 Ideally, a fully specified causal model explaining both positive and negative aspects of 

nurse staffing would be the most useful for our cost-benefit analysis. Yet it is nearly impossible 

to find such a model in the extant, peer-reviewed literature. Perhaps the best available 

approach to counter these constraints would be to develop a prediction model that controls 

the hospital-to-hospital variation of staffing levels (quantities) and provides a fair comparative 

analysis among heterogenous hospitals. In other words, we aim to provide a statistical model 

predicting an appropriate staffing level (i.e., used in our cost-benefit analysis to assess labor 
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costs) given publicly-available information – drawn from the Texas inpatient database (IP PUDF) 

and the AHA hospital survey. 

Figure 10: Typical bay room (left) and private room (right) 

    

Figure 11: Centralized (left) and decentralized (right) nursing station(s) 

    

Methods 

Data sources. 

The Texas Inpatient Public Use Data File (IP PUDF) for the FY52 2016  (Texas Department 

of State Health Services, 2017) serves as our primary data source to obtain patient 

                                                      

52 Fiscal Year 
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demographics and diagnoses. Hospital parameters such as nurses and licensed beds were 

accessed via the American Hospital Association (AHA) annual survey (AHA, n.d.). 

Target infections. 

 For this analysis, we focused on three conditions – two staph infections, methicillin-

resistant Staphylococcus Aureus (MRSA) and methicillin-sensitive Staphylococcus Aureus 

(MSSA), and central-line associated bloodstream infection (CLABSI). These were prioritized 

(compared to other HAIs) because of their seriousness (high incidence and greater 

medical/economic impact) in Texas hospitals (CDC, 2016). We only considered a nosocomial 

onset (hospital-acquired), as the focus of this thesis is prevention of HAIs and its relationship 

with the built environment.  

Underlying models. 

 To assess acquisition risks of nosocomial MRSA and MSSA in private and bay rooms, we 

used our patient-level infection incidence logit model described in Chapter IV. The outcome of 

interest was the risk of developing HA53-MRSA and HA-MSSA, and inputs are individual (patient-

level) private room assignments, hospital-wide private room percentages, and other relevant 

covariates. Attributable costs of HA-MRSA and HA-MSSA were drawn from our cost model (also 

described in Chapter IV), based on the controlled analyses where patient characteristics were 

matched across different Staph cohorts. 

                                                      

53 Hospital-Acquired 
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 We used our two previously described models to evaluate HA-CLABSIs (O’Neill et al., 

2018). These assess acquisition risk, with the first based on patient room assignments and the 

other based on hospital’s private room percentages. Attributable costs per each HA-CLABSI 

case were drawn from a systematic review in the literature (Scott, 2009). 

 As noted, a well specified analysis must include information about how many additional 

staff members (nurses) are required in all-private room design relative to alternatives. 

However, to our knowledge, there is no peer-reviewed model suited for our needs and data. 

Thus, we developed a cross-sectional regression model to assess staffing quantity based on 

hospital characteristics54, including private room percentages, licensed beds, average physical 

space (per bed), percentages of the uninsured and Medicaid-insured patients, teaching facility, 

and hospital ownership.   

Simulation structure. 

Consistency. Our simulation structure is consistent with similar cost-benefit analyses in 

the literature (Sadatsafavi et al., 2016; Shepley et al., 2014) in terms of the choice of input and 

outcome measures, and analysis timeline, with major exceptions of our analysis utilizing 

representative data and focusing on nosocomial Staph and central line infections. 

Hospitals. It is desirable to provide a comparison of settings where the potential savings 

from the prevention of HAIs are likely to differ significantly. Because our dataset includes more 

                                                      

54 Input variables were chosen based on (1) high correlation (r>0.7) with full-time equivalent (FTE) nurses and (2) 
low correlations (r<0.4) among input variables to reduce collinearity.  
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than 300 hospitals, we selected two representative hospitals to illustrate how the financial 

benefits of the all-private room design may depend on multiple hospital-level characteristics 

such as organizational parameters (number of licensed beds, nurse staffing, private rooms as 

percentage, hospital ownership, etc.); patient demographics (race and ethnicity, age, 

comorbidities, etc.); and hospital location (located in rural areas vs. urban areas). To that end 

we evaluated two facilities: John Peter Smith Hospital in Fort Worth, Texas (also known as JPS 

Hospital; henceforth referred to as “Hospital A” in this study) and Hill Regional Hospital in 

Hillsboro, Texas (“Hospital B”). Hospital A is characterized by a lower percentage of private 

rooms (38%), and is a public, safety-net, large (537 licensed beds) teaching facility where more 

nosocomial infections are occurring. Hospital B is largely the opposite – for-profit, rural, and 

smaller (58 licensed beds) hospitals with higher percentage of private rooms (59%). Nosocomial 

infection incidence is much lower in Hospital B. While more vulnerable populations (more 

African American and Hispanic patients and those with lower social and economic status) go to 

Hospital A, patients in Hospital B show a higher Elixhauser comorbidity score (3.3 vs 2.0; 

p<0.001).  

Input variables. We considered input variables largely from four aspects: construction, 

staffing, non-HAI revenue increase, and cost-savings from HAI reduction. The first two 

constitute the cost of this simulation while the last two define the benefit. Construction costs 

were estimated assuming no change in the number of beds in a hospital. Instead, we assumed 

that new private rooms will be constructed to replace existing beds in bay rooms. Admittedly, 

private rooms need more space per bed than bay rooms. The invariant area ratio between 
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private and bay rooms in hospitals was assumed55 and calculated as 0.598 based on the 

Functional and Space Program report (Tarrant County Texas, 2014). We also used the average 

hospital facility construction cost rate per unit area ($429 per square feet in 2018 US dollar) 

(Sadler et al., 2011). Total construction cost required of an all-private room renovation was 

derived as a closed-form function of known quantities in our data sources, including total 

physical area, licensed beds, percentage of private rooms, and area ratio between private and 

bay rooms (Appendix II); we estimated a 10% standard error for construction costs. We also 

used the Functional and Space Program report to project potential revenue changes based on 

four scenarios representing broad combinations of payor mix changes and process 

improvements over time that cannot be attributed to reductions in nosocomial infections56. To 

extrapolate this estimation to other hospitals, we converted the results into a function  of 

construction costs (ratio of increased revenue to construction cost), which ranged from 72.8% 

to 118.2% and incorporated these into our simulation using a four-state discrete probability 

distribution with equal chances (25%) for each outcome. 

 Potential change in nurse labor costs, such as ongoing variable costs, was estimated as a 

function of an additional full-time equivalent (FTE) nurses that all-private room design could 

require (as predicted by our multivariate model) and the median nurse annual salary in Texas in 

                                                      

55 We admit that this is a strong assumption, mainly because of data limitation. See Limitations of this Chapter.  
56 Therefore, any benefits from this forecast are independently and additively included in our cost-benefit 
analyses.  
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2018 ($60,655 per year; the middle point between licensed practice nurses and registered 

nurses). 

Finally, offsetting cost savings from reduction of nosocomial infections were considered. 

Cost savings were assessed by estimates for prevented infections multiplied by infection-

attributable costs. Prevented infections were calculated by the difference between expected 

infections in current status (current mix between private and bay rooms) and those in all-

private room design. Infection risks and costs were drawn from the statistical models as already 

discussed. Detailed justifications and operational steps of probability fitting for the above 

variables are explained in Appendix I. 

Figure 12: Floor plans of typical private (left) and bay (right) rooms 

  

  



 

  

120 

 

Outcome measures. We used standard methods to calculate the net present-value 

benefits (NPV) (Quah & Haldane, 2007; Sassone & Schaffer, 1978) for outcomes that accrue 

over time using 2.75% federal discount rate reported by the Federal Reserve for December 

2018 (The Federal Reserve System, 2019). We followed well-established NPV calculations in the 

literature. 

We acknowledge at least two major weaknesses of NPV measure in the context of this 

analysis. On one hand, the result may change as discount rates change. For example, the 

federal discount rate has become 3.0% since January 2019 – although we adhered to the 

original discount rate because it did not significantly change simulation results in this case. On 

the other hand, particularly for the purpose of comparative analysis, NPV is highly subjective to 

project scales (Ross, 1995). If the same project plan is doubled in both costs and benefits, NPV 

would also be doubled (i.e., NPV = PV57benefits - PVcosts). Thus, any conclusions based on NPV may 

introduce unfairness when there are inherent volume differences. This concern applies to our 

Hospitals A and B. 

To address these two issues, we used internal rate of return (IRR) as the primary 

outcome measure.58 IRR is defined as a discount rate to make NPV of cash flows of the project 

to be zero. The same formula with NPV is used to calculate IRR – usually with iterative 

numerical computations. Using IRR can address the two main problems of NPV that were 

                                                      

57 Meaning the present value of the sum of variables 
58 NPV is still calculated and reported as complementary measure. 
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previously discussed. In addition, IRR is also considered as a standardized method in cost 

benefit analysis in every field (Quah & Haldane, 2007). 

We calculated two additional outcomes of interest, the probability of non-negative NPV 

and the probability of cost effectiveness. The latter is defined as probability at which IRR 

exceeds the hurdle rate of cost effectiveness (5.9%)  drawn from the weighted average cost of 

capital for hospitals and healthcare facility sector (The New York University Stern School of 

Business, 2019). 

Simulation method. We used the Monte Carlo method for our simulations. The Monte 

Carlo method (also known as the Monte Carlo experiment) is a computational algorithm 

producing repeated random generations to obtain numerical results, assuming that 

deterministic (in principle) problems are solvable using randomness (Kroese, Brereton, Taimre, 

& Botev, 2014). Cost-benefit is largely deterministic in principle – meaning that we can know 

the exact result when all relevant information is known with certainty and without bias. 

However, costs, revenues, and cost-saving effects from reduced HAIs are not available to 

measure to the extent that the solution is truly deterministic. In other words, all components 

needed to evaluate cost-benefit relationships are inherently random, and the Monte Caro 

approach can be suitable. 



 

  

122 

 

Our simulation generated random numbers for input variables over 5,000 repetitions59, 

giving broad distribution of probable results rather than one or a few point estimates. The 

simulation assumed a five-year analysis timeline and inter-year independence among 

probabilities (i.e., Year 2 input variables are independent of Year 1 input variables). The 

resulting probability distribution for the simulation inputs and fitted optimal parameters are 

presented in the Results’ section headed “Descriptions of Hospitals and Baseline Estimates”. 

Figure 13: Simulation structure 

 

  

                                                      

59 The number of iterations in our simulation was determined to have the precision of order 0.5%; 1.110% for 
N=1,000, 0.495% for N=5,000, and 0.350% for N=10,000 
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Sensitivity analysis. We evaluated our model’s robustness to variation in key 

assumptions using one-way sensitivity analyses. This analysis considered variation in assumed 

construction costs, non-HAI benefits (i.e., expected revenue increases due to process 

improvements and payor mix changes), labor costs, and cost-saving amounts due to HAI 

reduction. IRRs estimated using a range of +/- 10% change to baseline assumptions (e.g., 10% 

increased construction cost as pessimistic assumption) as well as maximum tolerance 

borderline (i.e., the most pessimistic assumption that still ensure cost-effectiveness). In 

addition, elasticity and shadow prices were calculated and reported as comprehensive 

sensitivity measures. Input elasticity shows how IRR variable responds to a change in unit 

assumption changes (Bronfenbrenner, 1961). Shadow price is conceptually as well as 

operationally very similar, only differing in responses presented in absolute terms (%p 

difference) as opposed to relative terms (%) (Sassone & Schaffer, 1978). For example, if IRR 

changes by 2% (from 3% to 5%) in response to 1% assumption change, shadow price is 2%p 

(absolute change in IRR) and elasticity is 1.5 (i.e., relative change: 2%/3%=1.5). 

Software. We used Stata version 13.0 to complete all regression analyses (StataCorp, 

2013). Probability fitting and Monte-Carlo simulations were obtained via Microsoft Excel (2016) 

and Real Statistics Resource Pack software (Release 5.4) (Zaiontz, 2018). 

Results 

Descriptions of hospital and baseline estimates. 

Table 22 illustrates descriptive statistics for Hospitals A and B. As we intended, these 

two hospitals differ from each other in various aspects. Hospital A is publicly owned and located 
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in an urban area; relative to Hospital B it has more beds (537 vs 58 beds), a lower proportion of 

private rooms (38% vs 59%), a higher occupancy rate (71% vs 12%), higher nursing loads (nurse-

to-patient ratio=0.7 vs 0.8), and higher nosocomial infection rates in all the three HAIs 

examined in this analysis. In addition, Hospital A sees more publicly insured patients and the 

uninsured as well as non-white patients, which are often associated with more vulnerable 

population. From these differences, the suitability60 of all-private room design (renovation) is 

expected to be much higher for Hospital A than for Hospital B. 

 Based on the underlying model predictions with actual patient data from Hospitals A 

and B, we identified the optimal probability distributions and appropriate parameters fitted by 

those predictions (Table 23; also see Appendix I).  

 Required additional nurses in all-private room design were predicted by our multivariate 

staffing model presented in Table 24. Note that this staffing model was initially estimated with 

all Texas hospitals (n=201), not restricted within Hospitals A and B.  After the model was 

developed, additional nurses needed were predicted from the model with corresponding 

hospital characteristics. We found that, after adjusting potential confounders, every 1% 

increase in private rooms required an average 0.4% more nurses (p=0.004). Other strong and 

significant predictors include licensed beds, average physical space, and portion of major 

therapeutic procedures (e.g., surgery) among whole procedures in hospitals. It is worth 

                                                      

60 Suitability in this context should be interpreted as positive cost-saving effects. 
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mentioning that our staffing model could explain 79.6% of conditional variance among Texas 

hospitals. 

Table 22: Comparison of characteristics between Hospitals A and B 

Variable Hospital A Hospital B 
Ownership style Public For-profit 
Teaching facility Teaching hospital Non-teaching hospital 
Location Urban Rural 
Licensed beds 537 58 
Admitting inpatients 28,621 1,248 
% Private rooms 37.8% 59.0% 
Occupancy rate 71.1% 11.8% 
Nurse FTE 1379 60 
Nurse-to-patient ratio 0.7 0.8 
Average physical space per bed (sqft) 2,812 1,862 
% African American patients 24.7% 10.4% 
% Hispanic patients 36.3% 15.8% 
% Medicaid-insured and uninsured 71.4% 40.3% 
Acquisition risk of HAIs: bay-room (per 100,000)   

 MSSA 0.072% 0.0008% 

 MRSA 0.058% 0.0023% 

 CLABSI 0.590% 0.560% 
Acquisition of risk of HAIs: private room (per 100,000)   

 MSSA 0.056% 0.0006% 

 MRSA 0.047% 0.0018% 

 CLABSI 0.460% 0.442% 
Expected suitability of All-private room renovation High Low 
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Table 23: Baselines of parameters and their assigned probability distributions for Hospitals A and B 

Simulation parameter 
Hospital A Hospital B 

Baseline Probability distribution Baseline Probability distribution 
Annual patients 28,621 Normal (28,621 + 2018T, 354.7) 1,248 Normal (1248, 150.0) 
MSSA acquisition risk     

  Status quo     

   PPR assigned 0.056% Gamma (3.90, 0.00014) 0.001% Gamma (1.92276, 0.000003) 
   PPR not assigned 0.072% Gamma (5.21, 0.00014) 0.001% Gamma (1.92277, 0.000004) 
  All-PPR     

   PPR assigned 0.046% Gamma (5.16, 0.00009) 0.000% Gamma (1.92276, 0.000003) 
MRSA acquisition risk     

  Status quo     

   PPR assigned 0.047% Gamma (5.41, 0.00009) 0.002% Gamma (1.71466, 0.000010) 
   PPR not assigned 0.058% Gamma (5.44, 0.00011) 0.002% Gamma (1.71468, 0.000013) 
  All-PPR     

   PPR assigned 0.029% Gamma (5.37, 0.00005) 0.001% Gamma (1.71462, 0.000006) 
CLABSI acquisition risk     

  Status quo     

   PPR assigned 0.46% Gamma (119.44, 0.00004) 0.44% Gamma (6.39, 0.00069) 
   PPR not assigned 0.59% Gamma (122.48, 0.00005) 0.56% Gamma (6.60, 0.00084) 
  All-PPR     

   PPR assigned 0.25% Gamma (53.12, 0.00005) 0.25% Gamma (3.65, 0.00070) 
Costs of each incident of HA-CLABSI ($ k) 15.65 Lognormal (9.659, 0.354) ← 
Costs of each incident of HA-MSSA ($ k) 27.11 Lognormal (10.2, 0.09) ← 
Costs of each incident of HA-MRSA ($ k) 33.14 Lognormal (10.4, 0.10) ← 
Additional construction costs of turning bay rooms to PPRs ($ mil) 22.19 Lognormal (16.9, 0.10) 1.01 Lognormal (13.8, 0.10) 
Additional annual labor costs ($ mil) 1.19 Lognormal (14.0, 0.08) 0.18 Lognormal (12.1, 0.08) 
Revenue increases (% of add. Construction cost) 95.5% 4-state discrete ← 
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Figure 14: John Peter Smith Hospital in Fort Worth, TX (left; “Hospital A”) and Hill Regional 
Hospital in Hillsboro, TX (right; “Hospital B”) 

        

 

Table 24: Logit regression results for predicting nurse staffing 

Variable β p Lower Upper 
 Private rooms (%) 0.004 0.004 0.001 0.007 
 (log) Licensed beds 0.947 0.000 0.868 1.027 
 (log) Average physical space per bed in sqft 0.244 0.020 0.038 0.450 
 Uninsured and Medicaid patients in hospitals (%) -0.004 0.116 -0.009 0.001 
 Major therapeutic procedures in hospitals (%) 0.010 0.003 0.003 0.016 
 Teaching facility 0.118 0.280 -0.097 0.334 
 Hospital ownership (ref: for-profit hospitals)     

  Public hospitals 0.298 0.068 -0.022 0.619 
  Non-profit hospitals 0.178 0.123 -0.049 0.406 
 

Simulation results. 

 As represented in Table 25, our simulations indicated that – despite variability in the 

estimates of costs and infection risks – the additional cost of private rooms, including both 

construction and labor costs, were largely offset by ongoing cost savings due to reductions in 

HAIs for suitable hospitals. In Hospital A (the “better” case for PPR/the built environment as a 

high value investment), five-year construction costs were projected to be 4.4 million US dollars 



 

  

128 

 

annually (95% CI =  3.8 to 5.1 million USD), with additional new expenses a predicted need to 

hire 19.6 more nurses every year at an additional ongoing costs of 1.2 million USD. Considering 

revenue forecasts based solely on improved efficiency and payor mix changes during a five-year 

window, new costs would exceed new revenue by 4.6 million USD. This is dramatically different 

when HAI prevention effects from private rooms are considered as offsetting benefits. 

Compared to the current patient room-mix (combination of bay and private rooms), an 

all private-room design is estimated to prevent 118 nosocomial infections annually (equivalent 

to 461 infections for a five-year window, discounted by time value) and save 12 in-hospital 

deaths attributable to those infections annually (equivalent to 56 time-counted deaths for a 

five-year window). Means of annual prevention of target infection are specified in the following 

breakdown: (1) HA-CLABSI prevented by 99 (±1.2; 95% CI for means61) cases; (2) HA-MRSA 

infections prevented by 9.4 (±0.4) cases; and (3) HA-MSSA prevented by 10 (±0.5) cases. Due to 

these, Hospital A could avoid 8.9, 1.3, and 1.4 in-hospital deaths respectively. 

Our simulation could show that such health benefits were translated into financial 

benefits (cost-saving effects), due to relative gains of attributable costs (i.e., additional costs of 

HAIs) not occurring after renovation. An all-private room design is predicted to not only cover 

new costs but to exceed these by an annual average 2.7 million USD (0.3, 0.4, and 2.0 million 

USD of respective cost savings from HA-MSSA, HA-MRSA, and HA-CLABSI reductions). All 

                                                      

61 Note that CIs reported in this paragraph are CI for mean, not CI for raw variable. The former is related to 
standard error (sample size-dependent) while the latter is linked to standard deviation (sample size-independent). 
On the contrary, Table 25 reports (non-parametric empirical) CIs for raw variable.  
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elements taken into consideration, the five-year net present-value benefit was 5.8 million US 

dollars, with IRR being approximately 11%. Note that this cost-saving effect from HAI reduction 

is ongoing (i.e., safety gain remaining persistently) unlike one-time or time-limited costs (i.e., 

after a five-year window, there will be no additional costs). In other words, expanding the time 

window (i.e., a hospital building life cycle is generally considered to be 20-40 years) can boost 

net benefits and investment returns. However, we adhere to reporting five-year results to 

provide readers more conservative estimations. 

 Hospital B (the “worse” case for PPR/built environment investments), on the other 

hand, would fare much less well with an all-private room design scenario. HAI reduction cost-

saving is estimated to total 0.21 million USD with nearly indiscernible prevention effects and 

even less – 0.1 million USD net benefit during the five-year time window. Even taking volume 

difference into account (i.e., Hospital B is 89% smaller than Hospital A in terms of beds), IRR 

was 5.5% which was still slightly lower than the industry average return of 5.9%. 

The empirical62 distribution of IRRs among 5,000 simulated trails are presented in Figure 

15. The results largely reiterate our findings. The curve for Hospital A looks less smooth than 

that of Hospital B, possibly due to spurious correlation among randomly generated variables in 

non-linear transformation (i.e., IRR calculations have no closed-form solutions) (J. Kim & Alger, 

                                                      

62 IRR distribution was plotted with the set of actually simulated point results. 
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2001; Phillips, 1986), as inflection points63 changed each set64 of different simulations. Hospital 

B was relatively less affected because infection-related random variables could not 

meaningfully impact IRR calculations. While the generated IRRs seemed to follow normal 

distribution65, our normality test indicated that they were not normally distributed (all p-values 

less than 0.007), even with testing under frequently used transformations. (including log, 

inverse, square, square root, etc.)  

  

                                                      

63 a point of a curve at which a change in the direction of curvature occurs (e.g., changing first-order derivatives 
around IRR=2.8% for Hospital A) 
64 One set of simulation equals 5,000 repetitions that are separately conducted. 
65 With means being 11.0% (Hospital A) and 5.5% (Hospital B), and standard deviations being 4.9% (Hospital A) and 
5.9% (Hospital B)  
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Table 25: Means and simultaneous confidence intervals of simulation results (n=5,000) 

Variable Hospital A Hospital B 

Annual benefits from HAI reductions ($ mil)    

  HA-MSSA 0.30 (0.03-0.72) 0.05 (0.05-0.06) 

  HA-MRSA 0.36 (0.03-0.76) 0.07 (0.06-0.08) 

  HA-CLABSI 2.00 (0.93-3.54) 0.09 (0.01-0.20) 

  3 HAIs combined 2.65 (1.00-5.03) 0.21 (0.12-0.34) 

Prevented HAIs (annual; # events)     

  HA-MSSA 10 (1-25) 0 (0-0) 

  HA-MRSA 9 (1-21) 0 (0-0) 

  HA-CLABSI 99 (68-131) 3 (0-7) 

Avoided deaths (annual; # events)    

  HA-MSSA 1 (0-3) 0 (0-0) 

  HA-MRSA 1 (0-3) 0 (0-0) 

  HA-CLABSI 9 (6-12) 0 (0-1) 

  3 HAIs combined 12 (6-18) 0 (0-1) 

Increased revenues (annual; $ mil) 4.60 (3.22-6.15) 0.21 (0.14-0.28) 

Annual projection of construction costs ($ mil) 4.44 (3.82-5.12) 0.20 (0.17-0.24) 

Annual staffing expenses ($ mil) 1.19 (1.04-1.35) 0.18 (0.16-0.21) 

  Nurse increases in FTEs (annual) 19.6 (17.2-22.2) 3.0 (2.7-3.4) 

Annual net benefit (time-unadjusted; $ mil) 1.62 (-0.65-4.71) 0.03 (-0.07-0.18) 

Net present-value benefit (all year; $ mil) 5.73 (-0.94-12.03) 0.08 (-0.26-0.45) 

Internal Rate of Return (%) 10.95 (1.28-19.69) 5.45 (-6.18-16.20) 

Nonnegative NPV likelihood (all year; %) 90.3 63.8 

Cost-saving likelihood (all year; %) 78.3 46.0 
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Figure 15: Distribution of internal rates of return (n=5,000) 

   

Sensitivity analysis. 

 Table 26 illustrates our results of sensitivity analyses examining the potential impact of 

different assumptions on IRRs. The results are presented as relative changes as well as the 

borderline value (threshold) of the parameter that would place the investment at the border of 

risk neutrality66, where hurdle rate was defined as 5.9% for hospital and healthcare facility 

sectors (The New York University Stern School of Business, 2019). We found that the simulation 

results were most sensitive to assumptions regarding construction costs for both hospitals. If 

construction costs turn out 10% higher than we assumed, Hospital A’s mean IRR would drop 

                                                      

66 Readers can regard these values as conceptual break-even points to ensure positive market risk-adjusted returns 
(benefits starting to exceed the sum of actual and opportunity costs).  
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down to 7.4%, although that degraded result remain cost-effective. Not until construction costs 

exceed 115% of that assumed would we predict an IRR that is not cost effective for Hospital A. 

At the same time, the initially cost-ineffective case of Hospital B would turn into a worthy 

investment where construction costs could be lowered by 1.2% or more. Calculating elasticity 

and shadow price further revealed that all four parameters of the sensitivity test were more 

sensitive in Hospital B than in Hospital A. This is also supported by empirical distributions of 

IRRs (Figure 15), as Hospital B’s IRRs are more dispersed and have fatter “tails”. Thus, small 

changes of parameters are more likely to affect IRR. Our results also suggest that, although 

assumptions on HAIs can impact IRR to some extent, they’re inelastic enough to be supported 

by HAI models developed in the previous chapter (i.e., lower threshold of confidence interval of 

infection risks or costs would not flip cost-effectiveness of all-private room renovation). 

Table 26: Sensitivity analysis results 

Hospital Testing parameter 

IRR when  
10% more 
optimistic 

(IRR %) 

IRR when  
10% more 
pessimistic 

(IRR %) 

Input 
Elasticity 

of IRR 

Shadow 
price  

in IRR% 

Cost-saving 
borderline 
(Relative to 

original input) 

A 

Construction costs 15.1% 7.4% 3.55 0.4% 14.65% 

Non-HAI benefits 13.8% 8.0% 2.67 0.3% -16.80% 
Staffing expenses 11.7% 10.2% 0.69 0.1% 65.00% 

HAI-cost reductions 12.6% 9.3% 1.52 0.2% -29.25% 

B 

Construction costs 9.3% 2.1% 6.62 0.4% -1.21% 

Non-HAI benefits 8.5% 2.3% 5.76 0.3% 1.40% 

Staffing expenses 8.2% 2.6% 5.10 0.3% -1.60% 

HAI-cost reductions 8.6% 2.2% 5.92 0.3% 1.36% 
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Discussion 

Good and bad cases.  

At their best, all-private room hospital design not only work effectively but are likely to 

drive sufficiently large reductions in nosocomial infections to offset to newly required 

construction and operating costs and provide substantial net increased revenue. In the best 

case scenario the financial feasibility of private-room conversion was substantial, and likely to 

exceed the current average 5.9% return on investment in the US sector of healthcare facilities 

and hospitals (The New York University Stern School of Business, 2019). Our Monte-Carlo cost-

benefit analysis indicated 78% of chance that the investment return rate would exceed 5.9%, 

with a less than 10% chance for NPV to fall below zero. In this circumstance, even without the 

addition to health benefit such as saved lives, all-private room design is a justifiable option even 

from a purely financial perspective.  

 On the other hand, our work shows that all-private room design may be cost-ineffective 

for hospitals likely to see lower gains in associated benefits. There are many reasons for this, 

including lower staffing efficiency (like many small-volume hospitals), patients with inherently 

lower risk of developing staph infections or CLABSIs, non-teaching facility, or an already decent 

environment. Hospital B was intentionally chosen to have such characteristics to quantitatively 

demonstrate our idea, and as we expected, anticipated return for Hospital B underperformed 

the industry average. More importantly our analyses predict a 36% of chance for major losses – 

negative NPV – with an all-private room renovation in a “Hospital B” setting. 
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 Our work adds important nuance to consideration of how and where investment in 

PPR/the built environment may be warranted. Previous cost-benefit analyses and relevant 

studies extrapolated one-hospital predictions to the entire spectrum of hospitals, an approach 

that cannot discriminate different level of risks across various hospitals. Even conducted with 

representative data and models, the best result expected from such an approach is the middle 

point between those like Hospital A and Hospital B, which has clear limitations in practical 

applications. 

Why simulation matters. 

 With simple calculations (i.e., no probability distribution and numerical simulation 

unemployed) with point estimates from underlying models, respective returns on investment 

(ROIs) for Hospitals A and B could be obtained as 12.2% and 5.2%. We found the differences of 

+1.2% and -0.25% for Hospitals A and B between the expected returns calculated with the 

deterministic approach and those calculated with the probabilistic approach. From a decision-

theoretical perspective, the expected value of outcome estimates from probabilistic analysis 

such as the Monte-Carlo simulation, rather than the deterministic point estimates, is the 

relevant figure of merit (Stinnett & Mullahy, 1998). Another advantage of the simulation 

approach is that once random samples from the probability distribution of IRR are generated, 

additional questions about the economic value or the financial risk of the investment can be 

answered, due to the ability of having “intervals” to analyze the higher-order moments such as 

variance, kurtosis, and skewness. 
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 For example, Hospitals A and B differ in the likelihood of renovation success. Hospital A 

was 90.3% likely to have positive net present value in the five-year projection window while 

Hospital B failed to do so with only 63.8% probability. Regarding cost-effectiveness of the whole 

investment, an interesting contrast can be drawn by comparing ROI distributions. Where 

industry average ROI is approximately 5.9% which is regarded as a hurdle rate (lower boundary) 

of cost-effective investments., our results indicate respective cost-effective probabilities of 

Hospitals A and B were 78.3% and 46%. 

Sensitivity and face validity. 

 Admittedly, simulation results are subjective and often sensitive to how underlying 

parameters are assumed. While we believe that this study utilized the best estimates available 

from the publicly available data, it is possible that data limitations challenge the integrity of our 

models. For example, our inputs regarding construction costs might be less robust than 

infection risks and treatment costs which were identified from the actual patient data. 

Compared to the latter, the former is closer to an educated guess, which may introduce higher 

variation in the reality. In this respect, we made significant effort to assure realistic assumptions 

for multiple ways.  First, our sensitivity analysis indicated that among the factors investigated, 

the financial plausibility of private rooms was mostly sensitive to construction costs (Table 26), 

which was in line with our intuitive concern described above. If construction costs change by 
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+1%, ROIs would respond by 3.6% relatively and +0.4%p absolutely.67 With 10% more 

pessimistic assumption in construction costs (i.e., 1.1 times the originally assumed costs), ROI of 

Hospital A would go down to 7.4% as opposed to the original 11.0%. Hospital B with the same 

assumption would have 2.1% ROI. Note that Hospital A remains cost-effective (ROI>5.9%). Our 

results show that, while the degree of ROI changes according to assumption, the key conclusion 

of cost-effectiveness (cost-saving or not) would not change until 14.7% more pessimistic 

assumption in the most sensitive input parameter (construction costs). This implies that our 

models are robust over a relatively wide range of key assumptions. We also had the 

opportunity to validate our assumptions against reality –in 2018, Tarrant County voters 

supported a 800 million US dollar bond for JPS Hospital (“Hospital A”), with a pass rate higher 

than 82% (Ranker, 2018). The raised funds will be used to add a new patient tower as well as to 

renovate the existing facility with a modern design. This directly shows a sufficiently high 

perceived need for better design in built-in environments of healthcare facilities that taxpayers 

and government are willing to pay the costs. Therefore, an all-private room renovation project 

is not an abstraction or a thought experiment, but a real and current consideration for 

healthcare systems in Texas and likely beyond. Both the face validity and relevance of our work 

is also reinforced by our communication with experts from various fields, including a public 

                                                      

67 Readers should be aware of the difference in absolute and relative changes in IRR. IRR is inherently defined as 
time-discount rates, and usually presented as percentages. In the context of sensitivity analysis, we have different 
“percentages” showing the ratio between original and changed values. We adhere to using the term “percent (%)” 
to report relative changes and “percent point (%p)” to present absolute changes. For example, if the original IRR is 
20% and the changed IRR is 22%, the absolute change would be +2%p (i.e., the difference between 22% and 20%) 
while the relative change would be +10% (i.e., 2% is one tenth of the original IRR of 10%). 
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safe-net hospital in Fort Worth, Texas, and a healthcare-facility construction firm in Dallas, 

Texas and our careful review and use of two published official documents: the Tarrant County 

functional and space program (Tarrant County Texas, 2014) and the Texas hospital utilization 

and financial trends (Texas Department of State Health Services, 2018). 

Contrast to previous findings. 

Our model represents an advance over previous studies in the literature. It can predict 

the benefits of the all-private room design, based on the characteristics of an individual 

hospital. By contrast, previous cost-benefit analyses extrapolated the results of a single hospital 

to the entire spectrum of hospitals. At the same time, recent peer-reviewed reports of a cost-

benefit simulation with similarities to ours noted much higher ROIs (IRR=56%, 95% CI=25%-

87%) (Sadatsafavi et al., 2016). We believe this is more a function of basic differences in the 

project’s outcome measures, including a different set of HAI of interest, and that our work 

includes some important improvements relative to Sadatsafavi’s.  

First, although their work was published recently, the underlying model was drawn from 

an old analysis (Bracco et al., 2007) of pre-2005 data. This has potential to inflate estimates of 

nosocomial infection acquisition risks relative to more recent epidemiology, and in turn 

inflating the value of interventions that drive risk reductions. For example, HA-MRSA acquisition 

risk was assumed 0.4% in Sadatsafavi’s, which is not only 5 times higher than our data, but also 

far from present HAI statistics (Office of Disease Prevention and Health Promotion, n.d.) 

National snapshots point out that nosocomial infection risks have been decreasing over the 

years, potentially due to better practices and interventions. Between 2008 and 2014, CLABSIs 
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and MRSA infections were reduced by 50% and 36% respectively. Using the most recent data 

possible is the best way to prevent overestimations of a cost-saving effect. While one may raise 

the same question toward our study (i.e., 2016 data may also be outdated for use post-2019), 

the statistics show that nosocomial infection incidences became relatively stable after 2011, 

and lead us to believe our estimates are a more realistic and accurate reflection of current 

conditions. Second, the analysis structure may be less suitable than ours for large-scale 

renovations and new facility constructions in the US in several aspects: (1) study samples were 

from the Canadian population, which may differ from US patients in important ways including 

demographics, comorbidities, and healthcare accesses (Allen, 2006); (2) only eight ICU beds 

were considered in the simulation, which can introduce a significant bias in extrapolating to a 

larger scale (i.e., our Hospital A has more than 500 beds) or less sick population (i.e., ICU 

patients versus general inpatients); and (3) staffing elements were not considered in the 

benchmark potentially due to its small-scale nature despite consensus that staffing is one of the 

core considerations in evidenced-based architectural design for hospitals (Aiken et al., 2012; 

Gibson, 2007; Seelye, 1982; Weinstein, Stone, Pogorzelska, Kunches, & Hirschhorn, 2008). 

Limitations. 

 As with any such work ours has limitations such as its cross-sectional study design and 

the complexities of private room identifications in administrative data discussed elsewhere in 

this work. Two additional potential limitations warrant additional consideration.  First, it must 

be noted that CLABSI costs were derived from different data and may be inconsistently 

comparable to MRSA and other HAI costs. Still, underlying statistical models and probability 



 

  

140 

 

distribution fittings of incidence probabilities (Staph infections and CLABSIs; conditioned by 

private and bay rooms respectively) were based on the Texas IP PUDF. The same database was 

also used to estimate attributable per case costs of staph infections. Thus, those statistical 

inferences have high compatibility and link without serious methodological challenges. 

However, we used CLABSI-attributable cost estimates from a systematic review in the literature 

(Scott, 2009). This can introduce two challenges in the context of our simulation: (1) an 

underlying analysis is outdated (base studies conducted before 2003) (Hu, Veenstra, Lipsky, & 

Saint, 2004); and (2) generalizability of the results to Texas inpatient population remains 

questionable.  However, assuming good internal validity of the systematic review and 

underlying studies, as they were from either high-authority federal organization (CDC) or a well-

regarded peer-reviewed journal (Clinical Infectious Disease), it is more likely that cost estimates 

from more recent data become higher due to costlier technologies and treatments in general. 

Underestimation in infection costs reduces benefits of our cost-benefit analysis because lower 

costs reduce cost-saving effects. Therefore, we believe that this does not change the key 

direction of our findings. Furthermore, flexibility of our simulation models will enable future 

studies to improve our findings by conducting CLABSI cost studies with the same database used 

in this thesis68.  

                                                      

68 We did not analyze CLABSI costs because we want to focus on MRSA and staph infections throughout this thesis. 
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 Second, some of our simulation variables, specifically non-infection related ones69, were 

assessed under strong assumptions. For example, construction costs for renovation were 

calculated as the product of average construction cost rate per area and additional area 

required to transform a bay room to a private room. This estimation process implicitly relies on 

homogeneous hospital room structure (i.e., area ratio between private and bay room does not 

change hospital to hospital). Actual design decisions for private rooms may involve numerous 

factors (F. Becker & Parsons, 2007; Chan, 2000; Ellison et al., 2014; Joseph & Rashid, 2007; 

Olsson & Hansen, 2010), which may cause larger variance in construction costs than we 

assumed (i.e., 10% of mean as a standard deviation). While the data available as of this thesis 

do not fully resolve such ambiguity, the problem is largely mitigated by our sensitivity analysis. 

Our results indicate that 15% higher construction costs would not change key judgements. 

Other variables were even more inelastic in relation to assumption changes. In this respect, our 

analyses remain conservative even with limited data. 

 Third, it is possible to question our homogeneous ROI hurdle regardless of business 

ownership style (e.g., nonprofit hospitals vs for-profit hospitals). The topic of proper ROI targets 

for nonprofit versus for-profit hospitals has been viewed from economic, accounting, and 

financial perspectives (Center for Health Care Stategies, 2007; Reinhardt, 2000; Wedig, Hassan, 

& Sloan, 1989). While we believe separate costs of capital could be more ideal, a consistent 

                                                      

69 In the context of this study, infection-related variables consist of infection acquisition risks for staph infections 
and CLABSIs, and infection-attributable costs. 
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approach to estimate for-profit and nonprofit hospitals is yet to be established (Conrad, 1984; 

Heutel & Zeckhauser, 2014; Reinhardt, 2000; Valvona & Sloan, 1988; Wedig et al., 1989). Note 

that our approach is to demonstrate how a cost-saving effect of HAI preventions could offset 

incremental costs of an all-private room renovation relative to status quo rather than to make 

an actual judgement call to invest. It is also worth mentioning that in our analysis, a for-profit 

hospital was outperformed by a nonprofit hospital. With additional consideration of accounting 

benefits such as tax exemption (Herring, Gaskin, Zare, & Anderson, 2018; Reinhardt, 2000), the 

gap would be likely widened – our analysis results would largely remain valid. Nonetheless, we 

recommend readers aware of heterogenous business nature across different hospitals. 

Implications. 

 Regardless of all such limitations, this thesis demonstrates a potentially high ROI in 

private rooms compared with open-bay rooms, which are still commonplace in many large 

legacy hospitals and healthcare facilities (e.g., public safety-net hospital). In addition, our study 

shows the feasibility of objective evaluation based on decision-theoretical principles, along with 

full characterization of uncertainty, in informing investment decisions. 

 Our findings notwithstanding, facility design and operations are adjuncts, no substitutes, 

for good hospital practices around controlling nosocomial infections. More thoughtful hospital 

design should support good hospital practices such as better care coordination, staff-to-staff as 

well as staff-to-patient communication, and cleaner and quieter hospitalization experience (i.e., 
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this is one of the metrics evaluated in HCAPHPS70 and associated with reimbursements). Our 

results provide new evidence for a more holistic approach to infection control, and just as 

importantly that this can be cost-effective as well. It is still worth noting that the choice of 

patient room type is not the only source of improvement in hospital performance, and other 

questions such as medical technology, staff training, and disinfection practices can be 

consistently integrated into our simulation model to evaluate costs and benefits once such data 

become available. 

 While there have been significant reductions of hospital-acquired infections in US 

hospitals, there is still considerable room for improvement – and hospital design is a recognized 

factor. Economic evaluation regarding financial implications plays a huge role in the approval 

process for decisions made by both hospital boards and policy makers. However, the decision-

making process is suboptimal in terms of lacking objectivity and transparency. Our analysis 

model demonstrates that objective evaluation is possible by making use of transparent data 

(e.g., publicly available large database). Hospital boards that are considering building a new 

hospital can use our models and simulation approach to evaluate the “business case” for the 

all-private room design. While construction costs are higher for the all-private room design, 

these costs can be offset by the ongoing savings, in both US dollars and lives, from the 

prevention of hospital-acquired infections. 

                                                      

70 the Hospital Consumer Assessment of Healthcare Providers and Systems 
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 In addition, our analyses reinforce that there is no single universal answer regarding 

whether all-private room design is appropriate. As in all healthcare outcomes are highly 

dependent on individual and specific conditions, and these must be reflected in and carefully 

considered in any analysis.  Our Hospital B result demonstrates that there are clear boundaries 

beyond which PPR and other design features are not simply cost-ineffective but overall 

ineffective, with no appreciable reduction in health risk. Different situations across hospitals 

may result in varying success or failure in applying even “inherently good” design. From a policy 

perspective, the best policy can be making hospitals responsible for additional costs associated 

with preventable nosocomial infections and safety-harming factors, which would create 

financial incentives for providers to perform a comprehensive implementation of evidenced-

based managements and design. Such policy (as a form of incentives or penalties) must account 

for hospital-to-hospital differences and should be evidence-based. This study also demonstrates 

that, if good design (all-private room hospital) is adopted for places in need, it can result in 

solidly high ROI. 

 It is worth mentioning that this analysis can be expanded to statewide or even 

potentially to national-wide, so that relevant policies can be quantitatively evaluated. The steps 

in our simulation structure can repeatedly apply to any other hospitals in Texas with zero 

change in modeling and variable configurations. At the end of this iteration, each Texas hospital 

will have distributions of cost, benefit, and cost-benefit measures. The group of these 

estimations can be used to evaluate the effectiveness of a “policy case”.  For example, policy 

makers can see statewide gains such as total deaths avoided if (hypothetically) all-private room 
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renovations are mandated for all legacy hospitals. With this expansion, it is also possible to 

identify risk factors of low value renovation (i.e., project ROI not meeting the industry average), 

which can shape relevant policies more targeted and more efficient. Our statewide unadjusted 

results indicated the following estimations. Among approximately two million inpatients (those 

stayed in ICU units only excluded; 57% stayed in private rooms while 43% in bay rooms), HA-

MRSA, HA-MSSA, and HA-CLABSI occurred to 949, 1329, and 316 patients respectively, which 

possibly accounted for 183, 171, and 49 in-hospital deaths. These infections were also 

associated with 45, 54, and 16 million dollars of respective Medicare reimbursements, which 

we consider a proxy of hospital costs. Extrapolating private rooms’ per-patient incidence, death 

rate, and reimbursement average to entire state inpatient population, significant gains are 

expected: prevented infections (370 HA-MRSA, 338 HA-MSSA, and 104 HA-CLABSI), 160 deaths 

avoided (60, 82, and 18 deaths due to HA-MRSA, HA-MSSA, and HA-CLABSI), and 40 million US 

dollars of Medicare reimbursements saved (15, 22, and 4 million US dollars from HA-MRSA, HA-

MSSA, and HA-CLABSI)71. The time trend of aggregated HAI observations and private room 

assignments reiterates this policy implication. Figure 16 was complied with Texas HAI data 

drawn from NHSN72 HAI progress reports during the fiscal year 2012 to 2016 (CDC, 2018a)73 

                                                      

71 Admittedly these figures did not control hospital-specific situations, thus might contain selection or other biases. 
We believe that this is worthy of more in-depth analyses, potentially as our next project.   
72 National Healthcare Safety Network 
73 As discussed in Chapter III, the current US surveillance HAI measure does not cover MRSA non-bloodstream 
infections and MSSA infections. Due to this limitation, we took weighted averages of CLABSI and MRSA 
bloodstream infections as proxy estimates, with respective weights of 1/3 and 2/3. 
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and our private room assessments74 based on IP PUDF for the same period, which presents a 

clear association between reduced HAIs and increased private room assignments. 

Figure 16: Statewide trend of HAIs and private room utilizations in recent years (FY2012-2016) 

  

                                                      

74 Conditioned by (1) 2 or more days stay, (2) acute-care hospital, and (3) ICU-only patients excluded.  
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CHAPTER VI 

SUMMARY OF FINDINGS, MANAGERIAL IMPLICATIONS, CAVEATS, AND FUTURE DIRECTIONS 

Background 

As explained previously, the multifactorial nature of hospital-acquired infections makes 

them difficult to address with any single intervention. While HAI control has been improved 

through clinical practices, such as hand hygiene compliance, and use of personal protective 

equipment, US control targets remain largely unmet75 (Office of Disease Prevention and Health 

Promotion, n.d.). It is plausible that the built environment may interact with HAI risk, and other 

improvements in hospital design may play a significant role in reducing “never events” 

Unfortunately, the relationship between HAI risk and various physical design features remains 

poorly understood. Substantial incentives for HAI control exist, including “value-based 

purchasing” and other quality related elements of Medicare reimbursement. A better 

understanding of the role of facility design for improving patient safety and optimizing 

reimbursement is especially needed nowadays.  

We sought to address this knowledge gap through an analysis of the common HAI, 

Staphylococcus aureus (Staph) infections, with a specific focus on methicillin-resistant 

Staphylococcus aureus with hospital onsets. Among all HAIs, HA-MRSA is worth investigating 

                                                      

75 For example, Healthy People 2020 aims to reduce central line infections down to 0.25 Standardized Infection 
Ratio (SIR) by 2020 while 2014 SIR was reported being 0.5. A similar gap was identified with methicillin-resistant 
staph infections (i.e., 2020 target = 6.56 infections per 100,000 population; 2014 report = 17.3 infections per 
100,000 population) (Office of Disease Prevention and Health Promotion, n.d.). 
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further for a number of reasons: (1) it is one of the costliest and most dangerous human 

pathogens causing HAIs; (2) it is recognized as a major HAI by federal and state governments 

and impacts public reporting and reimbursement; and (3) evidence is inconclusive (regarding 

associations between MRSA and outcomes), sparse (regarding environmental and structural 

predictors of MRSA), and methodologically limited (most reports stem from small, non-

representative samples or low-validity secondary data, as illustrated in Tables 1 to 3). 

Our previous work in this area focused on Central-Line Associated Bloodstream 

Infections. The findings demonstrated that private rooms are associated with HAI control, 

suggesting these as part of the built environment may be an important part of coordinated 

approach to reduce HAI risk. This thesis extends these findings and applies lessons learned to 

address the methodological shortcomings of administrative data. Our aim is to fill existing gaps 

around how the built environment interacts with HAI risk in the inpatient setting as well as the 

potential value of risk management through facility design. Ultimately this work will facilitate 

practical improvements in both management and policy.  

Re-evaluation of the Specific Aims Outlined Previously 

Aim 1 (Chapter III). 

Specific Aim Re-described. We aimed to develop hospital-level predictive models that 

link the effect of facility design to HA-MRSA reductions and hospital cost. Based on 

representative large data, this work examined the association between facility design, primarily 

focusing on patient rooms, and HA-MRSA infections. We examined the rate and attributable 

impact of HA-MRSA infections at the hospital level, hospital cost (measured by Medicare 
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reimbursement), and the relative value of investment in facility constructions or renovations 

relative to HAI control. 

Study purpose. In Chapter III, we suggested a feasible public reporting measure based 

on structural components. This measure addressed practical questions of HAI safety effects 

raised in construction projects and business plans such as “How many nosocomial infections 

can be actually prevented?”. We examined how design factors could relate to HA-MRSA, 

developed a statistical model to predict HA-MRSA incidence at a hospital level, and paid a 

specific attention to the effect of private patient rooms on HA-MRSA incidence. 

Findings. For 341 Texas hospitals during the fiscal year 2016, across different hospital 

groups (categorized by private rooms in hospitals), we observed a significant variation in many 

hospital characters (ownership types, publicly insured or uninsured patients, racial patient-mix, 

average medical burden, nurse staffing, dominant procedure class, and physical occupancy). 

Our adjusted multivariate model revealed that each 1% increase of private room among all 

rooms was associated with 0.8% reduction of HA-MRSA infections (p<0.001) and confirmed 

significant hospital-to-hospital variation in organizational variables. 

Our predictions were consistent with estimates predicted by the Standardized Infection 

Ratio model currently used by the CDC. The improved diagnostic power (more cases identified) 

but remained compatibility combinedly suggested the proportion of private rooms in an 

inpatient facility as a robust indicator for better protection against HAI; required reporting of 

this metric would not only be informative but robust – it is transparent, easily confirmed, and 

static. And due to this reason, the present thesis urges hospitals to publicly disclose how many 
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private rooms they contain. We verified that “safer” hospitals were associated with having 

mostly private rooms. To help patients make better informed decisions in choosing places to 

get care, patients and their families should be able to access such an easy-to-understand 

indicator like percentage patient rooms, which can ultimately result in big public health gains. 

Chapter III also implied that governments, relevant authorities, and interested parties should 

expand a MRSA surveillance measure to cover a more comprehensive set of whole infections, 

as opposed to a narrowed definition of bloodstream infection. We verified that an expansion of 

MRSA definitions did not critically affect surveillance consistency. 

Aim 2 (Chapter IV). 

Specific aim re-described. We examine the effects of ‘positive externalities’ of private 

rooms relative to HA-MRSA risk at the patient level. Positive externality in this context was 

defined as indirect hospital-wide effects on patients regardless of assigned room types. The 

hypothesis for this aim was that the patients’ benefits due to PPR are decomposed into 

individual (direct) and hospital (indirect) effects. This implies that, even if a patient is assigned 

to a bay room, this patient would be safer against HA-MRSA compared to the equivalent 

patient assigned to non-PPR at a ‘worse’ hospital (i.e., lower percentage of private rooms), 

other factors being equal. 

Study purpose. We explored nosocomial staph infections and related conditions at the 

patient level, particularly focusing on the patient’s perspective of a full pathway from private 

rooms to end healthcare outcomes, as specified with the two following objectives: (1) an 

integrated statistical model to simultaneously evaluate internal and external effects and predict 
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the risk of nosocomial staph infections (both HA-MRSA and HA-MSSA); and (2) estimates of the 

attributable impacts of staph infections on three major healthcare outcomes: in-hospital death 

risk, inpatient length of stay, and hospital costs. 

Findings. In analysis of 2,670,855 Texas inpatients during the fiscal year 2016, our 

multivariate analysis confirmed both hospital-independent effect of private rooms as well as 

room-independent (hospital-wide) effect of private rooms. These two effects together could 

drive a cumulative 38% and 52% risk reduction for HA-MSSA and HA-MRSA respectively. As 

expected, we found that HA-MSSA and HA-MRSA worsened healthcare outcomes for patients; 

we also found substantial related operational impacts for hospitals, including four times higher 

costs. Using matched cohorts via propensity score, our analysis pointed out specific attributable 

outcomes due to HA-MSSA and HA-MRSA: for each patient, HA-MRSA was associated with an 

excess $12,100 cost, 8.9 more days of stay, and 4.8% higher mortality risk. HA-MSSA was also 

impactful, though associated with less severe outcomes ($6,600 more costs, 8.6 more days of 

stay, and 4% higher mortality risk). 

Our analyses in Chapter IV had a very important implication: hospitals with fewer 

private rooms should try their best to convert existing bay rooms to private rooms. We verified 

indirect effects of private rooms, showing that even patients who stayed in bay rooms could 

benefit increased safety due to higher percentage of private rooms. According to our analyses, 

the benefit of a process improvement (patients assigned to private room) could be 

disproportionately maximized when a better facility design (hospitals having mostly private 

rooms) is combined. Moreover, our cost analysis showed that the costs of invasive staph 
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infections (both MRSA and MSSA) was mostly (approximately 90%) explained by facility costs 

rather than professional fees, which also provided a strong support for hospitals and policy 

makers to prioritize investments in the built environment in fighting against HAIs. 

Aim 3 (Chapter V). 

Specific aim re-described. We developed a probabilistic cost-benefit analysis simulation 

model and applied the simulation model for actual hospitals to test the practical application of 

our methods. Such a CBA would help hospitals judge how investments in the built environment 

may be justified by cost-saving benefits from reduced HAIs. We expanded our focus from HA-

MRSA to include HA-MSSA and HA-CLABSI as well. This allowed a more fully capture the 

potential value of HAI control. 

Study purpose. We investigated both the financial costs and benefits of choosing an all-

private room design in comparison with current room-mix. Projected savings were primarily 

derived from expected reductions in hospital-acquired infections. We also developed an 

empirical staffing model to predict additional nurse staffing required to an all-private room 

design. 

Findings. Renovation to all-private room design was meaningfully more cost-effective 

for a larger, public, safety-net hospital (Hospital A76) than a smaller, rural, for-profit hospital 

(Hospital B77). This demonstrates that the benefits of an all-private room design will vary 

                                                      

76 John Peter Smith (JPS) Hospital in Fort Worth, TX 
77 Hill Regional Hospital in Hillsboro, TX 
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substantially based on hospital and patient characteristics. Despite variability in the estimates 

of costs, and infection risks, the additional costs of private rooms – including both fixed 

(construction) and variable (labor) costs – were largely offset by ongoing cost savings due to 

preventions of HAIs (i.e., annual cost-saving effect reached up to $2.7 million). The mean 

internal rate of return (IRR) over 5-year analysis period was 11% for Hospital A and 5% for 

Hospital B. For Hospital A, and an all-private room design was predicted to prevent 12 patient 

deaths per year due to lower HAI risk.  

Our results implied that hospitals and policy makers should not only make their best 

effort to increase private hospital rooms but also evaluate each facility renovation project or 

each private room-related policy in a scientific and quantitative way. While private rooms were 

costlier than bay rooms to build and operate, they were more effective in avoiding costs 

associated with nosocomial infections and providing substantial health protections including 

saved lives. These two aspects (costs and benefits) should be examined to figure out overall 

cost-effectiveness. Our analysis, by showing two contrasting examples, demonstrated how 

these can be simulated with known (publicly available) parameters, without being trapped in 

practical uncertainties. Our statewide unadjusted results suggested that, if all-private room 

design was mandated for all Texas hospitals (not only for new facilities), the state could expect 

overall 45 million US dollars of costs saved and 160 deaths avoided due to prevention of HAIs – 

substantial gains by all means. 

Importantly, we also found that hospitals treating vulnerable populations enjoy a higher 

ROI as well as ongoing cost-saving with an all-private room design. This huge potential 
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contribution to the community should not be overlooked in valuing construction and 

renovation projects of safety-net hospitals. 

Strengths of the Present Thesis 

Focuses on evidence-based design. 

 Evidence-based design in healthcare industry is defined as any decision about the built 

environment of hospitals being based on scientific research creating the most efficient 

outcomes. This concept has attracted huge attention of general public and experts from various 

fields and become the fastest growing trend in healthcare, due to the expected values added to 

hospitals – including enhanced patient safety, reduced medical errors, decreased patient need 

for medication, reduced staff injuries, and increased staff efficiency through improved 

workflow (F. Becker & Parsons, 2007; Gamble, 2010). The multifactorial nature of nosocomial 

infections has even further emphasized the importance of such evidence-based approaches. 

Unfortunately, there was not enough “good evidence,” and available reports reflect weak 

external validity from smaller sample sizes and potential confounding issues. Other peer-

reviewed studies based on administrative data introduced their own problems, such as validity 

issues related to outdated data.  

This work fills important gaps. Its focus on private rooms as a core design element and 

examination of the value proposition for HAI control are especially important. Our methods 

were robust and inclusive – we examined more than 200 hospitals and 3 million hospitalized 

patients to develop predictive models for the three largely distinct pathways: from patient 

room to nosocomial infection (Chapters 3 and 4), from nosocomial infection to attributable 
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outcomes (Chapter IV), and from patient room to overall cost-saving effect (Chapter V). Our 

mixed-effect models adjusted patient demographics as well as hospital characteristics to reduce 

confounding bias (models developed in Chapter IV and applied to cost-benefit analysis in 

Chapter V). The use of the most recent ICD-10-CM coded data throughout this thesis is 

expected to increase validity to a significant extent, considering superior coding details and 

better coding practices (i.e., presumably better software and closer connection with electronic 

medical records). We also separated direct and indirect effects of patient rooms on health 

outcomes – called “internal” and “external” effects of private rooms – which increased the 

explaining power of our analyses and proposed a new perspective to analyze the context 

(Chapter IV). Furthermore, we sought to maximize translations from knowledge to practice by 

suggesting an application example in Chapter V: probabilistic cost-benefit analysis for two real 

hospitals.  

Internal and external compatibility. 

 Though we include three distinct studies, these are inherently cohesive. Patching 

different study findings to generate a new model is not unusual in scientific research, but 

different study designs and incompatible data sources (in terms of both population and data 

collection timing) often introduce validity and reliability issues – particularly in the health 

service study area (Bravata et al., 2005; Johnstone, 2004). This is much more well controlled in 

this work – each examined the same study population as well as the same data collection 

period, and variable definitions are highly consistent.   



 

  

156 

 

 We used a publicly available data source, and others using our methods with the same 

data can easily replicate and validate our findings. Moreover, as we did in this thesis, if a data 

source and variable definition are consistent with our design, investigators can integrate our 

models and results as a part of newer studies. This potentially benefits not only academic 

researchers but also those in non-academic fields (e.g., business analysts) who are usually 

limited to access research-purpose data.  

Our analysis framework and model definitions were largely independent from data 

sources and their organization. Thus, the threat of lacking external validity due to outdated 

data collection years or Texas-specific results (for the purpose of applications to other non-

Texas states) can be disarmed without much difficulty – only needing to update results by re-

applying our methods and frameworks to a newer or more appropriate data source with zero 

or minimal changes. 

Advanced analytical methods used. 

In addition to the use of large and representative data set, we utilized statistical and 

analytical methods to extract maximum information from our rich data and rule out various 

noises. The rigorous use of such tools enabled us to obtain the prediction accuracy close to 

experimental designs, which was inherently impossible for this thesis for ethical, financial, and 

practical reasons (Chapter II).  

In Chapter III, we used the Predictive Margins to assess a marginal (incremental) risk 

regarding the portion of private rooms in a hospital. This method allowed us to plug in different 

levels of private rooms in a hospital, leave all other covariate the same (“Ceteris paribus”), 
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predict MRSA risk, and average the results. Compared to traditional unadjusted approaches 

(e.g., scatter plot between private rooms and MRSA risk), our method could reduce bias caused 

by confounders. In Chapter IV, we used the Propensity Score Matching to assess attributable 

impacts of staph infections on healthcare outcomes. This approach has been used in medical 

studies to compare treatment and control groups to reduce selection bias from non-identical 

sampling. We creatively considered “presences of staph infection” as a selection factor and 

“relevant end outcomes (costs, LOS, and mortality risk)” as outcome variables, which allowed 

us to apply this method for our data. As a result, our prediction could rule out selection bias 

(caused by typical confounders such as comorbidities) more effectively than otherwise. In 

Chapter V, we used the Monte-Carlo Simulation along with additional sensitivity analysis to 

achieve realistic results based on uncertainly known inputs. This allowed us to figure out cost-

saving effects as a continuum rather than an on-an-off oversimplification. We could also 

examine financial plausibility of different situations, which would not be as accurate as our 

work if deterministic approaches based on point estimates were used (traditional approach). 

It is worth mentioning that we made our best effort to find the most optimal method for 

each study, which was proven and well discussed regarding its analytical performance in 

statistical and mathematical literature. And all the methods we used resulted in accurate 

predictions as a quasi-experimental approach, which potential state holders would enjoy as a 

“better” evidence. 
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Limitations of the Present Thesis 

Cross-sectional designs. 

We utilized cross-sectional design for 1 year of Texas inpatient data, mainly due to data 

limitation. Starting from October 1, 2015, inpatient hospital procedure coding changed to ICD-

10-CM for diagnosis and ICD-10-PCS for therapeutic procedures, which introduced 

incompatibility in terms of infection assessments between pre-fiscal year (FY) 2016 and post-FY 

2016 data. Given our focus on practical applications along with our concerns regarding known 

limitations of ICD-9-CM such as low validity of MRSA assessments, we found post-FY 2016 data 

more suitable for this thesis.  

We highly recommend potential readers to interpret our findings with caution. 

Predicted benefits are better understood as a comparative result (i.e., hospital to hospital 

variation) rather than an absolute effect, though that extrapolation is possible. But it implicitly 

presumes that, to completely rule out biases, (1) hospital variations are sufficiently captured in 

control variables in the models and (2) time-variant changes (e.g., policy, regulation, etc.) are 

not present. This means that a certain risk of prediction errors would be unavoidable in 

applying our findings to practical projects, although our results were taken in very conservative 

ways. Fortunately, as detailed and shown in Chapters 3-5, our study and analysis frameworks 

are organized so flexibly that we will be able to expand this thesis to multi-year longitudinal 

analyses, once newer data are applied.  
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Measure limitations. 

There is no known standardized measure of reporting private rooms in a hospital in 

either relative or absolute quantity. Due to this data limitation, a private room percentage of 

each hospital was inferred based on charge data – possibly affected by room utilizations and 

occupancy. While (1) our models adjusted occupancy and relevant covariates and (2) charge-

based room assessments were still meaningful to the context of the present thesis, in that only 

actually assigned rooms were focused, we would like future research to verify the robustness of 

our findings if actual figures of private room data are applied. 

Multiple and complicated interactions may exist among patients, staffs, facilities, and 

nosocomial infections. The nature of hospital structure and design always imposes unidentified 

confounders on researchers because some interactions among core elements often introduce 

unwanted and unmeasurable offsetting endogenous effects. For example, hospitals treating a 

dangerous population (increased risk of infection) may concentrate on in-hospital safety more 

(decreased risk). It is possible that this mutually-countering interaction may result in higher 

variation of analyses and predictions. 

The primary focus of this thesis is private rooms and their protective effects on 

preventing nosocomial infections. Yet, there are many other potential benefits of private 

rooms, including patient privacy, reduced errors, increased nurse and patient satisfaction, etc. 

(Habib Chaudhury et al., 2005, 2006; Huisman et al., 2012; Reiling et al., 2008) Hospital designs 

involve many other important elements beside private rooms (e.g., patient and staff flow) 

(Gamble, 2010; Hicks, McGovern, Prior, & Smith, 2015; Joseph & Rashid, 2007; Olsson & 
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Hansen, 2010). Future research should extend our analysis to include a broader and 

comprehensive scope of the built environment and patient safety. 

Use of administrative Data and ICD-10-CM in identifying MRSA. 

Administrative data have been often criticized as questionable reporting accuracy. 

Especially, diagnostic and surgery information assessed via ICD-9-CM codes were challenged 

due to their low sensitivity or low positive predictive value regarding MRSA infections. Although 

we decided to opt out ICD-9-CM and opt for newer ICD-10-CM, which could increase data 

validity (through more robust coding definition, coding practice improvement, and more 

intuitive user interfaces of latest software), the data quality of ICD-10-CM in the context of HAI 

is still in doubt from a conservative perspective. At this point, we were unable to fully justify our 

use of ICD-10-CM administrative data because of lacking validation studies about this coding 

version. Instead, we examined how hospital-level MRSA cases identified by ICD-10-CM differed 

from laboratory-confirmed MRSA bloodstreams at the hospital level in CMS Hospital Compare 

database and observed disparity in absolute quantities (inherently unavoidable due to different 

MRSA definitions) but high correlations between the two assessment methods. Therefore, for 

the specific needs of this thesis, we regarded our administrative data as “sufficiently validated” 

in terms of MRSA identification. However, we still recommend readers not to overinterpret our 

assessments but to consider them as a solid “indicator or proxy” to true MRSA cases and 

relevant outcomes.  
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Recommendations 

Policy: safety-related public reporting. 

 Despite nearly universal consensus over the importance and effectiveness of public 

reporting of patient safety indicators, safety-related reporting measures – specifically regarding 

staph infections – are subject to critical biases. As demonstrated in Chapter III, the current US 

MRSA surveillance measure (bloodstream infections) cannot comprehensively cover various 

routes of infections such as pneumonia due to MRSA, which might be potentially problematic in 

generating unintended consequences (Kavanagh et al., 2017; Schuts et al., 2016; Winters et al., 

2016). Our findings provide evidence that expanding MRSA surveillance is not only possible 

with current administrative data but also likely to remain consistent with other measures. 

   Quantifying the protective effects of private rooms on nosocomial infection risk 

underscores the need for enhanced hospital disclosure of their proportion of private rooms. 

Our findings suggest that important public health gains are possible given smarter hospital 

choices by patients. (i.e., they can recognize “better” hospitals easily.) With such transparent 

information in the healthcare industry and market, hospitals would be more accountable for 

better hospital designs by themselves to survive in competitions. Moreover, unlike process 

measures such as incidence, short-term invariability of private rooms (as a characteristic of 

structure measure) will make hospitals extremely hard to manipulate, falsify, or underreport.    

 Consistent with previous reports for antibiotic overuses and antimicrobial stewardship 

policies (CDC, 2015; Pogorzelska-Maziarz et al., 2015; Schuts et al., 2016), we found hospital-

wide antibiotic resistance levels were significantly associated with the conditional incidence of 
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MRSA among staph infections. This suggests methicillin-resistance rate (i.e., the ratio of MRSA 

to staph infections) as a useful and robust indicator for inpatient antibiotic resistance and 

overuse. Traditionally, antibiotic overuses are assessed mostly from outpatient prescriptions, 

which has inherent limits in inpatient research and surveillance (Gerber et al., 2010; Ventola, 

2015). We believe that using MRSA as “bellwether” has potential to overcome such limitations. 

Management: evidence-based renovation of legacy hospitals. 

Private rooms are now considered as the minimum standard for newer hospitals. Still, 

legacy hospitals such as rural or safety-net hospitals contain many bay rooms. This may impose 

greater risk of nosocomial infections and relevant disadvantages on patients who are limited to 

choose such hospitals for geographical or financial reasons. Our findings suggest important 

opportunities for such hospitals should they choose to proactively renovate their facilities and 

build safer environments. Our cost-benefit analysis method and framework can be used to 

evaluate business cases and renovation projects in a more evidence-based way, which 

ultimately may suggest that the cost for such renovation may be offset by safety benefits and 

reimbursement gains obtained from prevented nosocomial infections. 

Research: possible derivatives of this thesis  

We found that effectiveness of private rooms in hospital design is sensitive to multiple 

hospital characteristics and patient-mix. We focused on an all-private room design as one 

design target, but hospitals under certain situations (e.g., smaller for-profit hospitals) may find 

investment and labor costs too overwhelming even after considering safety gains. 
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Our methods suggest the opportunity to evaluate specific hospital characteristics to 

determine an optimal number and percentage of private rooms at the single facility level. Taken 

together with concerns regarding private rooms – such as supervision required for falls in 

patients (Habib Chaudhury et al., 2005; Taylor, Card, & Piatkowski, 2018), nurses preferring 

combined design of private and bay rooms (Hendrich & Chow, 2008; Maben et al., 2016), 

and/or some patients reporting loneliness (Pease & Finlay, 2002; Reid, Wilson, Anderson, & 

Maguire, 2014) – pros and cons of mixed-room design (having both private and bay rooms) are 

worthy of in-depth investigations, along with determinations of “optimal” ratio of private 

rooms to bay rooms. The present thesis would contribute to such research as a good starting 

point. 

During data analyses, we found that our data set was richer than we originally assumed, 

with potential to possibly address many urgent public health and healthcare issues. 

Disproportionate risk of antibiotic resistance between urban and rural populations was one 

such opportunity identified. Our preliminary analysis suggested that the risk of gaining 

methicillin-resistance as opposed to methicillin-treatability is significantly higher in people living 

in rural areas and people going to rural hospitals. Potential interactions, as well as inter-age-

cohort disproportionateness (i.e., underaged inpatients in rural area/hospitals having drastic 

risk level of bacteria gaining resistance) were also confirmed. The results were highly consistent 

across several statistical models differing in adjustment of confounders. We believe that this 

research topic deserves to more thorough analysis, and as a clear next step of this thesis, we 
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are currently working on testing whether our preliminary findings remain consistent across 

various conditions, ruling out spurious data abnormalities. 

APPENDIX I 

DISTRIBUTION FITTING FOR INPUT VARIABLES 

Determination of Probability Distribution 

We first examined whether variables were normally distributed by using Shapiro-Wilk 

test (Shapiro & Wilk, 1965) and Shapiro-Francia test (Shapiro & Francia, 1972), both of which 

are well-established and verified to outperform other statistical tests for normality in terms of 

statistical power (Razali & Wah, 2011). Our test results indicated that annual incoming patients 

were normally distributed (p>0.1 in both test) after adjusting time trends (yearly changes) but 

other variables (infection risks, costs, and nurse staffing) were not (p<0.001). Thus, this analysis 

assigned normal distribution for annual incoming patients. 

Then, we considered two major probability distributions often used to fit bell-shaped 

data distribution with abnormal kurtosis and skewness: gamma and log-normal distributions. 

While these two probability distributions are known to be more similar than different in the 

context of probability fitting (Jones, 2009; Nixon & Thompson, 2004), there has been a good 

consensus that gamma distributions work better for log-skewed data (i.e., log-normal, by 

definition, works better if logs of a variable is more normally distributed), supported by both 

theoretical and empirical evidences (Faddy, Graves, & Pettitt, 2009; Jones, 2009; Schulz & 
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Griffin, 1999). We found that our cost variables78 were distributed log-normally (i.e., normality 

tests resulting in p>0.05 at best after log-transformations) but distributions of infection risks 

were log-skewed. For this reason, we assigned log-normal distributions for cost variables and 

gamma distributions for infection acquisition risks. 

Detailed Operations of Distribution Fitting 

 For normal and log-normal distributions, fitting process is straightforward, as these 

distributions are determined by two easily calculable parameters: mean and standard 

deviation. The difference between these two is which of raw or log-transformed values are 

used in computations. 

 To determine optimal parameters for gamma distributions, we used maximum 

likelihood estimator (MLE) of scale and shape parameters of gamma distribution. We closely 

followed computational operations (Zaiontz, 2017) with Microsoft Excel add-on package 

(Zaiontz, 2018). The overall process was consistent with peer-reviewed discussions (Husak, 

Michaelsen, & Funk, 2007; Schlain et al., 2010) and implementation with a different computer 

software (Ricci, 2005). 

MRSA acquisition risk is used as a detailed example of gamma fitting steps. A hospital 

given (suppose it has N patients), we first predicted MRSA acquisition risks, conditioned by (1) a 

patient assigned to a private room with current percentage of hospital-level private rooms, (2) 

                                                      

78 Note that the distribution of construction costs was assumed (as opposed to fitting) to be consistent with the 
literature. We were not able to access enough number of data points.  
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a patient assigned to a bay room with current hospital-level private rooms, and (3) all-private 

room design (as a hypothetical situation; a patient assigned to a private room as the sole 

option). 3N values were obtained (i.e., N values for each of 3 conditions). Then, shape and scale 

parameters of gamma distribution for each condition were determined with Excel as described 

in the above paragraph. 

It is worth mentioning that we used predicted values to assess risks (for patients 

assigned to private and bay rooms) rather than actual incidence. This is mainly because of 

variable compatibility. Our simulation requires randomly generated probability for all-private 

room design, which is inherently virtual and thus should be calculated in a predictive way. Using 

real incidence may introduce unwanted incompatibility issues in comparing or taking 

differences (i.e., real probabilities for current design vs predicted probabilities for all-private 

room design). In addition, by using predicted values, probability fitting process achieves higher 

reliability due to larger sample sizes. Using real incidences only allows K (K<N) samples for 

private rooms N-K samples for bay rooms. 
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APPENDIX II 

ALGEBRAIC DERIVATION OF CONSTRUCTION COST FORMULA 

Known Variables 

• A: Total physical area (in square feet) 

• B: Total licensed beds 

• x: Percent private rooms (%) 

• C: Area ratio constant b/w private and bay rooms = 0.598 

• R: Construction cost rate (per a square foot) 

Unknown Variables 

• n1 = # Private rooms 

• n2 = # Bay rooms 

Derivation Steps 

The construction cost needed is the following: 

R �
𝐴𝐴𝐴𝐴
𝑛𝑛1

−
𝐴𝐴(1 − 𝑥𝑥)

2𝑛𝑛2
� 

Note that  𝐴𝐴𝐴𝐴
𝑛𝑛1
− 𝐴𝐴(1−𝑥𝑥)

2𝑛𝑛2
 is a per-bed area difference between private and bay rooms. 

From the definition of the C variable: 
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Therefore, the construction cost needed can be fully assessed from measurable 

variables. 
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