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MATHEMATICAL MODELING OF STEM CELL PROLIFERATION 
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Abstract.   
The mathematical models prevalently used to represent stem cell proliferation do not have the 

level of accuracy that might be desired.  The hyperbolastic growth models promise a greater 

degree of precision in representing data of stem cell proliferation.  The hyperbolastic growth 

model H3 is applied to experimental data in both embryonic stem cells and adult mesenchymal 

stem cells.  In the embryonic stem cells the results are compared with other popular models, 

including the Deasy model, which is used prevalently for stem cell growth.  In the case of 

modelling adult mesenchymal stem cells, H3 is also successfully applied to describe the 

proliferative index.  We demonstrated that H3 can accurately represent the dynamics of stem cell 

proliferation for both embryonic and adult mesenchymnal stem cells.  We also recognize the 

importance of additional factors, such as cytokines, in determining the rate of growth.  We 

propose the question of how to extend H3 to a multivariable model that can include the influence 

of growth factors. 
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Introduction 

     Stem cell research is an area of much current interest, and within this field there is a need for 

an accurate mathematical model to represent the growth dynamics of stem cells.  The purpose of 

this paper is to present the hyperbolastic growth models of Tabatabai et al. [1] as an accurate and 

effective means of representing the dynamics of stem cell growth.  Using experimental data we 

demonstrate the accuracy and effectiveness of these models, including both adult stem cells and 

embryonic stem cells. 

     Within each organism, a source is required for the new cells which are needed on an ongoing 

basis to replace older cells, to maintain tissue homeostasis, and to respond to environmental 

stresses.  Adult stem cells in each organ are working to fulfill this important role of new cell 

production.  Through its special nature and its niche in the organism, the stem cell is able to self-

renew, or to undergo ongoing asymmetric cellular divisions in which the cell neither ages nor 

loses its special characteristics as a stem cell.  In these asymmetric cell divisions, the daughter 

cells produced from the stem cells will differentiate into one of any number of organ specific cell 

types.  In the process of differentiation toward specific cell types, these daughter cells lose the 

capacity for self-renewal.  Through a combination of the processes of self-renewal, 

differentiation, and proliferation, all of the cell types needed in the tissue system are produced as 

daughter cells of the stem cells, while the stem cells themselves are maintained in an nonageing 

state.   

     These processes of self-renewal, differentiation, and proliferation are fundamental in the 

functioning of stem cells.  Lie and Xie [2] have described a delicate balance between stem cell 

self-renewal and differentiation, and the understanding of this point is a basis for understanding 

of how stem cells regulate the body, their role in tumor growth and formation, and their 
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therapeutic use in treating human disease.  Scientists were led to the concept of stem cell niche 

by observing the role of the surrounding environment in regulation of stem cell function and 

determination of the course of their development.  The concept of niche refers to the 

microenvironment for the adult stem cells and a more specific understanding of niche includes a 

thorough description of cell to cell interactions and extracellular signaling.  The stem cell niche 

is the means by which the body interacts with the stem cells to determine development, 

maintaining a state of quiescence and self-renewal under normal conditions, but stimulating 

proliferation and differentiation when additional cells are required by the body, such as times of 

external stress.  Although the concept of niche is derived from the microenvironment of the stem 

cell within the organism, scientists are attempting to reproduce these conditions in vitro, and the 

concept of niche also extends to regulation of stem cells in this environment. 

     Much interest has also developed in embryonic stem cells, a type of stem cell from earlier in 

human development, capable of differentiating into any cell type within the body, from any of 

the three germ layers.  This pluripotency is the reason for interest in embryonic stem cells, and 

this potential to produce all types of cells in the body carries much potential for both research 

and regenerative medicine.  Adult stem cells are no longer pluripotent, but still maintain the 

multipotency needed to produce a wide range of cells.  Both embryonic and adult stem cells 

share the properties of self-renewal, differentiation, and proliferation which characterize stem 

cells; however there are some important differences.  The main difference is in differentiation, 

pluripotency versus multipotency.  Although embryonic stem cells may be grown effectively 

outside the body, adult stem cells have shown resistance to production in large numbers.  

However adult cells from a patient’s body do not risk potential immune rejection as embryonic 

stem cells do. 
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     All of the above issues of self-renewal, differentiation, and proliferation are critical areas 

within the field of stem cell research.  We focus on presenting an accurate mathematical model 

for stem cell proliferation, joining other researchers who have already studied this issue.  For 

many stem cell therapies, the efficacy of the treatment will depend on the number of stem cells 

available for transfer, as discussed in Henrigou et al. [3] and Bonab et al. [4].  For these reasons 

a mathematical model representing the size and rate of growth of a population of stem cells will 

be highly useful.  The choice of an accurate growth model is an integral part of the analysis of 

the growth and will eventually aide researchers in attaining a better understanding of the 

progression and regression of the population size and the associated rates of change (first and 

second derivatives) of these growth rates. 

     We begin with a review of some existing growth models applied to the field of stem cell 

proliferation.  An early model using systems of differential equations was proposed by Loeffler 

and Wichman [5] to model the regulation of hematopoiesis.  Cowan and Morris [6] introduced a 

model determined using two parameters, representing number of proliferative daughters and rate 

per proliferative cell per day, from experimental data.  Similar in concept is the growth model 

proposed by Sherley et al. [7] to describe the generation of both dividing and non-dividing cells.  

The Sherley model has the form 

1

0

1 (2 )
( ) [0.5 ]

2(1 2 )

t

DT

P t P
α
α

+−
= +

−
                                                                (1) 

where ( )P t  is the population size at time t, 0P  is the initial number of cells, α  is the mitotic 

fraction, and DT is the division time.  As the parameter α represents the percentage of the cells 

for which cellular divisions are ongoing, α must satisfy 0 ≤ α ≤ 1.  Deasy et al. [8] applied the 

Sherley model to describe the mechanisms of muscle stem cell expansion with cytokines. 

Jankowski et al. [9] used this model to investigate the role of CD34 expression and cellular 
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fusion in the regression capacity of cells.  Deasy et al. [10] expanded the Sherley growth model 

by incorporating a term into equation (1) to account for cell loss and cell differentiation.  Their 

growth model has a form 

1

0

1 (2 )
( ) [0.5 ]

2(1 2 )

t

DT

P t P
α
α

+−
= +

−
-M                                                          (2) 

where M is added to take into account the cell loss and one may consider ( )P t as the sum of two 

terms, one corresponds to proliferating cells and the other is associated with differentiated cells. 

In this paper, we refer to formula (2) as the Deasy growth model.   

 

 

Methods 

The Hyperbolastic Growth Model of Type III (H3) 

     The analysis of stem cell proliferation is done using the hyperbolastic model H3.  The 

hyperbolastic growth models of [1] were recently introduced in order to provide growth models 

with more flexibility in the growth rate as the population reaches its carrying capacity, and thus 

also a greater degree of accuracy.  These models have been demonstrated to be highly accurate, 

particularly in cases of modeling biological growth, as in [1, 11, 12].  For this paper we focus on 

H3, the hyperbolastic growth model of type III, which we now present. 

     The growth rate will be given by the nonlinear differential equation 

1

2 2

( )
( ( )) ,

1

dP t
L P t t

dt t

γ θ
δγ

θ
− 

= − + 
+ 

      (3) 

with the initial condition 0 0( ) ,P t P=  where L, δ , γ  and θ  are parameters.  We refer to the 

model (3) as the hyperbolastic ordinary differential equation of type III or H3.  This rate of 
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growth is a product of one factor representing the distance of the current population from its 

limiting value and a second factor including the intrinsic rate δ, an allometric constant γ, and an 

additional term θ allowing flexibility in growth rate over time.  The solution to the equation (3) is 

the function 

( ) arcsinh( ) ,P t L EXP t t
γα δ θ  = − − −       (4) 

where 

0 0 0
)( arcsinh( )PL EXP t t

γα δ θ −  = + . 

We call the function ( )P t  of equation (4) the hyperbolastic growth model of type III or simply 

H3.   If necessary, one can introduce shift or delay parameters in this model.  The doubling time 

t  for the model H3, in the case where 0 / 2,P L<  is the solution to the equation 

2
0ln arcsinh( ) 0

L P

t t
γδ θ

α

−
+ + = . 

     Here we briefly address the biological meaning associated to the parameters L, δ, γ, and θ.  

The parameter L has the same units as ( )P t , in this case the number of stem cells, and it 

represents the limiting value of the size of the population, or the carrying capacity.  The 

parameter δ corresponds to the intrinsic biological growth rate; however the overall rate of 

growth is jointly determined by all of the parameters δ, γ, and θ.  The units of δ is 1/(time)
γ
, 

which in the cases of this paper is 1/(days)
γ
.  The parameter γ is known as the allometric 

constant, and a similar parameter occurs in the Weibull model.  It is also sometimes called a 

statistical shape parameter.  This parameter is dimensionless.  Finally, the parameter θ has units 

1/(time), in our case 1/(days), and to more fully describe its biological meaning we rewrite the 

equation (4) in the form 
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( ) .
21 ( )

P t L EXP t

t t

γα δ
θ θ
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+ +

 

For θ=0, the term in front of the exponential reduces to α, and the model reduces to the Weibull 

growth model.  When θ≠0, the expression 
2

( , )
1 ( )

t

t t

α
α θ

θ θ
=

+ +
 allows this factor to vary with 

time t, according to this formula and the value of θ.  Thus the parameter θ provides variation in 

the quantity α, which represents a normalization of the distance between the initial population 

and the limiting value, allowing adjustment of this growth rate over time.  In application of the 

model a constant value is determined for θ that best represents the growth observed in the data. 

     The hyperbolastic ordinary differential equation of type III can also be represented in the 

following form 

( )
( ) ( )

dP t
a t b t

dt
= −  

for terms ( )a t  representing factors contributing to population growth and ( )b t  representing 

factors slowing or retarding population growth.  Here 

1

2 2
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1
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t

γ θ
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and 

1

2 2
( ) ( )

1
b t P t t

t

γ θ
δγ

θ
− 

= + 
+ 

. 

Clearly, as ( )P t  approaches L, the factors slowing population growth catch up with those 

increasing population growth, and the overall rate slows to zero.  Thus the parameter L gives the 

carrying capacity, or the level at which the population reaches a plateau.  For the intrinsic growth 

rate, there are the three parameters of δ, γ, and θ, which jointly determine this rate.  In the case 
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where γ=1 and θ=0, then the intrinsic growth rate is given by δ.  However, values of γ>1 can be 

used to speed up the time course, thus altering the rate, while values of 0<γ<1 slow the time 

course.  Furthermore the variable θ represents the lack of symmetry inherent in biological 

growth, with values of θ farther from 0 being farther from the symmetric sigmoidal curve. 

     The growth rate '( )P t  or 
dP

dt
 will also be called the velocity of the growth of the cell 

population.  Its units are (cells) / (day).  Notice its absolute value equals the speed at which the 

cell population is growing or receding.  Its rate of change, ''( )P t  or 
2

2

d P

dt
 will be called the 

acceleration of the population growth.  The units for ''( )P t are (cells) / (day
2
).  In the subsection 

on growth of adult mesenchymal stem cells, where ( )P t  is used to represent the proliferative 

index (PI), the term velocity of ( )P t  will represent the rate of change of the proliferative index, 

and the acceleration of ( )P t  will be its rate of change.  For ( )P t  measuring the PI, '( )P t  has 

units of 1 / (days), while ''( )P t  has units of 1 / (days
2
).   

     The parameters are estimated using computational software SPSS and Mathematica to 

produce a best fit to the experimental data.  It is also possible to use the SAS package.  The 

method of non-linear least squares regression for the H3 model (4) is used to determine the 

model parameters.  Using SPSS, the input data can be analyzed using the Nonlinear Regression 

module, found under Analyze and Regression.  After entering formula (4) into the box for Model 

Expression, it is then necessary to enter initial value estimates for the parameters.  In SPSS, the 

arcsinh(x) function must be entered using its definition in terms of logarithms:  

2arcsinh( ) ln( 1 ).x x x= + +   An example of the source code used to estimate the parameters in 

SAS can be found in the additional file of [1]. 
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     Note that '( )P t  and ''( )P t , the velocity and acceleration of the growth rate, can be explicitly 

determined, as functions of time, once the parameters for ( )P t  have been determined.  

Mathematica is an effective tool for computation of '( )P t  and ''( )P t , as well as for their use in 

studying the stem cell growth dynamics.  Description of rate of growth as an explicit function 

'( )P t  is more accurate and realistic than use of a static parameter, for instance.  The explicit 

functions and ''( )P t  allow for a deeper analysis of the growth dynamics. 

 

Results 

Analysis of Embryonic Stem Cell Growth Data.                                 

     Previous work of Bursac et al. [12] has already demonstrated the effectiveness of H3 in 

modeling the proliferation of embryonic stem cells.  In that paper H3 was shown to represent the 

data more accurately than other sigmoidal models, such as Weibull, Gompertz, logistic, and 

Richards.  For these other models the Mean Absolute Relative Error ranged from almost ten to 

over twenty times that of H3.  The Deasy and Sherley models, which have been prevalently used 

in modeling stem cell growth, are of a different type of model, closer to exponential growth 

rather than of sigmoidal type.  As the Deasy model is the more developed and more accurate of 

these models, we compare this model with the others in the analysis of the embryonic stem cell 

data.  In particular, we compare Deasy and H3 for accuracy in representing the experimental 

data.  The NIH stem cell data [13] is available online.  The estimated values of the parameters for 

the Deasy model are given in Table 1, as computed from the data.  The H3 parameter estimates 

are given in Table 2.  Note that the parameter values given in [12] for the H3 model were 

mistyped, and the correct values are those appearing in Table 2.  Table 3 gives the estimated 

values of the number of stem cells for each of these models, as compared to the observed data. 



 10 

Table 1. Parameter estimates for the Deasy model using embryonic stem cell 

data. 

Parameter Estimate Std. Error 

α  1.000 1.114 

DT 2.021 2.338 

M 80.670 71.897 

 
Table 2. Parameter estimates for the hyperbolastic H3 model using embryonic 

stem cell data 

Parameter Estimate Std. Error 

δ  3.137E-6 0.000 

L 762.922 3.254 

θ  0.051 0.003 

γ  7.990 0.248 

 

Table 3. Observed and estimated number of embryonic stem cells (in units of 

thousands) 

Day 

 

Observed Number 

of  Stem Cells 

 

Hyperbolastic H3 

Estimated Number 

of Stem Cells  

 

Deasy 

Estimated 

Number of 

Stem Cells  

 

Absolute 

Relative Error 

Hyperbolastic 

H3  

Absolute 

Relative Error 

Deasy 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

110.000 

139.375 

186.875 

303.750 

603.125 

760.000 

110.000 

142.862 

184.876 

304.918 

603.246 

760.062 

74.3343 

137.751 

227.114 

353.037 

530.480 

780.520 

0.000 

0.023 

0.013 

0.002 

0.000 

0.000 

0.324 

0.012 

0.216 

0.162 

0.120 

0.027 

 

     In analyzing the accuracy of these models, the performance of the Deasy model was not good, 

with a Mean Absolute Relative Error of almost twenty-two times that of H3.  In the comparative 

study, this places it as the least accurate of all the models considered, with even larger errors than 

the classical sigmoidal models, which do not perform as well as H3.  The values for Mean 

Absolute Relative Error are given by 0.0066 for H3, 0.043 for hyperbolastic H2, 0.063 for 

Weibull, 0.073 for hyperbolastic H1, 0.121 for Gompertz, 0.131 for logistic, and 0.134 for 

Richards, and 0.144 for Deasy.  See the pie graph, Figure 1, comparing the Mean Absolute 
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Relative Error for all of these models.  The Mean Squares Error for the Deasy model is 3674.616 

compared to 8.47 for the hyperbolastic H3.  This translates into an almost 434 to 1 ratio of the 

Mean Squares Error.  In order to compare models with different numbers of parameters on an 

equal basis, the Akaike Information Criterion (AIC) is commonly used [14].  The model with the 

lowest value of AIC is considered the best.  In comparing the performance of the H3 and Deasy 

models, we have computed AIC for Deasy to be 61.8469 while the AIC for H3 is 24.9781, 

showing a superior fit.  The R
2
 for hyperbolastic H3 is 1.000, while the Deasy has R

2
 of 0.970.   

 

Figure 1.  Pie chart showing Mean Absolute Relative Error for all models 
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     Furthermore, the estimates given by the Deasy model vary considerably, between 

underestimates and overestimates, so that the overall shape is not representative of the data, as 

can be seen in the graph of Figure 3.  This should be compared with the hyperbolastic model H3, 

as shown in Figure 2, for which there is no visible difference with the observed values.  This 

wider variation is due to the exponential nature of the Deasy model, in contrast to the shape of 

the data in which the growth rate slows by days 5 and 6.  Clearly this data can be better 

represented by the appropriate sigmoidal model, in particular H3. 

 

 
 
Figure 2. Scatter Plot of Observed and Estimated Number of Embryonic Stem 

Cells Using Hyperbolastic H3 Model 

square represents observed number of embryonic stem cells 

circle represents estimated number of embryonic stem cells using H3 
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Figure 3. Scatter Plot of Observed and Estimated Number of Embryonic Stem 

Cells Using the Deasy Model 

circle represents observed number of embryonic stem cells 

square represents Deasy-estimate of number of embryonic stem cells  

Solid curve represents H3-estimate of number of embryonic stem cells  

 

     The predictive function and its associated velocity and acceleration are determined from H3 

and can be used to analyze the dynamics of the growth.  Because of the exactness of the fit to the 

data points, the derivative of this predictive function at each time gives the instantaneous rate of 

growth.  The model determines that the maximum growth rate of the number of embryonic stem 

cells is 338.922 thousand per day, and it occurs on the day 4.75982.  Based on the comparison 

above and the fit of the data points, this evaluation of maximum growth rate is more accurate 

than that predicted by the Deasy model or other models.  Deasy estimates a maximum rate of 

295.364 on day 6, and will always estimate the last day as the highest rate of growth.  In actuality 

the growth has leveled off by this point, and hyperbolastic estimates it as 19.9461 thousand cells 
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per day.  Furthermore on day 4.75982, at the maximum rate, the growth rate is estimated by 

Deasy as 193.033, considerably underestimating the actual value. 

     The mitotic fraction and quiescent rate of the proliferating cells, represented in the Deasy 

model by α and 1- α, are varying over time, or possibly with respect to changes in other 

variables, in a realistic biological setting.  Similarly the dividing time, represented by DT in the 

Deasy and Sherley models, can also vary.  This is the reason for the distance between the 

predicted and observed values for these models.  However, it is possible to make an experimental 

measurement of the rate of proliferation in terms of the mitotic fraction, by counting the numbers 

and percentages of cells observed to be in the various stages of the cell cycle.  This measurement 

is known as the Proliferative Index (PI), and it is used to measure the proliferation of adult 

mesenchymal stem cells in the following section. 

 

Modeling Proliferative Index of Mesenchymal Stem Cells. 

     Adult stem cells active in a niche within a living system must maintain a proper balance 

between self-renewal, differentiation, and proliferation.  This section analyzes the data from the 

study of Wang et al. [15] linking a decreased proliferative rate for mesenchymal stem cells to 

osteonecrosis of the femoral head, a pathology in which bone mass in the head of the femur 

decays while bone tissue dies, often requiring hip replacement surgery.  These authors believe 

that the decreased proliferation of the mesenchymal stem cells is induced by prolonged treatment 

with corticosteroids and that this decreased proliferation leaves a shortage of the cells required 

for homeostasis and repair of the bone tissue.  It has been suggested that decreased proliferation 

of mesenchymal stem cells is the cause of osteonecrosis, and several studies of Gangil et al. [16, 

17] demonstrated that therapy with hematopoietic and mesenchymal stem cells through bone 
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marrow transplant can have a positive impact in the outcome, particularly for patients treated in 

the early stages.  Another study [3] gives similar results, and, by counting the number of 

progenitor cells transplanted, they are also able to conclude that transplantation of larger 

numbers of progenitor cells leads to better outcomes.  The data analyzed in this section [15] also 

provide support to the role of mesenchymal stem cells in osteonecrosis of the femoral head.  

These authors studied bone marrow from a group with osteonecrosis and for a control group of 

healthy individuals, and the rates of proliferation of the mesenchymal stem cells were compared 

between these groups.  Even though the individuals with corticosteroid-induced osteonecrosis 

were considerably younger, their mesenchymal stem cells displayed a significantly decreased 

level of proliferation, as compared to the control group.   

     In the data we analyze from Wang et al. [15], the proliferative rates of mesenchymal stem 

cells are compared between a control population and a population with corticosteroid-induced 

osteonecrosis of the femoral head.  The patients with osteonecrosis were considerably younger, 

with a mean age of 29.7 years, as compared to 60 years.  In order to measure proliferation 3 to 5 

mL of bone marrow was obtained from the femoral head, and mesenchymal stem cells were 

isolated for study.  The rate of proliferation was measured using the MTT reduction assay 

method.  The proliferative index 

( ) ( )2 0 1 2
/ / / 100%PI S G M G G S G M= + + + ×    

was used to measure the proliferation of the stem cells, rather than a strict count of the cells.  

This means of determining proliferation is often more practical on an experimental basis, as 

compared to a direct count of all the cells.  The proliferative index represents the percentage of  

cells which are in stages S and G2/M of the cell cycle.  This percentage represents proliferation 

because it gives the percentage of cells in the cell cycle at a point near to proliferation, from the 
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synthesis of DNA onward.  The cells in stage G0 are quiescent, while the time of the stage G1 is 

the primary determinant of the length of the cell cycle.  Excluded from the percentage measuring 

proliferation are those cells in the quiescent stage of G0 or the first gap phase G1.  We use H3 to 

model the proliferative index for the mesenchymal stem cells obtained from the bone marrow for 

both the osteonecrosis group and the control group.  The models H1 and H2 of [1] would also be 

available as effective models.  Because the proliferative index represents the percentage of cells 

in proliferative stages of the cell cycle, the Sherley and Deasy models will not apply.  The 

parameter estimates produced in fitting H3 to the experimental data are given in Table 4.  Table 

5 presents the experimental data [14], together with the estimated values given by H3.   

 

Parameter 

Control Necrosis 

Estimate Std. Error Estimate Std. Error 

δ  3.250E-6 0.000 2.298E-5 0.000 

L 0.840 0.006 0.815 1.136 

θ  0.113 0.004 0.046 0.095 

γ  6.628 0.545 4.615 3.500 

Table 4. Parameter values for H3 for adult mesenchymal stem cells 

 

 

 

 

 

 

 

Table 5. Observed and estimated Proliferative Index 

 

Day 

 

Observed PI, 

control group 

 

Estimated 

PI, control 

group 

 

Observed PI, 

osteonecrosis 

group 

 

Estimated PI, 

osteonecrosis 

group  

0.0 

1.0 

3.0 

5.0 

7.0 

9.0 

0.1788 

0.2425 

0.3723 

0.5046 

0.7530 

0.8398 

0.1788 

0.2493 

0.3682 

0.5044 

0.7526 

0.8397 

0.1947 

0.2360 

0.2669 

0.3428 

0.4363 

0.5832 

0.1947 

0.2226 

0.2764 

0.3399 

0.4385 

0.5834 



 17 

     The hyperbolastic model H3 gives highly accurate estimates for both the control group and 

the osteonecrosis group.  The control group has an R
2
 of 1.000, while the osteonecrosis has an R

2
 

of 0.997.  The mean square error for residuals for both the osteonecrosis and the control groups 

are both nearly zero, 53.163 10−× for the control data and 41.416 10−× for the osteonecrosis data.  

Note that the exponential nature of the Deasy and Sherley models makes them unsuitable for 

modeling this type of data. 

     By estimating the parameters, one can express the proliferative index explicitly as a function 

of time for both the control data and the osteonecrosis data.  In Figure 4 the estimated 

proliferative index curve of the control data is graphed with a solid curve, and the estimated 

proliferative index curve of the osteonecrosis data is graphed with a dashed curve, and the 

observed data points are also represented on the graph.  The time course of the cellular 

proliferation in this data clearly shows the much lower rate of proliferation among mesenchymal 

stem cells from the patients with osteonecrosis.  In the Figure 5 and Figure 6 we use the 

functional form to analyze the velocity and acceleration of change in the proliferative index for 

both the control group (Fig. 5) and the osteonecrosis group (Fig. 6). 
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Figure 4.  Proliferative Index of MSC, control and osteonecrosis groups 

square represents observed values for osteonecrosis group 

circle represents observed values for control group 

 

In Figure 5, we see the estimated proliferative index from the control group in the dotted curve, 

its velocity in the dashed curve, and its acceleration in the solid curve.  Here we see a steady 

increase in the proliferative index from the beginning, with a sustained positive velocity.  The 

velocity does not slow significantly until after day 7.5 when the proliferative index is already 

well over 80%.  The maximum rate of increase of the proliferative index for the control group is 

0.13788 on day 6.31435.  This maximum rate of increase is achieved when the value of the PI is 

0.663201. 
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Figure 5.  Control group: PI, velocity, and acceleration 

dotted is PI, dashed is velocity, and solid is acceleration 

 

In Figure 6, we see the estimated proliferative index from the osteonecrosis group in the dotted 

curve, its velocity in the dashed curve, and the acceleration in the solid curve.  In contrast, for the 

mesenchymal stem cells from the osteonecrosis patients, the rate of increase of the PI stays at a 

lower level throughout this time period, although it is increasing near the end and reaches a 

maximum of 0.0790102 at day 9.06033.  This occurs when the PI is 0.588202.  The proliferative 

index is still below 60% after day 9, although it is increasing more at the end.  Here the 

mesenchymal stem cells from the osteonecrosis group have a uniformly lower proliferative 

index, and the rate of increase of the proliferative index is also significantly lower during the first 

seven days, often less than half the rate for the control group. 
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Figure 6.  Osteonecrosis group: PI, velocity, and acceleration 

dotted is PI, dashed is velocity, and solid is acceleration 

 

     The H3 model has been shown to yield highly accurate representation of stem cell growth, 

both for adult and embryonic stem cells.  In the previous section, the accuracy of H3 was verified 

for embryonic stem cells.  In this section its accuracy is also demonstrated for the proliferation of 

adult mesenchymal stem cells in vitro.  Furthermore the model applies not only in the case of 

counting the number of cells, but can also be used to model the proliferation index (PI) 

representing the rate of proliferation of a group of cells.  Expansion of mesenchymal stem cells 

ex vivo promises to be an area of medical importance [18], as therapies require many 

mesenchymal stem cells, which are only found at very low frequencies in bone marrow.  We 

recommend H3 as an appropriate mathematical model to represent such proliferation of stem 

cells. 
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Discussion 

     In analyzing the growth of embryonic stem cells, H3 is compared with the classical sigmoidal 

models Weibull, Gompertz, logistic, and Richards in [12], as well as hyperbolastic H1 and H2. In 

Section 3 we extend the comparison to the Deasy model, one of the prevalent models used for 

stem cell proliferation.  Note that the Deasy model is comparable to the exponential model in the 

sense that it does not include a carrying capacity, or limiting level of growth, in the assumptions.  

Thus growth does not slow with an increasing population size.  We believe this is one weakness 

of the Deasy model, particularly for long time frames in which growth must slow.  The Deasy 

model is close in concept to the exponential model but includes a parameter α to represent the 

mitotic fraction.  Here α represents the percentage of cells which continue dividing, while 1-α 

represents the percentage which have become quiescent.  Perhaps this model would display 

greater accuracy if ( )tα α=  or ( , )P tα α=  were allowed to vary with time or with time and 

population, more closely approximating the biological reality.  In this way it would be possible 

for α(t) to decrease with an increasing cell population, and very likely the resulting model would 

better fit experimental data.  Note that H3, as given in (3), is a non-autonomous differential 

equation in which the intrinsic rate of growth, jointly determined by δ, γ, and θ, does vary with 

time.  It is furthermore in the tradition of the classical sigmoidal models, so that population also 

has an effect on determining the overall rate of growth, which slows for higher population size 

P , as given in (3).  This is both the expected result corresponding to the biological theory, and it 

also corresponds more closely to the biological reality as reflected in experimental data. 
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     We have just observed how the significant difference in accuracy between the H3 and Deasy 

models for embryonic stem cells is directly related to the self-limiting nature of the growth found 

in the experimental data.  The biological basis behind the self-limiting growth is a fundamental 

point for those scientists seeking to better understand the proliferation of stem cells.  In the case 

of stem cells, growth may become self-limiting as a consequence of a reduction in the rate of the 

cells or because of an increase in the rate at which the cells differentiate to form new 

populations.  The slowing rate of proliferation could be caused by factors ranging from 

limitations in space or resources, to internal programming that tells the cell population it has 

reached the desired size, or external signaling that helps determine the rate of proliferation.  The 

balance between proliferation and differentiation could similarly be controlled by internal 

programming of the cells or external signaling.  To describe more fully the means of this control 

is one of the main issues for researchers studying stem cells.  Although our model does not 

directly solve these problems, it can give us important information describing the rate of growth 

and when the growth becomes self-limiting.   

     In the study of adult mesenchymal stem cell proliferation, the growth rate was measured using 

the proliferative index, which is a direct count of the percentage of cells in non-quiescent stages 

of the cell cycle.  The sigmoidal nature of the H3 model, as well as H1 and H2 of [1], allow for 

modeling of proliferative percentage as a function of time, whereas exponential type models such 

as Deasy do not apply.  In exploring the proliferative percentage of adult mesenchymal stem 

cells, the H3 model, its parameters, and the associated velocity allow a comparative analysis of 

cellular proliferation between patients with osteonecrosis and the control group.  There is a 

profound difference in the velocity, or rate of increase of the PI for these cells in the MTT assay.  

The cells from the control group exhibit a rate of increase approximately twice that of the 
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osteonecrosis group, reaching a maximum rate on day 6.31435, and reaching a plateau around 

day 8.  Although the limiting value for the control group is only somewhat larger, the 

osteonecrosis group is significantly delayed in approaching its limiting value.  This is revealed in 

analysis of the velocity '( )P t , or rate of change of the proliferative index, which does not reach a 

maximum until after day 9.  All of this analysis of cell proliferation supports the medical and 

biological analysis of [15], describing reduced proliferative activity of adult mesenchymal stem 

cells as an important factor in osteonecrosis. 

     Of the parameters for H3 describing the proliferation of the cells, the value of L directly tells 

us the limiting value for the cell population, while the parameters δ, γ, and θ jointly determine 

the rate of growth and the means by which the population approaches the limiting value, as 

described in the Methods section.  The parameter L, the limiting value for the population, holds 

the key information about the size the population will reach, and scientists can investigate what 

additional factors may alter the magnitude of L.  For the issue of the self-limiting growth, it turns 

out the inflection point of the curve is the key point.  This point is where the fastest rate of 

growth occurs and where the growth changes from self-accelerating to self-limiting.  Thus it is 

highly significant that the inflection point in H3 is more flexible than it is in other sigmoidal 

models.  In the embryonic stem cell proliferation data, we used '( )P t  and ''( )P t  to determine 

this maximum rate of growth of 339.922 thousand cells per day on day 4.75982.  In [1], the 

location of the inflection point is given by the time t = t0 that solves of the equation 

( )
( )

2
3

1 2 0
0 0 3/22 2 2 2

0 0

1 .
1 1

t
t t

t t

γ γ θθ
δγ δγ γ

θ θ
− −

  
  + = − −
  + +   

     (5) 
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In the case where θ=0, the solution reduces to 
0

1 1
,t γ

γ
γ δ
−

= ⋅  demonstrating the dependence of 

the location of the inflection point on the parameters δ and γ in this reduced case.  More 

generally the dependence of this point of transition from self-accelerating to self-limiting growth 

is more complicated, but it can still be determined from the equation (5) using numerical means.  

Furthermore, using all the parameters to define '( )P t  explicitly, it is possible to investigate the 

dynamics of the cellular proliferation and the transition to self-limiting growth.  Especially when 

investigating the role of additional factors in influencing the growth rate, it is helpful to see when 

and how the proliferation transitions from self-accelerating to self-limiting and what is the role of 

these additional factors.   

     Tight control and regulation of stem cell function is required within the body in order to 

achieve the proper function, and this control takes place through the stem cell niche.  

Researchers investigating the means of this control have focused on the role of cytokines in the 

local environment and the interaction with the internal programming of the stem cells [2].  

Scientists have furthermore tried to reproduce a similar control of the proliferation, 

differentiation and self-renewal of stem cells outside the body.  Watt and Hogan [19] suggest that 

approaching the full potential of stem cells to treat degenerative diseases will require a more 

thorough understanding of the regulation of stem cells through signals within the niche.  An 

important goal in stem cell research is to sufficiently understand the signaling and means of 

regulation within a given stem cell niche to gain control of the stem cells and their growth 

outside the body.  Achieving this goal would be comparable to establishing an ex vivo stem cell 

niche.   

     As much of the control of stem cell growth is believed to take place through cytokines, 

scientists have been actively researching the effects of cytokines on stem cell proliferation and 
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differentiation.  See, for instances, the papers of Heo et al. [20], Eiselleova et al. [21], Chung et 

al. [22], and Schuldiner et al. [23].  More generally, other conditions such as the level of oxygen, 

or of nutrients such as glucose, can also affect the growth of stem cells, as demonstrated in works 

such as [24, 25, 26].  Multivariable versions of the hyperbolastic growth models have been 

developed and applied in other works, and in a future work we plan to return to explore the issue 

of a multivariable model for stem cell growth that will aid researchers in measuring the effects of 

cytokines, oxygen, and other factors on the rate of proliferation.  Such a model could be useful in 

determining the effects of various cytokines on stem cell proliferation and differentiation.  

Furthermore an accurate model in this area is desirable, and it could help to explore the impacts 

of individual explanatory variables or relationships between several such variables.  In the work 

of Lemon et al. [27], a mathematical model is developed which describes the proliferation and 

differentiation of mesenchymal stem cells along artificial scaffolds, and the level of oxygen is 

shown to play a significant role.  This model helps to describe the proliferation of cells on 

artificial materials and can be expected to play an important role in the area of tissue 

engineering.  A multivariable version of the hyperbolastic models for stem cell growth may also 

have similar applications. 

     The hyperbolastic growth model H3 is very accurate in predicting the dynamic behavior of 

stem cells. This model can be used to understand the growth dynamics of cell populations such 

as cell proliferation and quiescence rates both in vivo and in vitro.  Proliferative index, another 

important measure of the rate of growth of a cell population that is often considered in scientific 

data, can also be modeled accurately with the hyperbolastic growth models.  For the analysis of 

stem cell growth of any type, we believe that the hyperbolastic model H3 or its multivariable 
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counterpart should be considered as a model of choice for representing growth dynamics of stem 

cells and also be compared with other growth models before a final decision is made.  
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