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CHAPTER I: INTRODUCTION TO AGING AND AGE-RELATED 
NEURODEGENERATION 

 

AGING AND DISEASE 
In the 1950s, Denham Harman reported a theory suggesting reactive oxygen species 

(ROS) generation was associated with the rate of aging1–3. Aging is broadly defined as a time-

dependent accumulative decline in physiological processes. This decline is tightly linked to 

dysfunction of redox signaling and control mechanisms because of continuous loss in genomic 

plasticity which ultimately increases one’s chances for disease and/or mortality due to free 

radical reactions1–4. More specifically, the mitochondrial theory of aging postulates that as cells 

age mitochondrial function declines due to accumulating mitochondrial ROS enables free radical 

reactions to occur and damage essential biomolecules, and as this damage aggregates the chance 

of disease and/or death increase5. 

Oxidation to major biomolecules has been shown to play a major role in aging and has 

been implicated in pathologies of age-related diseases such as cancers, pulmonary fibrosis, 

cardiovascular, autoimmune, and neurodegenerative diseases6–10. The pathophysiology of aging 

and disease are to no surprise similar since there’s an abundance of evidence from observational 

studies reporting oxidative stress (OS) as a major contributing factor through altered 

mitochondrial function for human morbidity and mortality4,11. However, the main difference 

between aging and disease seems to be related to the key role of oxidants in stem cell biology 

where they appear to regulate aging and age-related reformative aptitude1. Physiological levels 

of OS that surpass normal aging conditions and processes lead to the disruption of redox signaling 

and control mechanisms which contribute to the development of age-related disease4. The aging 

population includes individuals aged 65 years and older. Nationally, the aging population is 

expected to continue to grow at a rapid rate over the next several decades from 58 million in 

2021 to 88 million in 2050 (Figure 1A)—the Hispanic/Latino aging population is expected to 

increase at a more accelerated rate than other racial/ethnic groups12–14. Mexican Americans are 

the largest segment of the Hispanic/Latino population. As the aging population expands, 

corresponding increases in prevalence of age-related diseases, such as, cardiovascular disease, 

metabolic disorders, cancer, and neurodegenerative diseases will continue to burden the 
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healthcare system12–14. Figure 1B depicts the number of AD cases in the US by race/ethnicity 

through the year 2060. 

 

 

 
Figure 1. Projected number of US aged individuals and corresponding anticipated number of 
AD cases in the US through 2060. A. The number of US aged individuals from 2012 to 2060 by 
ethnic/racial group. Latinos show the greatest increase in US aged individuals. B. Expected 
number of US AD cases through 2060 by ethnic/racial group. Latinos display a larger increase in 
AD cases. (Figure credit: Wu, S., Vega, W. A., Resendez, J., & Jin, H. (2016). Latinos and Alzheimer’s 
Disease: New Numbers Behind the Crisis.)13. 

 
ALZHEIMER’S DISEASE 

Alzheimer’s Disease (AD) is a fatal neurodegenerative disease impacting thinking, 

learning, and cognitive function due to neuronal damage and accumulation of amyloid beta (A) 

plaques12–18. AD is the fifth leading cause of death in the aging population and the seventh leading 
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cause of death in the US12,13. Additionally, among the major causes of death—breast and prostate 

cancer, heart disease, stroke, and HIV have decreased or remained nearly the same, yet AD 

prevalence has continued to increase12,14. Among older adults, AD is the most common form of 

dementia characterized by the loss in cognitive function and behavioral competence that disrupts 

a person’s daily activities12,14,19. 

Two classes of AD exist based on the time of onset of the disease including Early Onset 

Alzheimer’s Disease (EOAD) and Late Onset Alzheimer’s Disease (LOAD)12,14,19. The age of onset 

for EOAD is typically earlier than 65 years of age, compared to LOAD which classically develops 

at 65 years of age or older12,14,19. EOAD is a familial disease having a rare autosomal dominant 

inheritance pattern mainly caused by mutations in three genes—APP, PSEN1, and PSEN2, all 

playing a role in the production/mal-processing of A peptide12,14,15,19. Contrary to EOAD, LOAD 

is sporadic, multifactorial, and genetically complex (i.e., 60-80% heritable with no single gene 

accounting for its heritability)19,20. A diverse array of environmental and genetic factors 

(mutations and/or polymorphisms in multiple genes) contribute to the development, 

progression, and severity of the disease16,19. Most AD cases (>90%) are late onset leaving early 

onset cases to represent less than 10% of total AD cases14,21. From here on, Alzheimer’s Disease 

and AD will be used to refer to LOAD. 

Currently, there are limitations in diagnosing individuals with AD, as an accurate diagnosis 

can only be made by relating clinical assessments with a brain tissue autopsy performed 

postmortem22. Although AD is the most common form of dementia, there are several other 

causes of dementia that are linked with different symptoms and brain abnormalities12,14,19. 

Identifying the cause of dementia can pose great difficulty because many people with dementia 

have mixed dementia due to brain changes associated with more than one cause of 

dementia12,14. Recent large autopsy studies revealed approximately more than 50% of individuals 

with Alzheimer’s dementia have AD brain pathology in addition to one or more causes of 

dementia, for example, cerebrovascular or Lewy body disease12,14. Diagnostic inconsistencies 

such as these are recognized in the AD field and efforts have been made to improve resolution 

in clinical settings. 
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The National Institute on Aging and the Alzheimer’s Association assigned three 

workgroups composed of individuals with balanced expertise and international representation in 

academia and industry to revise the 1984 criteria for AD dementia in 200923,24. The purpose of 

the revisions was to encompass diagnostic and research criteria for the pathophysiological 

progression of AD because it had become recognized that cognitive deficits and AD pathology 

develop gradually with no distinct event denoting its onset24,25. This is discussed in the revised 

criteria establishing that there are different qualitative and quantitative clinical phases of the 

disease, and pathophysiological processes that manifests in each phase by incorporating 

biomarkers causing disease state24. Thus, the three workgroups were assigned the following tasks 

to prepare (1) diagnostic criteria for AD dementia, (2) diagnostic criteria for mild cognitive 

impairment (MCI) the symptomatic AD pre-dementia phase, and (3) research recommendations 

for studying individuals with asymptomatic AD in the preclinical phase, meaning there is evidence 

of early AD brain changes without symptoms of MCI or dementia24. 

The workgroups designed core clinical criteria for diagnosing MCI and AD dementia for 

use in all clinical settings that could be applied with and without access to biomarkers, both fluid 

and imaging measures, requiring specialized tests and/or procedures24,25. In the clinical setting 

dementia secondary to AD is classified into two groups—probable AD dementia and possible AD 

dementia23. Dementia is diagnosed when cognitive or behavioral symptoms interfere with a 

person’s ability to complete routine activities assessed by patient history and objective cognitive 

testing23. Following diagnosis of dementia to provide a prognosis of probable AD dementia, the 

patient is assessed further by applying the core clinical criteria and using an assortment of 

approaches and tools for evaluation12,14,22,23. Formal neuropsychological evaluations, 

standardized mental status examinations, or informal evidence of worsening cognition provided 

by informants close to the patient are viable23. Patients showing gradual onset, and a well-

defined history of worsening cognitive decline with cognitive deficits in either amnestic 

presentation with evidence of declining cognitive function in at least one other cognitive domain, 

or a non-amnestic presentation23. Furthermore, patients with evidence of other neurological 

disease/conditions, non-neurological conditions, or use of medication significantly affecting 

cognition need to be ruled out23. 
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Similarly, core clinical criteria for diagnosis of MCI was initiated due to concerns of 

abnormal changes in cognitive impairment for the patients age/educational background 

reported by the patient, a close informant, or the observing clinician25. Subsequently, the patient 

is assessed by clinical and cognitive evaluations for evidence of mildly reduced performance in 

one or more cognitive domains that is greater than expected but does not significantly impact 

their social or occupational function, based on serial assessments or single evaluation along with 

medical/psychiatric history12,14,22,25. Upon further investigation ruling out additional systemic or 

brain diseases that also cause cognitive impairment the clinician can diagnose the patient with 

MCI that may or may not progress to AD dementia25. MCI due to AD can be diagnosed applying 

longitudinal cognitive assessments by demonstrating progressive cognitive impairment25. 

 

ALZHEIMER’S DISEASE PATHOPHYSIOLOGY 

Prominent pathological changes observed in AD are (1) the accumulation of extracellular 

A peptides producing senile plaques that block cell-cell signaling at synapses and/or (2) 

accumulation of intracellular hyperphosphorylated tau protein resulting in neurofibrillary tangles 

(NFTs) that inhibit transportation of essential molecules12,14–16,19,21. Accumulation of A plaques 

and NFTs generates a neurotoxic environment inducing inflammation by activating microglia and 

astrocytes for their clearance, as well as cellular debris12,14,18. These phagocytic brain cells upon 

activation by A release pro-inflammatory intermediates comprising of cytokines, chemokines, 

complement proteins, and ROS18. Induction of the pro-inflammatory state generates a vicious 

cycle of oxidative stress and inflammation fueling each other17. The association between 

inflammation and oxidative stress is well documented; DNA damage has been shown to occur 

due to increased oxygen uptake as a combative inflammatory response leading to elevated levels 

of ROS6. 

For diagnostic purposes in both MCI and AD, biomarkers are complimentary to enhance 

the certainty of AD pathophysiological process and are not to be used for routine purposes due 

to several limitations23,24. The two main categories of biomarkers are (1) A accumulation 

assessed by positive positron emission tomography (PET) imaging and low cerebrospinal fluid 

(CSF) A42 initiating or upstream clinical symptoms, and (2) downstream pathophysiological 
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neuronal degeneration or injury assessed by elevated tau levels in the CSF (both total and 

phosphorylated tau), and both decreased fluorodeoxyglucose uptake and atrophy, on PET and 

magnetic resonance imaging (MRI) in specific topographic patterns, respectively24,25. Biomarkers 

indicative of MCI due to AD require evidence of low CSF A42 and elevated CSF tau, while those 

indicative of AD dementia requires evidence of A and tau deposition in plaques and 

neurofibrillary tangles, respectively25. The biomarkers of AD have limited applicability because 

(1) the core clinical criteria provides adequate diagnostic accuracy/utility in most patients, (2) 

more research is needed to ensure that criteria incorporating biomarkers have been designed 

appropriately, (3) there is deficient standardization of biomarkers in different test settings and 

associated with disease phases, and (4) there is varied accessibility in different settings (e.g., 

experienced personnel and equipment) to conduct the testing23,25. 

 
ALZHEIMER’S DISEASE HEALTH DISPARITY IN MEXICAN AMERICANS 

The molecular and etiological events initiating AD pathologies remain to be determined16. 

The global population is diverse, however there are gaps in scientific literature in characterizing 

race/ethnicity-specific risk for disease development and progression26. First, it is important to 

note that health disparities in AD are also prominent in other racial/ethnic underserved 

groups12,14,27. Recently, it has been recognized that ethnic/racial factors significantly impact 

biological and medical risk factors for AD26,28. There are more non-Hispanic Whites (NHWs) living 

with AD than other racial/ethnic groups in the United States though per-capita Hispanics are 

more likely to have AD depending on their ancestry12,14,29. Hispanic is a broad term that 

encompasses individuals from cultures or countries with Spanish ancestry. Within the Hispanic 

population there are a variety of ethnic subgroups (i.e., Hispanic Americans or Caribbean 

Hispanic) attributable to geographical and cultural differences because each country of Latin 

America has distinct demographics, genetic structure, and migration history29. Hispanics are thus 

culturally and genetically heterogenous (admixed) due to long periods of isolation following gene 

exchanges between populations29. European, African, and Native American ancestry of varying 

proportions represent the Hispanic population, and previous studies indicated the overall 

increased risk in Hispanics may be driven by a specific ethnic group29. The Mexican American 



 

Danielle Reid 
 

7 

(MA) population in general has little-to-no African ancestry29. Presence of comorbid conditions 

(i.e., cardiovascular disease and diabetes) may explain in part, some of the disparity in AD 

prevalence12,14. The MA population represents majority of the Hispanic population and has one 

of the fastest growing aging groups in the United States28,30,31. It is projected that the proportion 

of aging MAs will increase by three times and rates of AD will grow six-fold among 

Hispanics28,30,31. Regardless of the growing evidence of racial and ethnic disparities in AD risk and 

the growing aging population, scientific literature examining the potential differing factors for 

development and progression of the disease is limited30,31.  

Other than age, the APOE e4 allele has traditionally been characterized as a major risk 

factor for LOAD pathogenesis12,14,15,19. APOE encodes for the apolipoprotein E, which transports 

cholesterol in the bloodstream and is a major cholesterol carrier in the brain; the gene has three 

common alleles known as e2, e3, and e412,14,19. Among the three forms of APOE, e2 is associated 

with decreased risk for AD compared to e3 and e412,14,19. One copy of the e4 APOE allele increases 

one’s risk for AD by three-fold and having two copies can increase the risk up to 12-fold; though 

these estimates are primarily based on Caucasian populations12,14,19. Frequency of APOE e4 

differs across racial/ethnic groups; for example, the Mexican American population has a lower 

frequency of the APOE e4 allele and this allele also appears to have less of an effect12,14,30,31. In 

the limited literature available, research conducted by various groups indicates Mexican 

Americans may suffer from significant health disparities including (1) increased risk for MCI and 

AD, (2) missed diagnosis (3) diagnosed at more progressed stages, (4) develop MCI and AD at 

younger ages, (5) lack the genetic predisposition (APOE e4 allele), and (6) endure a 

disproportionate load of modifiable risks for AD12,14,28,30,31. In the Mexican American population, 

type-2-diabetes (T2D), depression, stroke, and obesity are common risk factors for developing 

cognitive impairment, although the reason for association between these comorbid conditions 

and cognitive impairment remains unclear28. This emphasizes the importance of longitudinal 

studies to improve diagnosis, treatment, and prevention of Alzheimer’s disease in the Mexican 

American population. 

Type-2 diabetes, a heterogenous metabolic disease, has been exemplified as having 

similar features in pathology to AD such as impaired glucose utilization, reduced mitochondrial 
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activity, and both metabolic and mitochondrial dysfunction2,16. T2D is characterized by 

hyperglycemia that is fundamentally caused by insulin resistance leading to insulin deficiency16. 

Pathophysiological features of T2D are islets of Langerhans presenting cell loss and/or 

dysfunction, and spontaneous islet amyloid polypeptide aggregation16. Islet amyloid polypeptide 

is a protein that is co-expressed with insulin secreted by cells and is a major component of islet 

amyloid16. Interestingly, formation of islet amyloid deposits is toxic to cells and there are reports 

that pancreatic amyloid islet degeneration is associated with NFT formation16. Recent evidence 

suggests insulin regulates A and tau proteins, and numerous studies have established links 

between insulin resistance, diabetes, and AD. T2D increases one’s risk for AD by two-fold and has 

been associated with progression of more severe forms of cognitive impairment32. Mexican 

Americans are more likely to develop T2D, which would suggest their increased risk for 

developing AD may be attributed to their metabolic health33. O’Bryant et al., conducted a study 

to create a serum-based biomarker profile of AD among MAs to compare with prior studies 

assessing markers for NHWs31. Top markers from their study suggested MAs exhibit a more 

metabolic phenotype including proteins related to obesity, insulin resistance, T2D, and metabolic 

syndrome, while NHWs exhibit a more inflammatory phenotype31. This might point to 

mitochondrial function as a contributing factor for the observed metabolic phenotype and 

differences in progression for MAs with LOAD. 

 

MITOCHONDRIAL BIOLOGY & GENETICS 
Mitochondria are essential to bioenergetic processes as they produce 90% of cellular 

energy to regulate cellular redox conditions, produce ROS, maintain Ca2+ homeostasis, synthesize 

and degrade biochemical intermediates, and regulate cell death via activating the mitochondrial 

permeability transition pore (mtPTP)15,34. The mitochondrial genome (i.e., mtDNA) is 

approximately 16.5 kilobases in size and encodes for 13 subunits of the respiratory complex, 22 

tRNAs, and 2 rRNAs (12S and 16S)15,34,35. Remaining mitochondrial components including residual 

subunits of the respiratory complex, intermediary metabolizing enzymes, and mitochondrial 

biogenesis proteins necessary for proper function of the organelle are encoded by the nuclear 

genome (i.e., nuclear DNA; nDNA) and integrated into the system15,34. Complexes I, III, and IV are 

responsible for oxidizing reducing equivalents using oxygen15,34. Electrons flow through the 
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complexes to pump protons across the mitochondrial inner membrane to generate an electrical 

gradient15,34. This electrical gradient allows ATP production for energy by coupling oxidation with 

phosphorylation of ADP15,34. Within the mitochondria, ROS are predominantly generated at 

complexes I and III of the ETC15. 

There are 3 factors considered that can disrupt mitochondrial bioenergetic processes and 

cause disease variation in mtDNA sequence or nDNA-coded mitochondrial gene sequences and 

gene expression, or variation in calorie intake and calorie demands of the organism influenced 

by the environment15,16. Naturally, mutations to the mitochondrial genome are mixed with non-

mutant mtDNA within cells, known as heteroplasmy, at varying degrees and are randomly 

distributed into daughter cells after replication (Figure 2)5,15,34,35. mtDNA mutations may impact 

protein synthesis or mitochondrial-encoded polypeptides and have been found to be clinically 

relevant based on three classes34. 

 

Figure 2. Elapsed development of mtDNA heteroplasmy level changes. During the human 
lifespan, including development and aging (horizontal axis), mutated mtDNA molecules inherited 
from the maternal lineage (red) can buildup in non-dividing/post-mitotic cells (top) or 
dividing/proliferating cells (not shown) through relaxed replication, while mutant mtDNA 
molecules in proliferating/dividing cells are removed (bottom) via vegetative segregation. 
Throughout the aging process new mutations known as de novo somatic develop (yellow). Cells 
with mutated mtDNA molecules above the biochemical threshold causes mitochondrial 
dysfunction through disruptions in oxidative phosphorylation, which can lead to cellular 
dysfunction and disease. Maternal genetic germline bottleneck throughout generations causes 
rapid changes in heteroplasmy levels due to disproportionate segregation of wild-type and 
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mutant mitochondrial genomes. (Image credit: Stewart, J. B., & Chinnery, P. F. (2021). Nature 
Reviews Genetics, and van den Ameele, J., Li, A. Y. Z., Ma, H., & Chinnery, P. F. (2020). Seminars 
in Cell & Developmental Biology)35,36. 
 

One class is characterized by recent deleterious mutations that can result into matrilineal 

disease due to the nature of inheriting mtDNA, and the distribution of heteroplasmic cells caused 

by meiotic and mitotic cell division34. Replicative segregation including meiotic and mitotic cell 

division can change the percentage of mutant and normal mtDNA approaching homoplasmy in 

either direction, however, mutant mtDNAs in post-mitotic cells are preferentially clonally 

amplified through nonselective genetic drift15,34,35,37. Preferential clonal expansion of mutant 

mtDNA in non-dividing cells results from non-selective or random replication due to increased 

replication frequency or the ability to replicate faster potentially caused by large deletions 

making the mitochondrial genome smaller in size35. Clonal expansion of mtDNA influences 

specific mutations that reach detectable levels and if the number of mutations exceed the 

biochemical threshold level, there will be biological effects and consequences to oxidative 

phosphorylation (OXPHOS)35. 

 The second class is ancient adaptive variants that have accumulated down diverging 

maternal lineages when humans voyaged out of Africa predisposing to common diseases34. 

Mitochondrial variants with minimal to mild impact on health/fitness are constantly integrated 

into populations and can be selectively augmented in when advantageous in the energetic 

environment inhabited34. Succeeding accumulation of random mtDNA mutations in these 

subpopulations with different mitochondrial variants enriched based on their specific 

geographical location created haplogroups, or localized subpopulations with similar mtDNA 

haplotypes34. The haplogroup originated in Africa was then diverged into two mtDNA 

macrohaplogroups after initially departing from Africa15,34. The third class of mtDNA mutations 

are somatic mutations that appear throughout life in tissues34. Somatic mtDNA mutation rates 

can be modified by nuclear or mitochondrial variants and environmental factors34,35,38. 

Additionally, bioenergetic dysfunction and disease can develop from mutations in nDNA-coded 

mitochondrial components—those related to mitochondrial biogenesis can be destabilizing 

causing mtDNA deletions and/or depletion and ultimately lead to degenerative diseases34,35. 
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MITOCHONDRIAL DYSFUNCTION IN AGING & ALZHEIMER’S DISEASE 

 In the literature, most studies that report strong correlations between age and 

mitochondrial function have been focused on studying skeletal muscle5, signifying common 

features of aging such as reduced mitochondrial enzyme activity, respiratory capacity, and 

phosphocreatine recovery time, in addition to enhanced ROS production5. Since mitochondria 

harbor different ratios of non-mutant and mutant mtDNA following clonal expansion is a 

universal process in humans, mutations with low heteroplasmy levels will have little to no impact 

because naturally mitochondria are distributed in cells with varying numbers of mtDNA 

depending on the cell’s bioenergetic needs5,35. It has been reported that germline cells with 60-

80% mutant mtDNA surpass the biochemical threshold, at which point an individual is at high risk 

for developing a mitochondrial disease5,35. 

Impaired mitochondrial function has been implicated in numerous metabolic and 

degenerative diseases including AD. Mitochondria are essential to the brain because neuronal 

cells have limited glycolytic capacity to provide a constant supply of oxygen and energy for 

cellular/molecular needs15,16. Additional pathological changes exhibited in AD are reduced energy 

metabolism and mitochondrial dysfunction16,21. It is theorized that mitochondrial stress, OS, and 

mitochondrial dysfunction enhance pathology and play important roles in the pathogenesis of 

AD21,34. Mitochondrial stress can develop due to immense amounts of ROS, Ca2+ dysregulation, 

and/or other factors34. Calcium predestined for the mitochondria are released from the ER in 

mitochondrial-associated membranes (MAMs) containing presenilin complexes, and improper 

MAM Ca2+ regulation can cause mitochondrial ROS production leading to activation of 

apoptosis34. A is an important factor capable of inducing mitochondrial dysfunction and 

increasing ROS production in AD21. Mitochondrial dysfunction and excessive levels of A can 

activate mtPTP destroying neurons with defective mitochondria34. Further, A decreases the 

activity of essential ETC enzymes and alters mitochondrial dynamics18,21. This has been 

demonstrated in the hippocampal neurons of AD patients18. Diminished activity of key enzymes 

of intermediate metabolism is a characteristic of abnormal cerebral glucose utilization and these 

enzymes are highly susceptible to oxidative damage16. Decreased pyruvate dehydrogenase 

activity specifically causes reduced levels of acetyl-CoA and subsequently plays a role in the 
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decreased synthesis of acetylcholine in presynaptic neurons16. Reduced production of the 

neurotransmitter in presynaptic neurons has been correlated with progressive mental 

disturbance in AD patients16. 

 

THE DAMAGING EFFECTS OF REACTIVE OXYGEN SPECIES AND OXIDATIVE 
STRESS IN ASSOCIATION WITH AGING & AD 

Reactive oxygen species are partially reduced and highly reactive oxygen-containing 

molecules in comparison to molecular oxygen (O2); ROS are often highly reactive molecules, 

otherwise termed free radicals, due to the presence of one or more unpaired electron(s), non-

radicals, and singlet oxygen39. All aerobic cells produce ROS through enzymatic and non-

enzymatic mechanisms7,17. ROS may also originate from exogenous sources such as pollution, 

tobacco, radiation, physical/chemical mutagens, chemical carcinogens, and heavy or transition 

metals where they metabolize into free radicals inside the body40. Several types of reactive 

oxygen species and how they are formed are represented in Figure 3. 

 
Figure 3. Several biologically relevant reactive oxygen species & their generation. Molecular 
oxygen is converted to singlet oxygen via photosensitization causing an energy transfer. Singlet 
oxygen is a ROS that oxidizes guanine to 8oxoG. Formation of superoxide radical anion is from 
electron transfers and enzymatic catalysis to molecular oxygen. Superoxide radical anion can be 
converted to hydroperoxyl radical from a proton. Conversion of superoxide radial anion to 
peroxynitrite is through a process of L-arginine producing nitric oxide (NO) via nitric oxide 
synthase (NOS). Most superoxide radical anion is converted to hydrogen peroxide via superoxide 
dismutase (SOD). Hydroxyl radical is formed from hydrogen peroxide via Fenton or Haber-Weiss 
Reactions resulting from an interaction of hydrogen peroxide with a redox-active metal ion. 
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Hydroxyl radical is highly reactive and are known to react mainly with phospholipids. Hydrogen 
peroxide converts to hypochlorous in the presence of chloride and myeloperoxidase (MPO). 
Hypochlorous is particularly damaging to proteins by oxidizing its amino acids. 
 

Reactive oxygen species play a role in extraction of energy from organic molecules and 

are essential for cell signaling and regulation of immunological defenses and metabolism— 

processes vital for proper cellular function9,21,28. There are several intracellular sources of ROS 

including (1) mitochondria, (2) peroxisomes, and (3) endoplasmic reticulum (ER). Under normal 

conditions, ROS are generated from electron transfer reactions and in the presence of transition 

metal ions during processes of inflammation, respiration, and cellular metabolism, with the 

mitochondria being the primary source of production7,9,10,15,41. Peroxisomes are another 

endogenous source of ROS as they contain several oxidases capable of generating H2O2, which is 

then utilized by peroxisomal catalase to oxidize substrates involved in peroxidative reactions; 

these reactions are especially important in the liver and kidney to help detoxify molecules 

entering circulation7. Additionally, the smooth ER contains enzymes such as, cytochrome P-450 

that catalyzes chain reactions to oxidize unsaturated fatty acids, detoxify lipid-soluble drugs, and 

other harmful metabolic products for degradation7,9. 

From various electron transfers and enzymatic catalysis reactions, molecular oxygen (O2) 

can be reduced to unstable superoxide radical anion (O2
•-), which is then converted to hydrogen 

peroxide (H2O2) by acidic conditions or superoxide dismutase (SOD)7,15. Hydrogen peroxide is 

more stable, than the superoxide anion radical and is capable of diffusing through biological 

membranes7,15. Even though hydrogen peroxide is more stable and therefore less reactive, it can 

be decomposed to hydroxyl radical (OH) in the presence of redox-active metal ions such as, iron 

or copper, via a Fenton or Haber-Weiss reaction10,15,16,39. Iron is a transition metal that acts as a 

catalyst for redox reactions and helps form crucial complexes for oxygen transport and 

participates in cellular respiration42. Mitochondrial iron is necessary for heme synthesis and iron-

sulfur cluster (ISC) biosynthesis, which are important for mitochondrial metabolism under normal 

physiological conditions42. Enhanced formation of ROS via Haber-Weiss and Fenton reactions can 

prevent mitochondrial uptake of cytosolic iron causing saturation of the iron transferrin protein 

and ultimately lead to elevated levels of plasma iron9,42. Elevated plasma iron and generation of 

ROS eventually result in pathological effects observed in arthritis, cirrhosis of the liver, and 
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depletion of beta cells in the pancreas contributing to diabetes and cardiomyopathy42. 

Friedreich’s Ataxia (spinocerebellar ataxia), a neurological disease with potential to affect the 

heart, is caused by mitochondrial iron overload due to mutations in the gene frataxin encoding 

for the mitochondrial protein frataxin42. Frataxin binds iron and is involved in synthesis of ISCs 

and heme42. Thus, development of secondary disease could be because of iron-mediated 

enhancement to mitochondrial ROS production in tissues leading to mutations to the 

mitochondrial genome and cause progressive mitochondrial dysfunction impacting cardiac and 

beta cell function. 

The roles of ROS can be considered paradoxical because they serve as essential 

biomolecules for regulating cellular functions but are toxic by-products of cellular metabolism 

dependent upon the concentrations of the ROS produced7. This contradictory phenomenon is 

observed with reactive nitrogen species such as nitric oxide because despite its cytotoxic effects, 

it functions as a signaling molecule in mediating vasodilation and is used for microbicidal killing 

in macrophages7. Aerobic cells contain antioxidant defense systems, composed of nonenzymatic 

and enzymatic antioxidants (e.g., glutathione, flavonoids, SOD, catalases, and glutathione 

peroxidase) which protect cells from ROS-related injuries by neutralizing these species to normal 

physiological levels9,39. However, an imbalance between oxidant production (i.e., prooxidants), 

and the antioxidant capacity of the cell to neutralize ROS and/or repair resulting oxidative 

damage is known as oxidative stress6,7,17,39. Increased levels of ROS or ROS evasion from 

antioxidant pathways causes damage of major biomolecules, oxidatively modifying lipids, 

carbohydrates, proteins, amino acids, and nucleic acids5,8,9,39.  

The link between OS and age-related diseases lies in modified biomolecule products, such 

as improper folding/unfolding of proteins, aliphatic side-chain accumulation, advanced oxidation 

protein products, and modified nucleic acid bases. This can be attributed to the fact that OS leads 

to subsequent oxidation of cellular components, activation of cytoplasmic and nuclear signal 

transduction pathways, modulation of gene expression and protein levels, and alteration of DNA 

polymerase activity causing cellular senescence and unsuccessful replication/transcription6,17. 

Damage to DNA can cause mutagenic lesions such as single and double strand breaks, inter/intra-

strand crosslinks, DNA-protein crosslinks, sugar fragmentation products, and base oxidation. 
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Subsequent consequences of DNA damage are mutations, microsatellite instability, loss of 

heterozygosity, chromosomal aberrations, and altered gene expression6. Oxidative damage to 

DNA can be repaired through a variety of pathways including base excision repair (BER), 

nucleotide excision repair and mismatch repair; BER is primarily responsible for repairing bases 

damage by oxidation9,39,41. Failure of and of these repair mechanisms or persistence of oxidative 

damage can lead to mutagenic lesions/mutations and successive toxicity, apoptosis of cells, 

and/or malignancy.  

Oxidation of guanine (G) via addition of hydroxide to the eighth position by singlet oxygen 

to 8-oxo-7,8-dihydroguanine (8oxoG) is one of the most prevalent mutagenic base 

modifications9,10,17,43. Guanine is more readily susceptible to oxidative stress due to its low 

oxidation potential21,43. There are various oxidized products of 8oxoG depending on the context; 

8oxoG is the oxidized base, 8oxodG is the oxidized nucleoside (8-oxo-7,8-dihydro-2’-

deoxyguanosine), and 8oxodGTP is the oxidized nucleotide (8-oxo-7,8-dihydro-2’-

deoxyguanosine triphosphate)6,9,17,41. Oxidation of guanine causes a lack of specificity in base 

pairing, misreading of the modified base and adjacent nucleic acids9,43. During base pairing, 

8oxoG takes an anti or syn conformation—anti follows Watson-Crick pairing rule by pairing with 

cytosine (C), and syn pairs with adenine (A).43 Furthermore, the mutagenic property of 8oxoG or 

8oxodGTP can cause transversion substitutions which can ultimately alter protein 

activity6,9,17,41,43. In events of DNA replication or synthesis, 8oxodGTP can be misincorporated 

opposite deoxyadenosine (dA) resulting in a A>C transversion, and 8oxoG/8oxodG results in a 

G>T transversion (Figure 4)6,9,17,41,43. 
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Figure 4. Overview of Mutagenesis of Oxidized Guanine in DNA. Oxidized guanine has 
mutagenic capabilities whether it is in native DNA (8oxoG or 8oxodG) or a free-floating nucleotide 
in the deoxynucleotide pool to be incorporated during replication. A. Oxidation of G in native 
double strand DNA (dsDNA) causes the modified base to be paired opposite deoxycytidine (dC). 
Subsequent replication without the removal of 8oxoG in the template strand by BER or other 
DNA repair pathways can result in the mispairing of dA opposite the modified base. Further 
replication of the dsDNA may result in deoxythymidine (dT) to be correctly paired with dA causing 
a G:C to T:A transversion. B. Oxidation of guanine in the deoxynucleotide pool can be 
misincorporated opposite dA during replication. An additional round of replication can 
incorporate dC opposite the oxidized base resulting in a A:T to C:G transversion. This figure was 
created with BioRender.com. (Figure credit: Reid, D. M., Barber, R. C., Thorpe, R. J., Sun, J., Zhou, 
Z., & Phillips, N. R. (2022). Npj Aging)44. 
 

The G>T transversion is possibly more common than A>C transversion because 8-

oxodGTP in the nucleotide pool can be degraded into 8-oxodGMP and pyrophosphate by NDP-

linked moiety X-type motif 1, and further degraded to 8-oxodG for removal6,9,41. Several studies 

have described 8-oxodG accumulation in nDNA and mitochondrial DNA (mtDNA) with age in vivo 

and in vitro, as well as decline in DNA repair activity6,9. 

Both modifications (8oxoG and 8oxodG) are considered biomarkers for oxidative stress 

and can be quantified to indicate DNA damage and repair rate9,10. 8oxoG is one of the most 

studied oxidative DNA modifications due to its highly mutagenic properties and has great clinical 

significance9. Biomarkers of oxidative stress/damage may serve as a diagnostic tool for assessing 

age-related disease risk and aid in the identification of therapeutic targets or evaluating 

therapeutic efficacy6,17. For example, 8oxoG and/or 8oxodG are biomarkers for COPD, cancer, 
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and chronic kidney disease, also, accumulation of 8oxodG in nDNA showed predictive significance 

for breast cancer risk9,17. Growing evidence has suggested 8oxoG and 8oxodG could serve as 

biomarkers for AD risk as well. 

The brain is vastly susceptible to oxidative stress because of its high energy demand and 

oxygen consumption, abundance of lipids and iron, and a relatively insufficient antioxidant 

defense18,21. Accumulation of ROS modifies the function and expression of antioxidant enzymes, 

which has been observed in the central nervous system and peripheral tissues of AD patients18,21. 

Also, in AD brains high levels of DNA strand breaks were found in the hippocampus and cerebral 

cortex21. It is important to note that oxidative stress is a prominent contributor to A aggregation 

and hyperphosphorylated tau, and numerous studies have provided evidence suggesting OS 

contributes to tau pathology because fatty acid oxidation accelerates tau polymerization18,21,39. 

A peptides can bind with copper or iron to induce OS; in the hippocampus, amygdala, and other 

brain regions exhibiting severe AD histopathological changes showed abnormally high levels of 

copper and iron21. 

There is growing evidence suggesting a correlation between common pathological 

changes in AD and oxidative DNA damage18,21,39. Numerous studies have shown increased 

oxidative DNA and RNA damage in AD21. It is well established that mitochondria are predominant 

generators of ROS, moreover, the mitochondrial genome lacks histones and has reduced capacity 

to repair DNA increasing their susceptibility to OS and subsequently mitochondria are more 

prone to oxidative DNA damage16. The most common forms of oxidative damage observed in AD 

brains are 8oxodG and 8oxoG21. In the cortex and cerebellum of AD patients compared to 

controls, higher levels of 8oxodG were observed together with significant levels in the ventricular 

CSF6. Elevated levels of both forms of oxidatively modified guanine in AD brains have been 

demonstrated in nDNA and mtDNA when compared to age-match controls6. Mitochondrial 

dysfunction causes an increase in mtDNA somatic mutation rate, reduced energy metabolism, 

increased ROS, and intensifies the mitochondrial oxidative environment15. The cycle of abnormal 

mitochondrial function and activity increases apoptotic signals and will lead to diminished tissue 

function and will eventually lead to organ failure and age-related disease15. Altogether this 

evidence indicates mitochondrial-induced oxidative stress may play an important role in the 
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progression and pathophysiological changes in the brain of AD that relate to the endophenotype 

(i.e., a quantitative biological trait with relative heritability that consistently depicts the function 

of a distinct biological system and thus better explains the cause of death compared to the 

broader defined clinical phenotype45–47) observed in AD because neurons and mitochondria are 

sensitive to oxidative stress inducing detrimental cellular features such as, mitochondrial 

dysfunction, metal toxicity, and inflammation (Figure 5)18. 

 

 
Figure 5. Cellular and molecular features of AD and their association to oxidative stress, 
inflammation, and neurodegeneration. In the aging brain, increased ROS, mitochondrial 
damage, and abnormal mitochondrial bioenergetics contribute to the developing toxic 

environment. Oxidative stress can be induced by several factors, such as, A plaques, 
neurofibrillary tangles, microglia, astrocytes, etc. Brain inflammation is at the center as it is 
affected by plaques and tangles activating neuronal phagocytes, in addition to several other 
molecular factors. The induction of the pro-inflammatory state generates a vicious cycle of 
oxidative stress and inflammation fueling each other that contributes to neurodegeneration. 
8oxoG is frequently observed in neurodegeneration and may serve as a biomarker for assessing 
disease risk, presence and/or progression of disease, and/or a therapeutic target. This figure was 
created with BioRender.com. 
 

LIMITATIONS OF CURRENT DETECTION METHODS FOR MODIFIED 
BASES/OXIDATIVE DNA DAMAGE 
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The Alzheimer’s Association highlights the need for simple and inexpensive tests that 

could aid in the diagnosis and/or assess the risk for development of AD12. In 2019, the Alzheimer’s 

Association reported that there were three PET radiotracers approved by the U.S. Food and Drug 

Administration to aid clinicians in diagnosing AD; however, at the time they couldn’t be used to 

provide a conclusive diagnosis in clinical settings in addition to other diagnostic criteria14. 

Substantial advancement has undergone in the past few years regarding the evaluation of AD 

hallmark pathology, which now allows for the identification of elevated levels of A and 

phosphorylated tau in the CSF, and brain imaging via PET to locate accumulated A and 

phosphorylated tau12. Biomarkers are measurable biological factors that are specific features 

related to the disease pathophysiological processes and can denote the manifestation or absence 

of a disease, risk for disease development, or disease progression.12,14,24 Oxidative stress and 

subsequent oxidative damage has been observed in most diseases and their contribution to 

disease pathology can vary between diseases6. Since mitochondrial oxidative damage to guanine 

appears to play a role in AD, it may be useful for distinguishing phenotypic differences observed 

in certain populations, and a source of relevant modifiable risk. Biomarkers of oxidative damage, 

specifically 8oxoG and 8oxodG, may serve as a new source for clinical and experimental studies 

to transcend current problems with risk assessment, diagnosis, treatment, and elucidating the 

molecular mechanism contributing to AD pathology and progression. 

There are several methods to detect and quantify global oxidatively damaged DNA such 

as, quantitative polymerase chain reaction (qPCR), in situ imaging, immunological techniques, 

high performance liquid chromatography (HPLC), liquid chromatography-mass spectroscopy (LC-

MS/MS), and gas chromatography-mass spectroscopy (GC-MS)6,8–10,41. However, these methods 

have considerable shortcomings and lack of reproducibility among the techniques due to 

dissimilar background level detection of oxidation8,10,41. Immunological techniques, such as ELISA, 

seemingly have poor sensitivity and quantification ability of oxidized guanine compared to other 

methods currently used in the field. These techniques require raising antibodies against the 

modified base of interest and antibodies against 8oxoG have been found to be particularly cross-

reactive with similar canonical bases, resulting overestimating levels of oxidized bases10. 
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Furthermore, the antibodies lack specificity since most oxidized bases are poor antigens since 

their oxidation results in a subtle chemical change10. 

Chromatographic techniques serve as a better option to immunoassays because they 

have a higher sensitivity and can structurally identify modifications. Unfortunately, sample 

preparation for chromatographic techniques typically involves intricate DNA extraction, 

enzymatic digestions, and separation steps for isolation of oxidized guanine, further complicating 

the process, reducing throughput, and requiring experienced professionals to perform 

analysis9,41. HPLC can detect and measure 8oxoG; however, columns utilized for the separation 

process are not suitable for modified nucleosides, but with the addition of electrochemical (EC) 

detection 8oxodG quantification is achieved6,10. HPLC-EC has been thought to generate DNA 

mutations during sample preparation and, despite improvements made to the technique, 

artificial oxidative damage is still observed6. MS has been applied to previous HPLC and HPLC-EC 

techniques however it increased the cost of analysis and complicated protocols by introducing 

various labeled internal standards and artificial oxidation reactions to nucleosides during 

preparation9,10. Alternatively, GC-MS can be employed with comparable results to HPLC 

techniques by introducing known amounts of 8oxoG in samples or with pre-purification through 

HPLC or immunoaffinity to help reduce artifactual oxidation of traditional bases during sample 

preparation6,8,10. For the detection of 8oxoG, HPLC-MS/MS has shown great applicability and is 

considered the gold standard; however, this method is lengthy in time, has a considerable 

amount of preparation steps, which of some require prominent expertise and costly 

equipment48. These methods for detecting and quantifying DNA damage are deficient in 

identifying specific genome locations of the damage, therefore researchers investigating links 

between DNA damage and clinical phenotypes lose appreciation for the operable deleterious 

effects of the damage because the location can elucidate between protected and unprotected 

genomic regions and undiscovered mechanisms supporting distribution of damage and/or repair 

in the genome48,49. 

In the past several years, rapid and continuous advances in deep-sequencing technology 

have revolutionized the ability to interrogate the genome at the nucleotide level. Recent 

development and release of third-generation sequencing platforms have enabled researchers to 
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generate larger amounts of data at faster rates than even before50,51. With this new technology, 

new approaches have been developed in detecting modified bases at a greater resolution. 

Newley developed methods for localized detection of 8oxoG and its repair intermediates within 

1kb follow DNA damage enrichment via arrays or sequencing by pull-down or chemical 

biology48,49. Reviews of these techniques discuss the different approaches and their strengths 

and weaknesses48,49. Currently there are approximately seven techniques that employ different 

affinity enrichment assays that are NGS-based including: OG-Seq (hyperoxidation and biotin-tag 

pull-down)52, OGG1-AP-Seq (in vitro enzymatic excision of 8oxoG and biotin-tag pull-down)53, AP-

Seq (biotin-tag pull-down)53, OxiDIP-Seq (ssDNA immunoprecipitation-based enrichment 

assay)54, Click-code-Seq (enzymatic excision of 8oxoG and Click-tag pull-down)55, snAP-Seq 

(hydrazine-iso-Pictect-Spengler- and biotin-tagged pull-down via Click chemistry)56, and enTRAP-

Seq (8oxoG affinity enrichment by His-tagged OGG1 K249Q mutant and immobilized metal 

affinity chromatography57)48,49. Unfortunately, these techniques have additional limitations such 

as their several hundred base pair resolution is dependent on DNA fragment size49 and 

approaches using sequencing by enrichment require substantial specificity to bind and pull-down 

the modification58. Furthermore, among these techniques, Click-code-Seq and snAP-Seq are the 

only two approaches that reach the single nucleotide resolution, but reagents used for these 

approaches are not commercially available49. 

Although single molecule sequencing methods have the advantage of being able to 

directly read nucleotides and their modified derivatives within DNA, in this project we did not 

utilize these particular methods due to their complexity, cost, and necessity for enhanced 

specificity to the base lesion 8oxoG. There are two approaches available for NGS including short-

read sequencing and long-read sequencing59. In the context of investigating transversion 

mutations indicative of 8oxoG, short-read sequencing is advantageous because the utility is lower 

in cost and greater accuracy which are important for variant detection is and population-based 

studies with large amounts of samples59. A previous study conducted in 2018 by Kauppila, et.al., 

demonstrated the feasibility in taking advantage of the mutagenicity of 8oxoG to detect and 

quantify oxidative DNA damage by investigating the 8oxoG transversion mutation G>T after 

sequencing60. Regardless of all the variance between methods utilized to locate 8oxoG, evidence 
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throughout the literature generally indicates that the distribution of genomic 8oxoG is not 

random and that it may be related to transcriptional activation, and chromosomal and chromatin 

structures, wherein open regulatory regions are especially vulnerable to oxidation48. 

 

PROJECT OVERVIEW 

 Genetic studies of AD have revealed multi-genetic risk factors for developing the disease 

as well as endophenotypic differences in AD manifestation. However, genetic risk factors cannot 

completely explain the development of AD which further indicates the heterogeneous nature of 

AD pathophysiology. Studies characterizing the molecular and cellular conditions effected by AD 

point to oxidative stress, inflammation, altered metabolism, and mitochondrial dysfunction as 

underlying features of the disease. Within the Mexican American population metabolic health is 

of great concern and may be a contributing factor for advanced risk to AD. Mexican Americans 

have a greater prevalence of age-related diseases as T2D and AD2. Both conditions have similar 

pathology and display abnormal mitochondrial function and activity. The association between 

comorbidities burdening the MA population and cognitive decline is unclear, as well as the cause 

of their observed metabolic profile in individuals diagnosed with AD. Assessment of blood-based 

mitochondrial dysfunction via identifying oxidative mutations could help our understanding in 

disease risk, severity, and manifestation for Mexican Americans. 

 

Hypothesis: Mexican Americans will exhibit elevated levels of oxidative damage due to the 

number of metabolic comorbidities that affect the population. 

 
This hypothesis will be tested using two blood fractions (buffy coat PBMCs and plasma) from 

participants of TARCC to characterize mitochondria function in cognitively impaired aged 

Mexican Americans. The following chapters investigates mitochondrial health from buffy coat 

and plasma separately. 

 

INNOVATION 

 The work described here contributes to the limited literature characterizing Alzheimer’s 

disease in the Mexican American population. We investigate underlying factors possibly 

contributing to neurodegeneration caused by AD which may help explain the missing heritability 



 

Danielle Reid 
 

23 

and additional features of the health disparity in MAs. This work is unique because we focus on 

utilizing blood-based indices of mitochondrial dysfunction via exploiting the mutagenicity of 

8oxoG. Transversion substitution mutations result when 8oxoG is left unrepaired. Mapping these 

transversions is well-documented in various cancer types to determine mutational signatures 

that may relate to disease; however, employment of this approach is sparse among AD studies. 

Here we investigate all possible transversion substitutions specifically indicative of 8oxoG within 

the mitochondrial genome to determine its potential role in aging MAs brain health compared to 

their non-Hispanic White counterparts. 
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CHAPTER II: MITOCHONDRIAL DNA MUTATIONAL LOAD 
INDICATIVE OF 8OXOG OXIDATIVE DAMAGE FROM BUFFY 

COAT IN MEXICAN AMERICANS WITH COGNITIVE 
IMPAIRMENT 
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REID, D. M., BARBER, R. C., THORPE, R. J., SUN, J., ZHOU, Z., & PHILLIPS, N. R. (2022). MITOCHONDRIAL DNA 

OXIDATIVE MUTATIONS ARE ELEVATED IN MEXICAN AMERICAN WOMEN POTENTIALLY IMPLICATING ALZHEIMER’S 

DISEASE. NPJ AGING, 8(2). HTTPS://DOI.ORG/10.1038/S41514-022-00082-1 

 

INTRODUCTION 
The US aging population, characterized as individuals 65 years of age and older, is 

expanding at a rapid rate and is expected to grow for the next several decades reaching 88 million 

by 205027. Correspondingly, the prevalence and number of age-related diseases, including 

Alzheimer’s disease (AD), are anticipated to increase and further burden our healthcare system27. 

AD is the sixth leading cause of death in the US, and while the prevalence of other leading causes 

of death in the US have decreased or remained about the same, the number of deaths due to AD 

has significantly increased from the year 2000 to 201927. 

 

Alzheimer’s disease is a fatal neurodegenerative disease attributed to neuronal damage 

and accumulating amyloid- (A) plaques in the brain, first implicating thinking, learning, and 

cognitive function15,27. The late-onset class of AD is sporadic, multifactorial, genetically complex 

(i.e., AD heritability has been estimated between 60% and 80% and is highly polygenic)19, and 

represents the majority (~90%) of total AD cases21. Moreover, it has been established that the 

progression of AD operates on a continuum from asymptomatic to AD-related dementia, with no 

distinct event denoting its onset; this progression is reflective of underlying accumulations of 

systemic and brain-specific pathology23,25,27. Early in progression there are two stages known as 

preclinical AD and mild cognitive impairment (MCI) due to Alzheimer’s disease that identifies 

individuals with AD brain changes without and with associated symptoms, respectively27. 

Two of the most prominent pathological changes observed in AD are the accumulation of 

extracellular A peptides producing senile plaques that block cell-cell signaling at synapses and 



 

Danielle Reid 
 

25 

the accumulation of intracellular hyperphosphorylated tau protein resulting in neurofibrillary 

tangles that inhibit transportation of essential molecules15,16,19,21,27. However, the molecular and 

etiological events initiating AD pathologies remain to be determined16. Additional pathological 

changes exhibited in AD are mitochondrial dysfunction, chronic inflammation, and excess 

oxidative stress (OS)16–18,21. Mitochondrial stress, OS, and mitochondrial dysfunction are 

theorized to enhance AD pathology and play important roles in its pathogenesis21,34 and impaired 

mitochondrial function has been implicated in both AD and metabolic disease2,15,16,18,21. 

Type-2 diabetes (T2D) has been shown to share similar pathological features with AD such 

as impaired glucose utilization, reduced mitochondrial activity, and both metabolic and 

mitochondrial dysfunction2,16. T2D is characterized by hyperglycemia caused by insulin resistance 

leading to insulin deficiency16. Pathophysiological features of T2D include islets of Langerhans 

cells presenting  cell loss and/or dysfunction, and spontaneous islet amyloid polypeptide 

aggregation16. Further, there are reports that insulin regulates A and tau protein metabolism, 

and there are numerous reviews discussing the established connections between insulin 

resistance, diabetes, and AD16,61–63. 

Besides the existing general AD healthcare problems27, there are gaps in the scientific 

literature characterizing race/ethnicity-specific risk for disease development and progression of 

Alzheimer’s disease26. Recently, it has been recognized that ethnic/racial factors significantly 

impact biological and medical risk factors for AD26–28. In the US, there are more non-Hispanic 

Whites (NHWs) living with AD than other racial/ethnic groups, although per-capita Hispanics are 

more likely to have AD27,29. Hispanic is a broad term, as this population encompasses a variety of 

ethnic subgroups that exhibit geographical and cultural differences29. The Hispanic population is 

represented by varying proportions of European, African, and Native American ancestry, and 

previous studies indicated the overall increased risk in Hispanics may be driven by a specific 

ethnic subgroup29. The presence of comorbid conditions (e.g., cardiovascular disease and 

diabetes) may explain in part, some of the disparity in AD prevalence27. In the US, Mexican 

Americans (MAs) represent majority of the Hispanic population, has one of the fastest growing 

aging groups, and it is projected that by 2050 the number of aging MAs will triple, while rates of 

AD will grow six-fold among Hispanics28,30,31. 
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AD pathophysiology in the MA population seems to be distinct from NHWs. For example, 

the APOE (apolipoprotein E) allele e4, which confers the largest risk for AD in NHWs, is far less 

significant in MAs. This may be in part due to the decreased frequency of the e4 allele, combined 

with a smaller effect size27,30,31. Correspondingly, a recent study determined that APOE e4 allele 

carrier status did not confer risk for MCI in MAs64. MAs clearly suffer from significant AD health 

disparities when compared to NHWs, including (1) earlier onset (~10 yrs) of cognitive impairment, 

(2) higher rates of missed diagnosis, (3) later diagnosis, and (4) increased prevalence of 

modifiable risk factors27,28,30,31. Depression, stroke, T2D, and obesity in the Mexican American 

population are common risk factors for developing cognitive impairment that are more common 

in MAs, although the etiology remains unclear28,65. Lifestyle and/or metabolic health may 

contribute directly to age-related neurodegeneration27. Combined, these data emphasize the 

importance of conducting further studies to improve the diagnosis, treatment, and prevention of 

Alzheimer’s disease in the Mexican American population. 

Recently, there is growing evidence suggesting a correlation between common 

pathological changes in AD and oxidative damage to nucleic acids18,21,39. Mitochondria are highly 

vulnerable to oxidative DNA damage because they are predominant generators of reactive 

oxygen species (ROS), and their mitochondrial genome lacks histones and has reduced capacity 

to repair DNA16. Oxidative stress is a prominent contributor to A aggregation and 

hyperphosphorylated tau, and numerous studies have provided evidence suggesting OS 

contributes to tau pathology because fatty acid oxidation accelerates tau polymerization18,21,39. 

In the central nervous system and peripheral tissues of AD patients, accumulation of ROS 

modifies the function and expression of antioxidant enzymes18,21. Also, high levels of DNA strand 

breaks were found in the hippocampus and cerebral cortex of AD brains21. 

Mitochondrial dysfunction causes an increased mtDNA somatic mutation rate, reduced 

energy metabolism, increased ROS, and intensifies the mitochondrial oxidative environment15. 

The most common forms of oxidative damage observed in AD brains are 8-oxo-2’-deoxyguanine 

(8oxodG) and 8-oxo-guanine (8oxoG)21. In the cortex and cerebellum of AD patients compared to 

controls, significantly higher levels of 8oxodG were observed in the ventricular CSF66. Elevated 

levels of both forms of oxidatively modified guanine have been demonstrated in the nDNA of AD 
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brains when compared to age-matched controls21. Interestingly, A is an important factor in 

mitochondrial dysfunction and increases ROS production in AD21. Mitochondrial dysfunction and 

excessive levels of A can activate the mitochondrial permeability transition pore leading to the 

destruction of neurons with defective mitochondria34. Furthermore, it has been demonstrated in 

the hippocampal neurons of AD patients that A decreases the activity of essential ETC enzymes 

and alters mitochondrial dynamics16,18,21. These enzymes are highly susceptible to oxidative 

damage and the reduced activity of key enzymes involved in intermediate metabolism is a 

characteristic of abnormal cerebral glucose utilization16. Mitochondrial-induced oxidative stress 

may play an important role in the progression and pathophysiological changes in the brain of AD 

because neurons and mitochondria are sensitive to oxidative stress inducing mitochondrial 

dysfunction (Figure 6). 

Previously, our lab investigated the role of mitochondria in T2D and cognitive impairment 

in MAs through analyzing blood-based features of mitochondrial abnormalities (i.e., mtDNA copy 

number and cell-free mtDNA)2. The data suggested mitochondrial dysfunction assessed by 

mtDNA copy number was closely related to both T2D and cognitive impairment2. Here, our 

objective was to determine if abnormal mitochondrial function, indicated by oxidative DNA 

damage, differs between population (MA vs NHW), as well as to evaluate the effects of sex, 

cognitive impairment, and T2D on AD risk. Using Illumina-based Next Generation Sequencing, we 

quantified oxidatively modified guanine residues in mtDNA. Our data show that 8oxoG 

mutational load is significantly higher in MAs than in NHWs and is associated with cognitive 

function, sex, and education. Particularly, the sex effect observed was moderated by population. 

Stratified analysis for 8oxoG mutational load in MAs suggests significant elevation when 

comparing MAs with Alzheimer’s disease to normal controls. 
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Figure 6. Graphical overview of global working hypothesis for risk factors and 
cellular/molecular processes that contribute to neurodegeneration. Modifiable and 
unmodifiable risk factors such as age, genetics, and lifestyle/environmental factors can induce 
elevated levels of ROS which could lead to mitochondrial and/or metabolic pathophysiology. This 
pathophysiology can contribute to and exacerbate an oxidative environment, 
neuroinflammation, and amyloid-beta accumulation that could ultimately promote 
neurodegeneration. This figure was created with BioRender.com. (Figure credit: Reid, D. M., 
Barber, R. C., Thorpe, R. J., Sun, J., Zhou, Z., & Phillips, N. R. (2022). Npj Aging)44. 
 

METHODS 
Sample Acquisition and Description 
Cohort 

TARCC is the Texas Alzheimer’s Research and Care Consortium, a longitudinal 

collaborative research initiative between ten Texas medical research institutions. The goal of 

TARCC is to investigate factors involved in the development and progression of AD in the MA 

population compared to NHWs. 

Participants 
This study was approved under the University of North Texas Health Science Center IRB 

#1330309-1; informed written consent was obtained from participants (or their legally 

authorized proxies) to take part in the study and allowing the publication of findings before data 

collection. Aging subjects enrolled in TARCC (N = 559; Table 1) who were diagnosed with AD 

(n = 104), MCI (n = 127), or normal cognition (n = 328) were selected to optimize matching with 

respect to age, sex and T2D distribution across MA and NHW fractions. An annual standardized 

assessment was conducted for each participant at one of the five original participating sites that 
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included a medical evaluation, neuropsychological testing, an interview, and a blood draw. Buffy 

coat samples from 261 NHWs and 299 MAs with the aforementioned cognitive phenotypes were 

analyzed in this work. 

 

DNA Extraction, Amplification, and Sequencing 
DNA extraction 

DNA was extracted from 200 μL of buffy coat sample using the Mag-Bind® Blood & Tissue 

DNA HDQ 96 kit (Omega Bio-tek, Norcross, GA) using the Hamilton Microlab STARlet automated 

liquid handler (Hamilton Company, Reno, NV). 

Whole mtDNA amplification 

Whole mitochondrial genome for each sample was amplified using REPLI-g Human 

Mitochondrial DNA kit (Qiagen, Venlo, Netherlands) following the manufacturer’s protocol. This 

amplification approach follows a phi29 polymerase-based rolling circle and multiple 

displacement amplification. The purpose of mitochondrial genome amplification was to increase 

the amount of mtDNA relative to nuclear DNA to help with providing enough mtDNA for 

adequate coverage for whole-genome sequencing. 

mtDNA sequencing 
The Nextera XTTM DNA Library Preparation kit (Illumina, San Diego, CA) was used to 

prepare the library for sequencing following the manufacturer’s protocol. The samples were 

sequenced on the NextSeq 550 Sequencer (Illumina) platform generating paired-end reads of 

200 bp with an average read depth of 1855X. 

Sequence mapping/alignment and variant calling 
Raw mtDNA reads were aligned to the reference genome hg38 via BWA-MEM (v0.7.17) 

using the default parameter for mapping67. Generated SAM files were processed post-alignment 

with SAMtools (v.1.9) to produce BAM files that were sorted, indexed, and statistically assessed 

by coordinate68. All reads in the processed post-alignment BAM files were assigned to a single 

new read-group through the Picard tool AddOrReplaceReadGroups 

(http://broadinstitute.github.io/picard). Through GATK4 the Spark application of the Picard tool 

MarkDuplicates was employed on the single read-group BAM files to remove duplicate reads that 

may have resulted from sample preparation or the sequencing instrument69. BAM files with 

duplicate reads removed were indexed with SAMtools (v.1.9)68 BAM files from the previous step 

http://broadinstitute.github.io/picard
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were used for calling somatic mutations with low allelic fractions for each sample excluding read 

orientation base qualities below 30 via a GATK4 tool variant caller named Mutect2 utilizing their 

mitochondria mode that automatically sets parameters for high-depth mitochondrial variant 

calling69,70. 

Oxidation artifact assessment 
Oxidative somatic mutations have a low allelic fraction due to their prevalence which can 

also be affected by tissue heterogeneity (among other factors). CollectOxoGMetrics from Picard 

was utilized (http://broadinstitute.github.io/picard), a tool that calculates Phred-scaled 

probability scores based on low allelic frequency, sequence base context, and read orientation 

to distinguish alternative basecalls likely resulting from a true variant from those that may result 

from technical oxidative damage, specifically 8oxoG (Figure 7)44. Mutational oxidative damage 

results from 8oxoG base-pairing with cytosine or adenine during library preparation leading to 

G>T or C>A transversions during PCR amplification (https://support.illumina.com). See Costello 

et al. for a comprehensive analysis of next-generation sequencing 8oxoG artifact generation and 

detection71. The text file outputs from each file were subjected to manual review to exclude 

technical oxidative artifacts. Prior to the identification of total 8oxoG variant count, all detected 

somatic variants for each subject were assessed for any technical oxidative variants that may 

have been incorrectly identified as a true variant. 

 

http://broadinstitute.github.io/picard
https://support.illumina.com/
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Figure 7. Next-generation sequencing read strand orientation bias and resulting 
artifacts. The presence of artifactual C>A/G>T transversions in sequencing data arises from the 
oxidation of guanine prior to PCR amplification. During PCR amplification adenine is 
misincorporated base-pairing with 8oxoG. Subsequent amplification steps produce the 
transversion mutations. Due to the nature of Illumina NGS chemistry, the G>T transversion will 
sequence on read 1 and the C>A transversion will sequence on read 2. This figure was created 
with BioRender.com. (Figure credit: Reid, D. M., Barber, R. C., Thorpe, R. J., Sun, J., Zhou, Z., & 
Phillips, N. R. (2022). Npj Aging)44. 

 
Identification of variants indicative of oxidative damage 

From the variant call files (vcf), we aimed to identify the specific mutational events that 

would result from oxidative damage to the template DNA mtDNA. Samples vcf files were 

converted to tab delimited text files through vcflib, a library collection of tools to manipulate and 

describe sequence variation72. The variant call data were imported into Excel for manual data 

processing in order to remove indels, transitions, and non-oxidative transversions for the 

selection of oxidative variants. Oxidative variants were selected based on the mutagenic property 

of 8oxoG mispairing with adenine ultimately resulting in the signature oxidative transversion 

mutations (i.e., a G, T, C, or A alternative allele call where the reference allele call was a T, G, A, 

or C, respectively) shown in Figure 444. Remaining variants indicative of oxidative damage were 

then further processed by removing variant calls with a read depth of less than 250 reads, 

removing individual SNPs (variants called in >90% reads), and removing variants where calls were 

limited to one orientation (forward or reverse; i.e., requiring coverage from both strands). 

Variants indicative of oxidative damage were summed for each sample and normalized for read 

depth (variant count per 1000 read depth) in both populations to test for group differences: 

cognitive function, sex, T2D, and comorbidity (T2D and cognitive impairment). Oxidative 

“hotspots” were identified as 8oxoG variant locations that occurred in at least 25 participants in 

the cohort. 

Haplogroup assessment 
In order to assess if background mitochondrial variants may be implicated in 8oxoG 

variant count, we used the NGS sequence data to derive haplogroups for statistical testing of 

group differences. Variant data were imported into Excel for manual processing in order to 

generate a list of individual SNPs for each sample (variants called in >90% reads). Each individual 

profile of mtDNA variants was imported into HaploGrep 2 (v.2.4.0), an online haplogroup 



 

Danielle Reid 
 

32 

classification tool73. Haplogroups were defined in our statistical analyses based on the individual’s 

identified macrohaplogroup or submacrohaplogroup. The sample size for this analysis 

was n = 560; one additional individual of unknown cognitive phenotype (specified as “other” and 

omitted from previously described analyses) was included here since this analysis is independent 

of cognitive phenotype. 

 

Data Analysis 
Statistical analyses were performed using Microsoft Excel, IBM SPSS software (v.24.0), and R 

software (v. 4.0.3). Welch’s t-test (two-tailed) and two-way ANOVA were performed on 8oxoG 

mutational load to compare between both population groups and haplogroups. Multiple linear 

regression analysis was performed to evaluate the relationship between cognition, sex, age, 

education, and diabetes with 8oxoG variant count both within the whole study cohort and in 

stratified analyses of MAs and NHWs. 

 

RESULTS 
The descriptive statistics of the cohort are provided in Table 1. In both populations, 

MMSE, CDR sum, and years of education significantly differed between cognitive phenotypes as 

expected. Age was determined to significantly differ by cognitive diagnosis, and years of 

education was lower in the MA population. A Pearson correlation determined 8oxoG variant 

count did not significantly differ by age in the total cohort (APPENDIX A). 
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Table 1. Descriptive statistics of participants by population group and cognitive phenotype in 
the Texas Alzheimer’s Research and Care Consortium. 

 NC MCI AD 
P-

valuea 

Total Number of Subjects 328 127 104  

Non-Hispanic Whites 153 43 64  

Age [CI] 70.39 ± 1.178 71.35 ± 1.421 71.7 ± 1.056 0.338 

Sex (F) [n, %] 78, 51.0% 21, 48.8% 29, 45.3% 0.749 

Mini Mental State Exam 
(MMSE) [CI] 

29.11 ± 0.1759 27.63 ± 0.6223 21.53 ± 1.413 0.000b 

Clinical Dementia Rating 
(CDR) Sum [CI] 

0.007 ± 
0.009032 

1.163 ± 0.2181 5.344 ± 0.8515 0.000c 

Years of Education [CI] 16.07 ± 0.4063 14.56 ± 0.6597 15.11 ± 0.7524 0.001d 

Diabetes (Y) [n, %] 59, 38.6% 18, 41.9% 22, 34.4% 0.726 

Hyperlipidemia (Y) [n, %] 63, 41.2% 19, 44.2% 37, 57.8% 0.079 

Obesity (Y) [n, %] 27, 17.6% 8, 18.6% 10, 15.6% 0.991 

BMI kg/m^2 [CI] 27.331 ± 1.1778 27.272 ± 2.3284 27.394 ± 1.0624 0.996 

     

 NC MCI AD 
P-

valuea 

Mexican Americans 175 84 40  

Age [CI] 67.62 ± 0.8156 69.88 ± 1.6912 73.38 ± 2.4848 0.000e 

Sex (F) [n, %] 99, 56.6% 40, 47.6% 24, 60.0% 0.304 

Mini Mental State Exam 
(MMSE) [CI] 

28.14 ± 0.289 24.93 ± 0.787 19.88 ± 1.860 0.000f 

Clinical Dementia Rating 
(CDR) Sum [CI] 

0.006 ± 
0.007897 

1.113 ± 0.1560 5.738 ± 1.1827 0.000g 

Years of Education [CI] 11.05 ± 0.6598 8.77 ± 1.1486 9.75 ± 1.5467 0.002h 

Diabetes (Y) [n, %] 79, 45.1% 32, 38.1% 19, 47.5% 0.487 

Hyperlipidemia (Y) [n, %] 101, 57.7% 48, 57.1% 20, 50.0% 0.670 

Obesity (Y) [n, %] 84, 48.0% 38, 45.2% 8, 20.0% 0.005i 

BMI kg/m^2 [CI] 30.917 ± 0.9992 31.295 ± 1.5374 28.718 ± 1.6508 0.116 
a. The mean difference is significant at 0.05. 

b. NC vs. MCI 0.016, NC vs. AD 0.000, MCI vs. AD 0.000 

c. NC vs. MCI 0.000, NC vs. AD 0.000, MCI vs. AD 0.000 

d. NC vs. MCI 0.003, NC vs. AD 0.042, MCI vs. AD 0.542 

e. NC vs. MCI 0.028, NC vs. AD 0.000, MCI vs. AD 0.017 

f. NC vs. MCI 0.000, NC vs. AD 0.000, MCI vs. AD 0.000 

g. NC vs. MCI 0.000, NC vs. AD 0.000, MCI vs. AD 0.000 

h. NC vs. MCI 0.001, NC vs. AD 0.273, MCI vs. AD 0.540 

i. NC vs. MCI 0.905, NC vs. AD 0.003, MCI vs. AD 0.021 
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Total 8oxoG Variant Count is Significantly Higher in MA Females  

Total 8oxoG variant count was significantly higher in the MA population compared to 

NHWs; mean = 7.46 and 5.96, respectively (Figure 8).  In addition, female subjects had a higher 

8oxoG variant count than males; mean = 7.06 and 6.43, respectively (Figure 9). The more 

comprehensive multiple linear regression model (Table 2) pointed to a significant interaction 

effect between population and sex related to 8oxoG variant count; p=0.01458, MA females being 

higher; p=0.0297 (Figure 10); additionally, years of education was identified as a significant factor 

(positive association). No other variables included in the multiple linear regression model 

demonstrated associated statistical significance (BMI, APOE, diabetes, cognition, age, population 

x education). 

 

Figure 8. Cellular 8oxoG variant count is significantly higher in Mexican American population. 
a Total 8oxoG variant count was assessed by population using a two-tailed Welch’s t-test (n = 559, 
t-statistic = 4.794, df = 558). Error bars represent standard error of the mean. b Violin plot 
showing the distribution of 8oxoG variant counts in Mexican American and non-Hispanic whites 
(n = 559) with effect size and confidence interval plotted on right y-axis. Dashed lines indicate the 
mean and dotted lines represent the 1st and 3rd quartile. The triangle represents the difference 
of the means, and the associated bar indicates the confidence interval. 
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Figure 9. Cellular 8oxoG variant count is significantly higher in females. a Sex differences in 
8oxoG variant count were determined using a two-tailed Welch’s t-test (n = 559, t-
statistic = 1.968, df = 558). Error bars represent standard error of the mean. b Violin plot showing 
the distribution of 8oxoG variant counts in females and males (n = 559) with effect size and 
confidence interval plotted on right y-axis. Dashed lines indicate the mean and dotted lines 
represent the 1st and 3rd quartile. The triangle represents the difference of the means, and the 
associated bar indicates the confidence interval. 
 
Table 2. Cellular 8oxoG variant count and cognitive status (NC vs. MCI or AD) multiple linear 
regression model prediction considering population interaction effect with both sex and 
education. 

Variable Coefficient Std. Error t-statistic p-value 

Constant 2.89096 2.21327 1.306 0.19204 

Population (with respect to NHW) -0.52522 1.46648 -0.358 0.72037 
Cognitive Status (with respect to AD) 0.56007 0.45113 1.241 0.21497 

Cognitive Status (with respect to MCI) 0.4515 0.40816 1.106 0.26914 
Sex (with respect to Male) -1.42142 0.44486 -3.195 0.00148 

Diabetes (with respect to "Yes") -0.35714 0.33836 -1.056 0.29166 
Years of Education 0.14335 0.04556 3.146 0.00174 

APOE ε2/ε2 -2.3329 2.6982 -0.865 0.38763 

APOE ε2/ε3 0.64292 0.81025 0.793 0.42785 
APOE ε2/ε4 0.47953 2.23482 0.215 0.83018 

APOE ε3/ε3 0.61844 0.61248 1.01 0.31308 

APOE ε3/ε4 0.36641 0.66434 0.552 0.58149 

APOE ε4/ε4 0.65167 0.91108 0.715 0.47475 

BMI 0.03357 0.02468 1.36 0.17424 
Age 0.0308 0.0252 1.222 0.22207 

Interaction: NHW x Male "Yes" 1.58842 0.64817 2.451 0.01458 

Interaction: NHW x Years of Education -0.15153 0.09808 -1.545 0.12291 

R-squared 0.08275 p-value 5.87e-05 
Adjusted R-squared 0.05567 df 16 and 542 
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F-statistic 3.056 Sample n 559 

 
Figure 10: Population-by-sex interaction associated with total cellular 8oxoG variant count 
shows MA females have elevated 8oxoG counts. a Bar graph representing total 8oxoG variant 
count by population and sex as tested using a two-way ANOVA (n = 559, p = 0.0297, F-
statistic = 4.75, df = 557) to determine if a population × sex interaction existed. b Interaction plot 
of predicted 8oxoG variant counts by sex in NHWs and MAs. Error bars represent standard error 
of the mean. 
 

In a subsequent multiple linear regression analysis, we investigated the potential 

interaction between diabetes and cognitive status, in which we did not observe significant effects 

(APPENDIX B). We also derived the count of variants for each individual which corresponded to 

8oxoG “hotspots” (i.e., frequently observed variants at certain locations within the mitochondrial 

genome) shown in APPENDIX G.  In these “hotspot” analyses, we did not observe the same 

trends, and thus the metric proved to be generally less informative (APPENDIX G-H and Tables 

J-Q). Additionally, in the NHW population we observed associations between 8oxoG “hotspot” 

variant count and APOE status (APPENDIX P-Q), which was not observed in the MA population 

(APPENDIX N-O). 

 
Population-specific Effects on 8oxoG Variant Count 

As expected, based on the previous multiple linear regression analyses, 8oxoG variant 

count was significantly associated with sex (females higher) for MAs as shown in Table 3. 

However, interestingly, cognitive status of AD was in marginally significant association with 
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8oxoG variant count (shaded row, Table 3; bar graph provided in Figure 11), but this trend was 

not observed in NHWs (shaded row, Table 4). Two-way ANOVAs in NHWs did not show 

significance; however, in MAs there was significance for sex F(1,295)=5.8 and p=0.0166 (Figure 

5). No other variables were associated with 8oxoG variant count in the MA population. BMI and 

age were marginally significant (both positive) in association with 8oxoG variant count in non-

Hispanic Whites (Table 4); no other variables were associated with 8oxoG variant count. Another 

intriguing result is the significant positive association of education with 8oxoG variant count that 

is limited to the MA population (Table 3). 

 
Table 3. Multiple linear regression results for cellular 8oxoG variant count within Mexican 
Americans. 

Variable Coefficient Std. Error t-statistic p-value 

Constant 5.12074 3.63974 1.407 0.16054 

Cognitive Status (with respect to AD) 1.4363 0.80455 1.785 0.07528 
Cognitive Status (with respect to MCI) 0.75592 0.59613 1.268 0.20581 

Sex (with respect to Male) -1.39809 0.52709 -2.652 0.00844 
Diabetes (with respect to “Yes”) -0.27268 0.52981 -0.515 0.60719 

APOE ε2/ε2 -1.69728 4.72412 -0.359 0.71965 

APOE ε2/ε3 0.2323 2.17461 0.107 0.91501 
APOE ε3/ε3 -0.46508 1.9656 -0.237 0.81313 

APOE ε3/ε4 -0.72004 2.00661 -0.359 0.71998 
APOE ε4/ε4 -0.82949 2.92419 -0.284 0.77687 

BMI 0.02671 0.03926 0.68 0.49687 

Years of Education 0.14462 0.05415 2.671 0.008 
Age 0.01253 0.03924 0.319 0.74983 

R-squared 0.05857 p-value 0.1297 
Adjusted R-squared 0.01907 df 12 and 286 

F-statistic 1.483 Sample n 299 
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Figure 11. Cellular 8oxoG variant count by cognitive phenotype in each population. a Bar graph 
of 8oxoG count by cognition in NHWs tested using a two-way ANOVA (n = 260). b Bar graph of 
8oxoG count by cognition in MAs tested using a two-way ANOVA (n = 299) to determine if a 
cognition × sex interaction existed in each population. Error bars represent standard error of the 
mean. 
 
Table 4. Multiple linear regression results for cellular 8xoG variant count within non-Hispanic 
whites. 

Variable Coefficient Std. Error t-statistic p-value 

Constant 0.59072 2.81035 0.21 0.8337 

Cognitive Status with respect to AD -0.23042 0.48975 -0.47 0.6384 
Cognitive Status (with respect to MCI) 0.03883 0.54101 0.072 0.9428 

Sex (with respect to Male) 0.18523 0.37372 0.496 0.6206 
Diabetes (with respect to “Yes”) -0.55416 0.40735 -1.36 0.1749 

APOE ε2/ε2 -4.04738 2.99107 -1.353 0.1772 

APOE ε2/ε3 0.30547 0.80613 0.379 0.7051 
APOE ε2/ε4 0.29945 1.7921 0.167 0.8674 

APOE ε3/ε3 0.89858 0.54737 1.642 0.1019 
APOE ε3/ε4 0.76197 0.65579 1.162 0.2464 

APOE ε4/ε4 1.28886 0.81301 1.585 0.1142 

BMI 0.04855 0.02883 1.684 0.0935 

Years of Education -0.02771 0.07105 -0.39 0.6969 

Age 0.05584 0.03101 1.801 0.073 

R-squared 0.04846 p-value 0.488 
Adjusted R-squared -0.001829 df 13 and 246 

F-statistic 0.9636 Sample n 260 
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Additional multiple linear regression analyses using cognition as a binary predictive variable 

(where MCI and AD are combined into cognitive impairment, CI, and NC is normal controls) were 

conducted (APPENDIX C-F, K, M, O, and Q); the higher 3-category resolution shown in Table 3 

(AD/MCI/NC) revealed a potential effect of AD on 8oxoG variant count in MAs, but the effect is 

not observable in the CI/NC regression analyses since it is diluted by the presence of MCI (Table 

4). 

 

Haplogroup-associated Elevation and Depression of 8oxoG Variant Count 

Based on the Welch two-sided t-test, we observed haplogroup effects on 8oxoG variant 

burden within the combined cohort.  Haplogroups A and C exhibited elevated 8oxoG variant 

counts (Figure 12A; Table 5). Conversely, haplogroups I and K exhibited lower 8oxoG variant 

counts (Figure 12A; Table 5). For population stratified inference, in the NHW population, using 

Welch’s t-test, our results demonstrate haplogroup H displayed higher 8oxoG variant counts 

(Figure 12B; Table 5). Haplogroup I among NHWs showed reduced 8oxoG variant counts (Figure 

12B; Table 5). In the MA population, the Welch’s t-test reported haplogroup L had significantly 

reduced 8oxoG variant counts when compared to all other haplogroups observed in the MA 

population (Figure 12C; Table 5). 



 

Danielle Reid 
 

40 

 
Figure 12. Cellular 8oxoG variant count by mitochondrial haplogroup. a Differences in total 
8oxoG variant count by mitochondrial haplogroup of the cohort was assessed using Welch’s t-
test (n = 560). b Total 8oxoG variant count by mitochondrial haplogroup in NHW participants was 
assessed using Welch’s t-test (n = 261). c Differences in 8oxoG variant count between 
mitochondrial groups in the MA population was determined by performing Welch’s t-test 
(n = 299). Pink bars indicate significantly higher 8oxoG variant count and blue bars indicate 
significantly lower 8oxoG variant count. Error bars represent standard error of the mean. The 
mitochondrial haplogroup tree was illustrated based off the RSRS-oriented mtDNA tree build 17 
from PhyloTreemt to include only macrohaplogroups and sub-macrohaplogroups represented in 
our cohort74. 
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Table 5. Mitochondrial DNA haplogroup-associated cellular 8oxoG variant count mean within 
the combined cohort (NHW + MA; n = 560), MAs alone (n = 299), and NHWs alone (n = 261). 

Combined 
Reference 

Haplogroup 

Reference 
Haplogroup 

Mean 

Non-Reference 
Haplogroup 

Mean 

T-
statistic 

df 95% CI [LL,UL]  p-value 

Haplogroup A 7.838462 6.51901 2.8867 132.94 [0.41535, 2.2236] 0.004545 

Haplogroup B 7.303423 6.680043 1.1141 79.498 [-0.49026, 1.7370] 0.2686 

Haplogroup C 7.9767 6.591353 2.4044 77.106 [0.23809, 2.5326] 0.0186 

Haplogroup D 6.41393 6.7679 -0.34926 21.068 [-2.4612, 1.7533] 0.7304 

Haplogroup H 6.364743 6.862089 -1.461 238.38 [-1.1679, 0.17326] 0.1453 

Haplogroup I 4.752968 6.783636 -5.9126 11.613 [-2.7818, -1.2796] 8.127E-05 

Haplogroup J 6.338881 6.784038 -0.65586 40.693 [-1.8162, 0.92590] 0.5156 

Haplogroup K 5.555933 6.841888 -2.9575 51.28 [-2.1588, -0.41315] 0.004681 

Haplogroup L 6.015808 6.790599 -1.635 32.557 [-1.7394, 0.18980] 0.1117 

Haplogroup M 6.339475 6.756114 -0.59872 1.1166 [-7.3496, 6.5163] 0.6479 

Haplogroup R 6.759379 5.872131 0.54395 2.0397 [-6.0017, 7.7762] 0.6401 

Haplogroup T 6.81632 5.664707 1.9933 34.475 [-0.021895, 2.3251] 0.05419 

Haplogroup U 6.794277 5.906105 1.1589 26.368 [-0.68615, 2.4625] 0.2569 

Haplogroup V 6.767161 5.76442 1.1311 6.4231 [-1.1322, 3.1377] 0.2985 

Haplogroup W 6.756741 6.519856 0.11912 4.0531 [-5.2561, 5.7298] 0.9109 

Haplogroup X 6.772306 4.297114 1.6096 3.0671 [-2.3588, 7.3092] 0.2039 

              

MA Reference 
Haplogroup 

Reference 
Haplogroup 

Mean 

Non-Reference 
Haplogroup 

Mean 

T-
statistic 

df 95% CI [LL,UL] p-value 

Haplogroup A 7.838462 7.270255 1.0848 202.54 [-0.46460, 1.6010] 0.2793 

Haplogroup B 7.361145 7.487292 -0.20331 97.394 [-1.3575, 1.1052] 0.8393 

Haplogroup C 7.925182 7.331154 0.95278 98.058 [-0.64322, 1.8313] 0.343 

Haplogroup D 6.513252 7.528179 -0.94198 21.341 [-3.2534, 1.2236] 0.3567 

Haplogroup H 6.320519 7.495663 -1.2566 9.3373 [-3.2791, 0.92881] 0.2394 

Haplogroup J 8.822136 7.413168 0.7684 9.3447 [-2.7158, 5.5338] 0.4612 

Haplogroup K 6.207265 7.521843 -1.6302 16.132 [-3.0229, 0.39373] 0.1224 

Haplogroup L 5.81628 7.505487 -2.5543 9.6501 [-3.1700, -0.20844] 0.0294 

Haplogroup R 7.476387 5.872131 0.97675 2.0968 [-5.1588, 8.3674] 0.4276 

Haplogroup T 7.513174 3.56018 2.9696 3.2244 [-0.12126, 8.0272] 0.05397 

Haplogroup U 7.443624 9.935283 -0.39662 1.0031 [-81.727, 76.743] 0.7595 
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NHW 
Reference 

Haplogroup 

Reference 
Haplogroup 

Mean 

Non-Reference 
Haplogroup 

Mean 

T-
statistic 

df 95% CI [LL,UL] p-value 

Haplogroup B 6.072026 5.944759 0.072626 2.0441 [-7.2587, 7.5133] 0.9486 

Haplogroup H 6.368296 5.628957 1.9889 218.16 [0.0067015, 1.4720] 0.04796 

Haplogroup I 4.752968 5.983953 -3.465 13.256 [-1.9970, -0.46450] 0.004076 

Haplogroup J 5.419158 6.007037 -1.0462 33.322 [-1.7307, 0.55496] 0.303 

Haplogroup K 5.17599 6.02422 -1.7433 32.388 [-1.8388, 0.14238] 0.09076 

Haplogroup L 6.104487 5.934498 0.27424 20.689 [-1.1202, 1.4602] 0.7866 

Haplogroup M 6.339475 5.943185 0.56521 1.1507 [-6.1779, 6.9705] 0.6622 

Haplogroup T 5.941546 5.98848 -0.07583 30.492 [-1.3101, 1.2162] 0.94 

Haplogroup U 5.983957 5.555742 0.62167 25.685 [-0.98851, 1.8449] 0.5396 

Haplogroup V 5.951232 5.76442 0.20969 6.5517 [-1.9494, 2.3230] 0.8403 

Haplogroup W 5.935018 6.519856 -0.29383 4.0673 [-6.0752, 4.9055] 0.7833 

Haplogroup X 5.971888 4.297114 1.0874 3.0859 [-3.1504, 6.5000] 0.3544 

 

DISCUSSION 
Evaluating 8oxoG Variant Count by Population and Sex 

Alzheimer’s Disease was discovered over a century ago, and through research our 

understanding of the disease has exponentially grown. However, there are many gaps in our 

knowledge, particularly with respect to how this disease affects individuals from different 

ethnic/racial backgrounds. Our group investigated peripheral levels of mitochondrial 8oxoG, a 

characteristic of mitochondrial dysfunction, and its association with cognitive impairment, type-

2 diabetes, and comorbidity (cognitive impairment and T2D) within the Mexican American 

population compared to non-Hispanic Whites. We hypothesized the MA population would 

demonstrate higher levels of mitochondrial oxidative damage due to the number of comorbid 

conditions burdening this population, such as cardiovascular disease, diabetes, and depression27. 

Overall, our results demonstrate that 8oxoG variant count was significantly higher in MAs 

compared to NHWs, and this effect was largely driven by MA females. In subsequent regression 

analyses, we observed that 8oxoG variant count is suggestively associated with AD cognitive 
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status (compared to control) particularly in MAs. Intriguingly, this analysis also revealed a positive 

association of 8oxoG variant count with education, warranting further investigation of biological 

and/or environmental influencers of 8oxoG. 

The level of 8oxoG variant count in the mitochondrial genome was significantly higher in 

MAs compared to NHWs, which may be because MAs are at increased risk for metabolic 

disorders. Metabolic syndrome and obesity are associated with increased oxidative stress, which 

can lead to genomic instability such as increased levels of oxidative DNA damage75,76. Metabolic 

syndrome is a collection of conditions such as deficient glucose tolerance, fatty liver, and 

increased body weight, adiposity, and triglyceride levels76. Thus, metabolic health risk could 

account for the observed significant difference in levels of mitochondrial 8oxoG count. 

Furthermore, base excision repair (BER) is a predominant DNA repair pathway for oxidative DNA 

damage; failure of this system allows features of genomic instability to persist and accumulate39. 

Higher 8oxoG levels in MAs may be influenced by differences in DNA repair machinery expression 

due to the population’s associated metabolic burden and/or population-specific variants that 

impact DNA repair efficiency. 

Interestingly, recent evidence suggests that DNA damage repair is necessary for metabolic 

health, derived from observations demonstrating mtDNA repair glycosylase OGG1, an essential 

enzyme for BER, may influence metabolic phenotypes in high fat diet exposure75–77. Functional 

OGG1 prevents obesity and metabolic dysfunction75,76 through altered PGC-1 expression and 

fatty acid oxidation76; reduced levels of PGC-1 has been reproducibly observed in T2D 

patients15,78,79 and have been related to increased levels of ROS and decreased levels of -

oxidation enzymes32. The metabolic burden in MAs may be associated with metabolic 
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dysfunction which could alter OGG1 function causing elevated levels of 8oxoG. Interestingly, the 

genetic polymorphism in OGG1 (rs1052133, Ser[326]Cys) has been associated with T2D risk in 

Mexican Americans77 further suggesting that insufficient response to oxidative DNA damage may 

be implicated in metabolic disease in the Mexican American population. 

There were significantly higher 8oxoG counts for Mexican American females compared to 

Mexican American males. In the literature, there is no clear consensus whether levels of DNA 

damage differ significantly based on biological sex, and this may be due to differing sample type, 

technique, and/or applied method of detection across studies80,81. In 2014, results of a meta-

analysis indicated that there are no differences between sex and DNA damage80. Conversely, a 

recent review determined that men have higher levels when compared to women; however, 

inconsistency in reports indicate that other factors such as lifestyle may contribute to the sex 

effect on the prevalence of such lesions81. Further, most of the studies to date have not explicitly 

compared oxidative damage among different racial/ethnic groups in an aging population. 

Elevated levels of 8oxoG variant count in MA females may be partially explained by the fact that 

Mexican American women have a higher frequency of T2D33. Oxidative stress and mitochondrial 

dysfunction are well documented in T2D pathophysiology, and a restrictive diet reduces oxidative 

stress15. Additionally, there is accumulating evidence underlining sex differences in mitochondrial 

function and activity, and levels of oxidative stress in an age-dependent manner82–84. Silaidos, et 

al., observed that PBMCs from females exhibited significantly higher ATP levels, citrate synthase 

activity, uncoupled respiration, and ETC complex and system capacity when compared to PBMCs 

of men82. Recent evidence shows sex hormone status may be involved85. For example, 

mitochondrial function in female mice revealed that younger female mice display lower oxidative 
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stress levels compared to males and that subsequent ovariectomy limited the apparent 

protection against DNA damage; this protection was eliminated in aged female mice84. The lack 

of consistent data in the literature regarding sex differences in aging and age-related diseases 

emphasizes the need for further work to better understand sex-associated disease risk, especially 

in ethnic populations that are rapidly expanding. 

Population-specific Associations with 8oxoG Variant Count 
Our results from multiple linear regression analyses are suggestive of an AD-effect on 

8oxoG variant count in the Mexican American population. In the literature there is accumulating 

evidence supporting the implication of mitochondrial dysfunction as a primary and/or secondary 

factor contributing to AD partially because of the significant levels of oxidative damage observed 

in various organs and tissues of individuals with cognitive impairment18,21. In particular, previous 

studies report significantly higher levels of 8oxoG and/or DNA damage in patients diagnosed with 

MCI or AD compared to controls, suggesting that (1) oxidative stress and subsequent DNA 

damage are features of AD pathophysiology, (2) accumulating oxidative DNA damage may be an 

early marker of AD, and (3) 8oxoG could potentially serve as a biomarker for MCI and/or AD39,86–

89. However, there is little information regarding ethnic/racial differences in levels of oxidative 

DNA damage, and particularly peripheral levels of 8oxoG in the context of cognitive decline.  Here 

we demonstrate population-specific variation in peripheral levels of mitochondrial oxidative DNA 

damage—the associations observed in the MA cohort were non-significant in the NHW cohort 

and had effect sizes in opposite directions; these findings emphasize the importance of future 

replication studies. As previously mentioned, it is possible that the Mexican American population 

has more pronounced effect due to their metabolic burden and potential genetic variation in 
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DNA repair machinery. Additionally, cognitive impairment has been well-documented in T2D, 

which increases the risk for AD by two-fold and has been associated with progression of more 

severe forms of cognitive impairment16,32,61–63. Moreover, oxidative stress is particularly related 

to amyloid and tau pathology through stimulating a vicious cycle of pathophysiology provoking 

mitochondrial dysfunction and metal toxicity, which would ultimately result in an increased 

mutational load and neurotoxic environment contributing to neuronal loss18,39,89. This gathering 

evidence may explain to an extent the observed suggestive association between 8oxoG variant 

count and AD in the Mexican American population. Correspondingly, the stronger association 

reported in MA females could be attributed to the extended lifespan of women and age-related 

decline in sex hormones diminishing the protective effects on antioxidant defenses and 

mitochondrial capacity83,90–92. Mitochondria are responsible for steroidogenesis and its 

interaction with sex steroids plays an important role in the brain91. Brain levels of sex hormones 

are known to decline with age, therefore, emphasizing lifestyle factors, metabolic, health, and 

age may be of particular importance in accounting for the vulnerability of Mexican American 

females to cognitive decline and associated pathophysiology91. 

Interestingly, the positive association of 8oxoG variant count in MAs extended to years of 

education. Fletcher, et al., reported associations between educational attainment and cognition 

in older age, after controlling for family background and genetic factors, and an interaction 

demonstrating those with an increased risk for AD mildly benefit from a higher educational 

background93. Educational attainment has been moderately studied in MAs with evidence 

indicating the disparity in cognitive impairment and dementia is due to genetic, behavioral, and 

socioeconomic factors94. Socioeconomic factors were found to be especially important in the 
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disparity, highlighting the inequity in educational attainment among underrepresented or 

immigrant populations which may contribute to their risk for cognitive decline95. Additionally, 

there are several reports indicating the protective effect of education on cognitive impairment 

does not entirely translate to MAs96. Data from a previous study suggests MAs may only benefit 

from cognitive-protective effects when years of education exceeds 12 years (i.e., education 

beyond high school)96. The reason for the observed positive association of 8oxoG with years of 

education in MAs is unclear; further studies investigating the effect of educational attainment on 

cognitive function and the paradoxical increase in 8oxoG in the Mexican American population 

are warranted. 

Haplogroup-associated Elevated and Reduced 8oxoG Variant Count 
In the whole cohort, we observed mitochondrial haplogroups A and C had significantly 

higher 8oxoG variant counts, while haplogroups K and I showed significantly reduced levels each 

independently compared to all other haplogroups. Previous data has shown haplogroup K to 

demonstrate a protective effect against AD in European populations97. The significantly lower 

levels of 8oxoG variant count in haplogroup K may be related to its apparent low risk for 

developing AD which is associated with increased oxidative damage. In the NHW population, 

haplogroup H was found to have significantly higher levels of 8oxoG variant counts compared to 

all other haplogroups observed in the population. Established features of European ancestry 

include mtDNA haplogroups associated with largest oxygen consumption, ineffective oxygen 

utilization, and slightly deficient DNA repair capacity causing elevated levels of ROS that could 

subsequently cause elevated levels of oxidative DNA damage98. Furthermore, a study recently 

demonstrated synergism between APOE e4 carrier status and mitochondrial haplogroup H— 
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when combined, individuals were at higher risk for AD99. Therefore, the elevated 8oxoG variant 

count exhibited by haplogroup H that we see here was not surprising, due to their associated 

altered mitochondrial capacity. Conversely, in the MA population haplogroup H did not 

demonstrate a significant elevation in 8oxoG variant count; however, as previously mentioned 

the APOE risk allele appears to have less of an effect in the MA population. This observation 

further suggests that MAs are differentially affected by established risk factors for cognitive 

impairment compared to their NHW counterparts. Nonetheless, studies investigating 

mitochondrial haplogroup risk in neurodegeneration is very limited, and thus, it is difficult to 

comment on whether there is evidence to confirm or refute our findings suggesting haplogroup-

specific 8oxoG variant count differences (refer to review by Ienco et al., for a comprehensive 

assessment of the literature)100. Furthermore, due to the limited sample size (i.e., various 

haplotypes are observed less in one population compared to the other) our power to detect rare 

mitochondrial haplotype effects is limited, and thus presumably causing the lack of overlap 

between the mitochondrial haplogroups associated with 8oxoG variant count in both cohorts. 

Through the historic geographical migration of certain groups and maternal nature of mtDNA 

inheritance, there are observed variations in haplotype frequencies between societal-based 

ethnic/racial groups101. There is accumulating evidence indicating mitonuclear allelic interactions 

considerably alter the expression of important health-related phenotypes by influencing the 

quality of oxidative phosphorylation and metabolic function101. Gene flow of the mitochondrial 

genome differs from that of the nuclear genome and considering the generation of differing 

genetic variation throughout populations, it is hypothesized that the course of mito-nuclear 

coadaptation may be population specific101. This is likely relevant to the MA population as they 
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are considered an admixed population. Therefore, there will be limited overlap and significant 

results when comparing the two populations separately, especially in relation to the whole 

cohort.  

CONCLUSION 
While our results are potentially insightful, there are several limitations to note. First, it is 

important to acknowledge that the methods employed here are indirect measures/indicators of 

oxidative damage; however, this limitation is difficult to overcome since methods for detecting 

oxidative damage at the per-base resolution specific to mtDNA generally have (1) technical 

artifacts arise during library preparation, (2) low sequencing resolution, (3) higher detection 

limits, and/or (4) the requirement for specific and sensitive enzymes, proteins, or antibodies102. 

Another obvious limitation is the lack of data regarding metabolic disease in this cohort; our study 

was limited to self-described diabetes, which is likely an oversimplification given the highly 

heterogenous nature of metabolic syndrome in the MA population. Further, the inclusion of 

additional markers of metabolic health could have potentially helped with establishing an 

association. In general, it is challenging to interpret these results from a biological/mechanistic 

perspective, but importantly, they open the door for avenues of research that may prove highly 

relevant to addressing and resolving MA health disparities in age-related disease, namely, risk for 

AD. 

Future studies will aim to increase the sample size and improve subject characterization 

of metabolic phenotypes to better resolve causal aspects of oxidative damage in MAs, specifically 

with respect to female vulnerability. We acknowledge that our data is suggestive in association 

to AD; however, future studies utilizing quantitative cognitive measures such as MMSE, CDR sum, 
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and other measures of neuropsychological testing and cognitive function, may improve our 

power to support the implication. Further, additional biochemical and genetic studies would 

solidify these results and aid in drawing conclusions. Such studies may include correlation 

analyses between 8oxoG variant load and expression of DNA repair machinery and ROS response 

systems, as genetic variant analysis of nuclear-encoded DNA repair genes and mito-nuclear 

epistatic effects. Ideally, the studies conducted and proposed here would be recapitulated in 

matched blood and brain tissue to validate the potential application of these peripheral 

phenotypes as biomarkers for brain pathology. Additionally, future studies will aim to include 

another population cohort and validate mitochondrial oxidative load using an alternative method 

such as liquid chromatography-tandem mass spectrometry (LC-MS/MS). 

To conclude, the work we present here describes a differential effect of oxidative 

mitochondrial damage that is associated with cognitive decline among Mexican American 

females. We also describe a unique approach for sensitive quantification of putative oxidative 

damage in blood, a highly accessible tissue, and its potential relevance to cognitive aging in 

Mexican Americans. Further, we identify a potential role for mtDNA-based haplogroup risk in 

8oxoG accumulation. The systemic elevation of 8oxoG load specifically in MA females may point 

to an underlying source of risk for cognitive decline in this vulnerable group, revealing avenues 

for more precise prevention, diagnosis, and treatment of cognitive dysfunction. 
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CHAPTER III: CIRCULATING CELL-FREE MITOCHONDRIAL 
DNA MUTATIONAL LOAD INDICATIVE OF 8OXOG 

OXIDATIVE DAMAGE IN COGNITIVELY IMPAIRED MEXICAN 
AMERICANS 

 

INTRODUCTION 
Alzheimer’s disease (AD) is the most common form of dementia that is characterized by 

symptoms of cognitive decline such as, having trouble remembering, problem-solving, 

communicating, along with additional cerebral incompetencies12,103. This heterogenous 

neurodegenerative disease is commonly known for its neurotoxic pathophysiological properties 

including the accumulation of amyloid beta (A) peptides and hyperphosphorylated tau protein 

causing extracellular amyloid plaques and intracellular neurofibrillary tangles, 

respectively12,18,103. However, impaired mitochondrial function and chronic inflammation have 

been frequently reported and can be considered as contributors to the observed endophenotypic 

manifestations of cognitive impairment likely caused by Alzheimer’s18,31,103–107. In particular, non-

Hispanic Whites (NHWs) appear to exhibit an inflammatory endophenotype31,104–106, while 

Mexican Americans (MAs) presented a metabolic endophenotype as demonstrated via donor 

blood serum-based protein biomarker profiles31. This evidence may point at biological and 

lifestyle factors influencing cognitive impairment that are distinct to a population group, which 

could in part explain endophenotypic differences. Identifying blood-based biomarkers capable of 

predicting and assessing disease progression is of great importance to elucidate factors that 

cause the pathophysiological heterogeneity of AD for the development of more precise 

therapeutics, as current established biomarkers are quite invasive and can be costly.  

  Type-2 diabetes (T2D) is a considerable risk factor for AD due to its comorbid association 

with cognitive impairment; however, the precise pathophysiological mechanisms connecting the 

complex diseases are unclear. Common pathology between AD and T2D include both metabolic 

and mitochondrial dysfunction, impaired glucose utilization, and reduced metabolic activity2,16. 

As the US aging population (i.e., individuals 65 years of age or older) continues to expand with 

the Hispanic/Latinx population is expected to exponentially increase compared to other 
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ethnic/racial groups, it is expected that there will be a prolific burden of age-related diseases 

affecting this population such as AD and diabetes12,13. Large amounts of evidence indicate the 

high disproportion of AD cases in Hispanics/Latinos compared to NHWs is attributed to the 

increased prevalence of metabolic syndrome, obesity, cardiovascular health risks, and 

diabetes2,13,108. This observation indicates that mitochondrial health and factors that affect it may 

hold greater biological importance in the development of age-related disease for individuals with 

Hispanic/Latinx descent, as the accumulating data indicates their mitochondrial 

capacity/function appears to be reduced compared to other racial/ethnic populations. 

Currently in the US there are six drugs approved by the FDA for treatment of AD; however, 

five of the treatment options help temporarily relieve symptoms of the disease, while one drug 

(aducanumab) was approved in June 2021 under their accelerated pathway, which has been 

shown to alleviate the accumulating amyloid beta plaques in the brain, yet peer-reviewed clinical 

cognitive benefits have not been publicly available at this time12,109. The lack of available 

treatments for the AD continuum is one of the largest gaps within the Alzheimer’s disease field 

among the comorbid associations and health disparity affecting underrepresented populations.  

  Mexican Americans are the largest population segment within the Hispanic/Latinx 

population and unfortunately, this group experiences earlier onset of cognitive impairment, late 

diagnosis, greater rate of cognitive decline, and more severe forms of dementia compared to 

their non-Hispanic White counterparts12,28,30,31. Additionally, the major risk allele for late-onset 

AD is the apolipoprotein E (APOE) e4 allele, which seems to be observed less frequently in the 

MA population and may not confer to a large effect size as for NHWs12,30,31,110,111. With little 

understanding of the genetic basis of AD in racial/ethnic populations, there is a crucial need to 

investigate the pathogenic mechanism of AD related to their molecular phenotypic presentation 

corresponding to lifestyle and metabolic health, since there are several mitochondrial-related 

diseases impacting this population to a greater degree compared to other populations in the 

absence of clear genetic contributors for cognitive decline.  

  Compared to the nuclear genome, the mitochondrial genome is especially susceptible to 

oxidative damage because of its location proximal to the oxidative phosphorylation machinery 

where majority of reactive oxygen species (ROS) are generated16,35,112. Additionally, mitochondria 
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lack protective histones and a robust DNA repair capacity which helps prevent genomic 

instability16. Elevated levels of ROS generate oxidative stress and an oxidative environment 

capable of damaging important biomolecules through oxidation reactions and may cause 

detrimental effects in genomic coding regions by altering function and/or the expression of 

mitochondrial genes6,9,17. The most common forms of oxidative DNA damage are: 8-oxo-7,8-

dihydroguanine (8oxoG) and 8-oxo-7,8-dihydrodeoxyguanine (8oxodG) due to the low oxidation 

potential of the base guanine, thus causing it to be vulnerable to oxidative stress9,10,17,21,43,49. 

Oxidation to guanine encompasses unique mutagenic properties that when left unrepaired from 

the DNA damage response system, oxidized guanine can perturb cellular function through several 

different mechanisms and effect protein—DNA binding (e.g., transcription factors)9,17,43,49. 

Furthermore, it can develop substitution mutations which change the amino acid coded and may 

consequently modify the activity of encoded products, such as proteins6,9,17,41,43. Due to the 

nature of the mitochondrial genome within various cell types and tissues, the location, metabolic 

activity, and enzymatic processes will influence distinctive oxidative DNA damage to tissue with 

differing function49.  

  Studies have demonstrated correlations between AD pathology and oxidative DNA 

damage, such as, A was shown to induce oxidative stress in the CNS and peripheral tissues, 

decrease vital ETC enzymes activity, and modified mitochondrial dynamics21,104. Growing 

evidence implicates oxidative DNA damage as a primary and secondary contributor to pathology 

observed in the AD continuum38,113–115. Recent evidence from our lab analyzing blood-based 

indices of mtDNA copy number (CN) and cell-free mtDNA (cf-mtDNA) to investigate 

mitochondrial dysfunction in complex disease (T2D and cognitive impairment) among MAs 

showed that mtDNA CN was significantly associated with both T2D and cognitive impairment2. 

Also, cf-mtDNA was found to be higher in individuals with either disease, reaching significance in 

individuals with both diseases compared to healthy normal controls2. The quantification of 

mtDNA CN are indicators of mitochondrial biogenesis and cellular energetics2,116, which can be 

used as a measurement of mitochondrial health since the amount of mtDNA released by cells is 

correlated117. Cf-mtDNA has been increasingly studied as a biomarker for systemic inflammation 

during cellular stress or apoptosis, as mtDNA fragments are released by cells into the 
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bloodstream as circulating cf-mtDNA (ccf-mtDNA), where it may act as a damage associated 

molecular pattern (DAMP) due to mitochondria’s bacterial DNA origin and elicit an immune 

response by activating innate immune cells and inflammation2,112,117,118. There are numerous 

studies assessing ccf-mtDNA as a clinical diagnostic and predictive biomarker112,117,119–122, and 

accumulating evidence indicates the extent of abnormal mitochondrial function and mtDNA 

damage may be attributed to correlations between disease severity and levels of ccf-

mtDNA112,121. Furthermore, increased levels of ccf-mtDNA are shown in neurological diseases 

that exhibit inflammatory features, which could generate a vicious cycle of immune cell 

recruitment, enhancement of ROS generation and the oxidative environment, and mtDNA 

activation of systemic inflammation augmenting additional damage to mitochondria and its 

genome2,112,119.  

  In a similar population-based cohort, we found that mtDNA variants indicative of 8oxoG 

in buffy coat PBMCs were significantly elevated in MAs compared to NHWs and were associated 

with cognitive function, sex, and education44. Correspondingly, a study reported by Miller, et al., 

revealed AD neurons compared to age-matched controls had significantly elevated levels of 

somatic single nucleotide variants (sSNVs) than anticipated when considering sSNVs are known 

to increase with age38. Variability in the increased levels of sSNVs among neurons corresponded 

with variability in AD pathology observed in neurons from affected brain regions effected, and 

the universal distribution of the variants are presumed to occur secondary to proceedings that 

develop disease pathology38. Supplementary analysis of sSNVs established potential mechanisms 

of oxidative DNA damage developed from 8oxoG (nonsynonymous mutations, e.g., C>A) that 

might contribute to the significant increase of sSNVs in AD38. Protein-coding genes exhibited 

increased substitution mutations, which could be increased ROS and oxidative stress commonly 

observed in AD brains, CNS, and periphery, which can contribute to inflammation and 

mitochondrial dysfunction—also frequently reported in AD38,123. This accumulating evidence may 

point at a mutational signature important to AD pathophysiology influencing the differing 

endophenotype reported in AD, particularly of those with different mitochondrial capacity, 

metabolic health, and comorbidities linked to ethnic/racial health disparities for developing 

cognitive decline.  
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  Oxidative transversions may be associated with increased mitochondrial dysfunction and 

could contribute to the continuous progression of AD until a clinical endpoint, death. In this study, 

our objective was to use a blood-based measurement of 8oxoG sSNVs as an indicator of impaired 

mitochondrial function to investigate the role of mitochondria in pathophysiology of complex 

disease by (1) identifying influencers of 8oxoG in ccf-mtDNA such as population and sex, and (2) 

determining differences in 8oxoG buffy coat PBMCs and ccf-mtDNA from plasma based on 

AD/MCI diagnoses and/or related endophenotypes.   

 

METHODS 
Sample Acquisition and Description 
Cohort 

The Texas Alzheimer’s Research and Care Consortium (TARCC) is a population-based 

collaborative longitudinal research initiative that has expanded between several Texas medical 

research institutions124. TARCC explores factors that may attribute to the development and 

progression of cognitive impairment due to AD in the MA population compared to their NHW 

counterparts.  

Participants 
The study received institutional review board approval under the University of North 

Texas Health Science Center IRB #1330309-1; informed written consent was obtained from 

participants and/or their legally authorized proxies to take part in the study and allow publication 

of findings before data collection. Volunteer aging participants enrolled in TARCC annually 

complete a medical evaluation, clinical interview, neuropsychological testing, and blood draw. 

Eligible participants obtained categorical clinical diagnoses of ‘Alzheimer’s disease’, ‘Mild 

Cognitive Impairment’, and ‘Normal Control’ based on the criteria provided by the National 

Institute for Neurological Communicative Disorders and Stroke-Alzheimer’s Disease and Related 

Disorders Association125. Additional information regarding the inclusion and exclusionary criteria 

of TARCC has been discussed elsewhere126. This study included NHW and MA subjects (N = 559; 

Table 23) diagnosed with Alzheimer’s Disease (n = 104), Mild Cognitive Impairment (n = 127), or 

normal cognition (n = 328). Buffy coat PBMC samples obtained from NHWs (n = 261) and MAs (n 

= 299) and a subset of plasma samples from 62 NHWs and 57 MAs (N = 119; Table 41) collected 

at the same visit were selected to match the distribution of subjects with respect to age, sex, and 
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type-2 diabetes among both populations. The plasma subset did not include individuals 

diagnosed with MCI. These samples were analyzed to characterize cellular and circulating cell-

free mtDNA (ccf-mtDNA) oxidative damage from blood.  

DNA Extraction, Amplification, and Sequencing 
DNA Extraction 

DNA from both the buffy coat and plasma was extracted individually from 200 mL of each 

sample using the Mag-Bind® Blood & Tissue DNA HDQ 96 kit (Omega Bio-tek, Norcross, GA). Buffy 

coat extractions were conducted using the Hamilton Microlab STARlet automated liquid handler 

(Hamilton Company, Reno, NV) and plasma DNA was extracted manually using the same 

chemistry.   

  
Whole mtDNA amplification: 

The whole mitochondrial genome and large mtDNA fragments for each sample were 

amplified using the REPLI-g Human Mitochondrial DNA kit (Qiagen, Venlo, Netherlands) 

following the manufacturer’s protocol. This kit uses the high fidelity proofreading phi29 DNA 

polymerase capable of both rolling circle and multiple displacement amplification in combination 

of random hexamers127. Mitochondrial genome amplification was performed in order to increase 

mtDNA levels relative to nuclear DNA to enhance mtDNA coverage for whole genome 

sequencing. Amplified product was quantified via Qubit dsDNA BR assay on the Qubit 4 

fluorometer (Invitrogen, Thermo Fisher Scientific, Waltham, MA) for each sample and a small 

test size of approximately 12 samples were evaluated to determine the distribution of amplicon 

sizes using the 4200 TapeStation System (Agilent Technologies, Santa Clara, CA) following the 

manufacturer’s protocol. The Genomic DNA ScreenTape and corresponding reagents were used 

to determine the presence of mtDNA fragments from 200 bp to the whole genome.  

mtDNA Sequencing 

The Nextera XT DNA Library Preparation kit (Illumina, San Diego, CA) was used to 

prepare the sample library for sequencing following the manufacturer’s protocol. All buffy coat 

and plasma samples were sequenced on the NextSeq 550 Sequencer (Illumina) platform 

generating paired-end reads of 150bp. 

Sequence Mapping/Alignment and Variant Calling 
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Raw mtDNA gzipped FASTQ pairs generated for each sample were aligned to the 

reference genome hg38 via BWA-MEM67 (v0.7.17) using the default parameter for mapping to 

generate SAM files. Post-alignment SAM files were processed with SAMtools (v.1.9) to produce 

BAM files that were subsequently sorted, indexed, and statistically assessed by coordinate68. 

Resultant processed aligned sequence reads within the BAM files were assigned to a single new 

read-group through the Picard tool “AddOrReplaceReadGroups”128. Duplicate reads resulting 

from sample preparation, or the sequencing instrument were removed from each sample single 

new read-group BAM file with the GATK4 Spark application of the Picard tool “MarkDuplicates”69. 

The BAM files were then indexed with SAMtools (v.1.9)68 and used for somatic variant calling 

including low allelic fractions and excluding read orientation base qualities (Phred score) under 

30. High-depth mitochondrial somatic variants were called via the GATK4 variant caller, Mutect2, 

utilizing the mitochondria mode69,70.  

Oxidation Artifact Assessment 
Picard tool, CollectOxoGMetrics, was used to calculate Phred-scaled probability scores for 

basecalls to differentiate biological alternative basecalls from technical oxidative damage due to 

8oxoG (http://broadinstitute.github.io/picard). Readers are encouraged to review the study 

reported by Costello et al., for a comprehensive analysis of Next Generation Sequencing 8oxoG 

artifact generation and detection71. A text file was generated for each sample and were subjected 

to manual review to exclude technical oxidative artifacts with a Phred score below 30.  

Identification of Variants Indicative of Oxidative Damage 
The variant call files were manually assessed to identify 8oxoG transversions within the 

mitochondrial genome. The process of identifying these specific oxidative transversions has been 

previously described44. Variants indicative of 8oxoG damage for each subject from the buffy coat 

portion were summed and normalized by accounting for read depth (variant count per 1000 read 

depth) to evaluate group differences based on the following variables: population, cognition, sex, 

type-2 diabetes, comorbidity (cognitive impairment and disease), and lifestyle factors.  

  
APOE and OGG1 Genotyping Imputation 
   Genome-wide SNP profiles were generated using the Illumina Infinium Multi-Ethnic 

Global Array which types 1.7million SNPs. Standard filtering based on SNP missingness, individual 

missingness, and minor allele frequency (5%) was conducted according to Anderson et al., 

http://broadinstitute.github.io/picard
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2010129.  Genetic imputation of APOE (rs7412 and rs429358 for individuals missing APOE 

genotypes) and OGG (rs1052133) was performed using Impute2 based on the 1000 Genomes 

Project Phase 3 data; probabilistic genotypes for were called at a threshold of 0.8.    

 

DATA ANALYSIS 
Statistical analyses were performed using Microsoft Excel, IBM SPSS software (v. 27.0), R 

software (v. 4.2.0), and GraphPad Prism software (v. 9.4.0). Welch’s t-test (two-tailed) was 

performed on 8oxoG mutational load to compare between both population groups and 

haplogroups. Multiple linear regression analysis was performed to evaluate the relationship 

between cognition, sex, age, education, and diabetes with 8oxoG variant count both within the 

whole study cohort and in stratified analyses of MAs and NHWs.  

 

RESULTS 
Evaluation of 8oxoG Variant Count in the Buffy Coat PBMCs of MA and NHW TARCC Participants  

Descriptive statistics for the cohort analyzed for cellular characterization of mitochondrial 

8oxoG variants are displayed in Table 23. As anticipated the MMSE, CDR sum, and years of 

education in both populations used for buffy coat PBMC analysis had significantly different 

means when distributed across cognitive status groups. In the Mexican American population age 

was found to significantly differ between cognitive groups and overall years of education was 

observed at lower levels compared to non-Hispanic Whites.  
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Table 6. Descriptive statistics of MA and NHW participants categorized by population and 
cognitive phenotype in the Texas Alzheimer’s Research and Care Consortium for buffy coat 
mitochondrial DNA oxidative mutational load. 

  NC  MCI  AD  
P-

valuea  

Total Number of Subjects  328  127  104    

Non-Hispanic Whites  153  43  64    

Age [CI]  70.39 ± 1.178  
71.35 ± 
1.421  

71.70 ± 1.056  0.338  

Sex (F) [n, %]  78, 50.98%  21, 48.84%  29, 45.31%    

Mini Mental State Exam (MMSE) [CI]  29.11 ± 0.1759  
27.63 ± 
0.6223  

21.53 ± 1.413  <0.000b  

Clinical Dementia Rating (CDR) Sum [CI]  0.007 ± 0.009  
1.163 ± 
0.2181  

5.344 ± 0.8515  <0.000c  

Years of Education [CI]  16.07 ± 0.4063  
14.56 ± 
0.6597  

15.11 ± 0.7524  0.001d  

BMI kg/m^2 [CI]  27.331 ± 1.150  
27.272 ± 

2.328  
27.394 ± 1.062  0.996  

Diabetes (Y) [n, %]  59, 38.56%  18, 41.86%  22, 34.38%    

Hypercholesterolemia (Y) [n, %]  90, 58.82%  26, 60.47%  50, 78.13%    

Hyperlipidemia (Y) [n, %]  56, 36.60%  15, 34.88%  39, 60.94%    

Hypertension (Y) [n, %]  100, 65.36%  31, 72.09%  44, 68.75%    

Obesity (Y) [n, %]  27, 17.65%  8, 18.69%  10, 15.63%    

Depression (Y) [n, %]  12, 7.84%  6, 13.95%  17, 26.56%    

Tobacco Abuse (Y) [n, %]  51, 33.33%  18, 41.86%  28, 43.75%    

Alcohol Abuse (Y) [n, %]  3, 1.96%  5, 11.63%  3, 4.69%    

          

  NC  MCI  AD  
P-

valuea  

Mexican Americans  175  84  40    

Age [CI]  67.62 ± 0.8156  
69.88 ± 
1.691  

73.37 ± 2.485  <0.000e  

Sex (F) [n, %]  99, 56.57%  40, 47.62%  24, 60.00%    

Mini Mental State Exam (MMSE) [CI]  28.14 ± 0.2889  
24.93 ± 
1.140  

19.87 ± 1.860  <0.000f  

Clinical Dementia Rating (CDR) Sum [CI]  0.006 ± 7.897e-3  
1.113 ± 
0.2261  

5.737 ± 1.183  <0.000g  

Years of Education [CI]  11.05 ± 0.6598  8.77 ± 1.664  9.75 ± 1.547  0.002h  

BMI kg/m^2 [CI]  30.917 ± 0.9992  
31.295 ± 

2.228  
28.717 ± 1.651  0.116  

Diabetes (Y) [n, %]  79, 45.14%  32, 38.10%  19, 47.50%    
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Hypercholesterolemia (Y) [n, %]  103, 58.86%  52, 61.90%  23, 57.50%    

Hyperlipidemia (Y) [n, %]  89, 50.86%  35, 41.67%  12, 30.00%    

Hypertension (Y) [n, %]  120, 68.57%  63, 75.00%  28, 70.00%    

Obesity (Y) [n, %]  84, 48.00%  38, 45.24%  8, 20.00%    

Depression (Y) [n, %]  19, 10.86%  29, 34.52%  15, 37.50%    

Tobacco Abuse (Y) [n, %]  82, 46.86%  39, 46.43%  18, 45.00%    

Alcohol Abuse (Y) [n, %]  6, 3.43%  0, 0.00%  2, 5.00%    
a. The mean difference is significant at 0.05.  

b. NC vs. MCI 0.016, NC vs. AD <0.001, MCI vs. AD <0.001  
c. NC vs. MCI <0.001, NC vs. AD <0.001, MCI vs. AD <0.001  

d. NC vs. MCI 0.003, NC vs. AD 0.042, MCI vs. AD 0.542  

e. NC vs. MCI 0.028, NC vs. AD <0.001, MCI vs. AD 0.017  
f. NC vs. MCI <0.001, NC vs. AD <0.001, MCI vs. AD <0.001  
g. NC vs. MCI <0.001, NC vs. AD <0.001, MCI vs. AD <0.001  

h. NC vs. MCI 0.001, NC vs. AD 0.273, MCI vs. AD 0.540  

 

Genotype frequencies for APOE and OGG1 are shown in Table 7 distributed by cognitive status 
in each population.  
 
Table 7. APOE and OGG1 genotype frequencies in each population based on cognitive 
phenotype in TARCC participants assessed via buffy coat. 

Non-Hispanic Whites  N = 260  NC  MCI  AD  

APOE Genotype  

e2/e2  1 (0.65%)  0 (0%)  0 (0%)  

e2/e3  15 (9.8%)  6 (14%)  1 (1.6%)  

e2/e4  3 (1.96%)  0 (0%)  0 (0%)  

e3/e3  85 (55.6%)  21 (48.8%)  19 (29.7%)  

e3/e4  24 (15.7%)  9 (20.9%)  30 (46.9%)  

e4/e4  4 (2.6%)  7 (16.3%)  13 (20.3%)  

          

OGG1 Genotype  

Ser326  53 (34.6%)  21 (48.8%)  30 (46.9%)  

Ser/Cys326  47 (30.7%)  8 (18.6%)  16 (25%)  

Cys326  5 (3.3%)  1 (2.3%)  3 (4.7%)  

          

Mexican Americans  N = 299  NC  MCI  AD  

APOE Genotype  

e2/e2  1 (0.57%)  0 (0%)  0 (0%)  

e2/e3  17 (9.7%)  3 (3.6%)  0 (0%)  

e2/e4  0 (0%)  0 (0%)  0 (0%)  

e3/e3  121 (69.1%)  61 (72.6%)  25 (62.5%)  

e3/e4  33 (18.9%)  18 (21.4%)  15 (37.5%)  

e4/e4  2 (1.1%)  2 (2.3%)  0 (0%)  

          

OGG1 Genotype  

Ser326  55 (31.4%)  28 (33.3%)  18 (45%)  

Ser/Cys326  68 (38.9%)  31 (36.9%)  13 (32.5%)  

Cys326  17 (9.7%)  8 (9.5%)  4 (10%)  
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In the MA population 8oxoG variant count was significantly reduced for subjects reporting 

depression compared to those without depression; mean = 6.548 and 7.704, respectively (Figure 

13). Tobacco abuse demonstrated an approach for significance in association with 8oxoG 

demonstrating a higher variant load compared to non-smokers in MAs; mean = 7.935 and 7.048, 

respectively (Figure 14). These trends were not observed in the NHW cohort. 

 
Figure 13. Cellular 8oxoG variant count is significantly higher in self-reported non-depressed 
Mexican Americans. a Total 8oxoG variant count was assessed by depression status using a two-
tailed Welch’s t-test (n = 299, t-statistic = 2.010, df = 105.8, p = 0.04693). Error bars represent 
standard error of the mean. b Violin plot displaying the distribution of 8oxoG variant counts in 
individuals with and without depression (n = 559) with effect size and confidence interval plotted 
on right y-axis. Dashed lines indicate the mean and dotted lines represent the 1st and 3rd 
quartile. The triangle represents the difference of the means, and the associated bar indicates 
the confidence interval. 
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Figure 14. Total Cellular 8oxoG count approaches significance in MA individuals with a history 
of tobacco abuse. a Total 8oxoG variant count was evaluated by history of tobacco abuse using 
a two-tailed Welch’s t-test (n = 299, t-statistic = 1.751, df = 257.2, p = 0.0812). Error bars 
represent standard error of the mean. b Violin plot displaying the distribution of 8oxoG variant 
counts in individuals with and without a history of tobacco abuse (n = 559) with effect size and 
confidence interval plotted on right y-axis. Dashed lines indicate the mean and dotted lines 
represent the 1st and 3rd quartile. The triangle represents the difference of the means, and the 
associated bar indicates the confidence interval. 

 

 Multiple linear regression model predictions in the whole cohort (MA and NHW 

combined) were performed to assess for associated factors to 8oxoG and to determine if there 

are predictive interactions. Sex (p = 0.000747), years of education (p = 0.005456), BMI (p = 

0.028841), and tobacco abuse (p = 0.008646) were found to be significantly associated with 

8oxoG variant count and the population-sex interaction demonstrated a significant interaction 

effect (p = 0.003762) (Table 8). The negative coefficient for sex indicates elevated 8oxoG for 

females. No other independent variables considered for the regression model showed associated 

statistical significance (population, cognitive status, age, diabetes, depression, APOE, OGG1, and 

population  education). Further analysis of 8oxoG variant count in both population and sex via 

two-way ANOVA indicates population is significantly associated (p = <0.0001), while sex was 

marginally significant (p = 0.0922).  
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Table 8. Cellular 8oxoG variant count and cognitive status (NC vs MCI or AD) multiple linear 
regression model prediction considering population interaction effect with both sex and 
education. 

Variable  Coefficient  Std. Error  t-statistic  p-value  

Constant  3.12218  2.50099  1.248  0.212613  

Population (with respect to NHW)  -1.74971  1.79942  -0.972  0.331444  

Cognitive Status (with respect to AD)  0.72882  0.54067  1.348  0.178412  

Cognitive Status (with respect to MCI)  0.59658  0.49557  1.204  0.229364  

Sex (with respect to Male)  -1.79283  0.52766  -3.398  0.000747  

Age  0.01725  0.02955  0.584  0.559639  

Years of Education  0.15024  0.05377  2.794  0.005456  

BMI  0.0797  0.03633  2.193  0.028841  

Diabetes (with respect to "Yes")  -0.63683  0.42547  -1.497  0.135232  

Depression (with respect to "Yes")  -0.72191  0.52278  -1.381  0.168071  

Tobacco Abuse (with respect to "Yes")  1.04508  0.39607  2.639  0.008646  

APOE  0.16904  0.35467  0.477  0.63389  

OGG1  -0.12608  0.29831  -0.423  0.672781  

Interaction: NHW x Male "Yes"  2.26289  0.77646  2.914  0.003762  

Interaction: NHW x Years of Education  -0.11933  0.11921  -1.001  0.31739  

R-squared 0.1221 p-value 1.565e-06 
Adjusted R-squared 0.09172 df 14 and 405 

F-statistic 4.022 Sample n 420 

 

 In the subsequent multiple linear regression model, a diabetes  cognition interaction 

was evaluated and showed that 8oxoG variant count was significantly associated with population 

(p = 1.76e-06), sex (p = 0.0429), years of education (p = 0.0109), BMI (p = 0.0254), and tobacco 

abuse (p = 0.0155) (Table 9). An interaction effect between diabetes and cognition did not show 

significant association with 8oxoG variant count. Cognitive status with respect to AD displayed a 

suggestive association with AD compared to controls (p = 0.0556). No other variables included in 

the multiple linear regression model demonstrated significant association (cognitive status with 

respect to MCI, age, diabetes, depression, APOE, and OGG1. 
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Table 9. Cellular 8oxoG variant count and cognitive status (NC vs MCI or AD) multiple linear 
regression model prediction considering diabetes interaction effect with cognitive status. 

Variable  Coefficient  Std. Error  t-statistic  p-value  

Constant  2.16016  2.50269  0.863  0.3886  

Population (with respect to NHW)  -2.35566  0.4857  -4.85  1.76e-06  

Cognitive Status (with respect to AD)  1.24926  0.65088  1.919  0.0556  

Cognitive Status (with respect to MCI)  0.54274  0.62565  0.867  0.3862  

Sex (with respect to Male)  -0.81169  0.39958  -2.031  0.0429  

Age  0.02659  0.0297  0.895  0.3711  

Years of Education  0.12472  0.04877  2.557  0.0109  

BMI  0.08239  0.03673  2.243  0.0254  

Diabetes (with respect to “Yes”)  -0.24581  0.56673  -0.434  0.6647  

Depression (with respect to “Yes”)  -0.62874  0.52599  -1.195  0.2326  

Tobacco Abuse (with respect to “Yes”)  0.96754  0.3979  2.432  0.0155  

APOE  0.15846  0.35808  0.443  0.6584  

OGG1  -0.20177  0.3006  -0.671  0.5025  

Interaction: AD x Diabetes “Yes”  -1.38959  1.02584  -1.355  0.1763  

Interaction: MCI x Diabetes “Yes”  -0.06118  0.98237  -0.062  0.9504  

R-squared 0.107 p-value 2.31e-05 
Adjusted R-squared 0.07615 df 14 and 405 

F-statistic 3.467 Sample n 420 

 
 Previously derived 8oxoG variant load for each subject corresponding to 8oxoG 

“hotspots” were analyzed via multiple linear regression prediction models to determine 

statistical associations. The predictive model assessing a population  sex and years of education 

interaction effect in association with 8oxoG “hotspots” did not demonstrate similar statistical 

significance (Table Appendix R). Similarly, the multiple linear regression model with a diabetes  

cognition interaction effect did not display comparable statistical significance (Table Appendix 

S). Both models using “hotspot” as the dependent variable showed it was less informative than 

analyzing total 8oxoG variant count. Further analysis of 8oxoG hotspots via multiple linear 

regression modeling within each population lost significant statistical associations (Tables 

Appendix T and U) that were observed in Appendix R and S. 

Based on stratification by population, multiple linear regression modelling indicated that 

total 8oxoG was significantly associated with cognitive status, sex, years of education, and 

tobacco abuse (Table 10). Surprisingly, within the MA population BMI did not show significant 

association as compared to the regression models investigating interactive effects with total 
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8oxoG variant count (Tables 8-9). Within the NHW population, the multiple linear regression 

model (Table 11) did not demonstrate any associations with the included predictive independent 

variables (cognition, sex, age, years of education, BMI, diabetes, depression, tobacco abuse, 

APOE, and OGG1). 

 
Table 10. Multiple linear regression prediction model in the Mexican American population 
considering total cellular 8oxoG variant count. 

Variable  Coefficient  Std. Error  t-statistic  p-value  

Constant  5.38624  3.66547  1.469  0.143088  

Cognitive Status (with respect to AD)  1.88775  0.90381  2.089  0.037847  

Cognitive Status (with respect to MCI)  1.11683  0.71666  1.558  0.120533  

Sex (with respect to Male)  -2.23145  0.62169  -3.589  0.000406  

Age  -0.01812  0.04432  -0.409  0.68306  

Years of Education  0.15433  0.06272  2.461  0.01461  

BMI  0.0733  0.05051  1.451  0.148079  

Diabetes (with respect to "Yes")  -0.97291  0.62086  -1.567  0.118495  

Depression (with respect to "Yes")  -1.4407  0.79867  -1.804  0.072569  

Tobacco Abuse (with respect to "Yes")  1.97348  0.60289  3.273  0.001228  

APOE  0.18362  0.65285  0.281  0.778769  

OGG1  -0.03107  0.42738  -0.073  0.942111  

R-squared 0.1199 p-value 0.001776 
Adjusted R-squared 0.07743 df 11 and 228 

F-statistic 2.824 Sample n 240 
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Table 11. Multiple linear regression prediction model in non-Hispanic Whites considering total 
cellular 8oxoG variant count. 

Variable  Coefficient  Std. Error  t-statistic  p-value  

Constant  0.42632  3.39267  0.126  0.9  

Cognitive Status (with respect to AD)  -0.1306  0.57357  -0.228  0.82  

Cognitive Status (with respect to MCI)  0.23  0.64941  0.354  0.724  

Sex (with respect to Male)  0.60026  0.45481  1.32  0.189  

Age  0.04559  0.03686  1.237  0.218  

Years of Education  0.0119  0.08375  0.142  0.887  

BMI  0.07021  0.04965  1.414  0.159  

Diabetes (with respect to "Yes")  -0.17897  0.53328  -0.336  0.738  

Depression (with respect to "Yes")  0.01429  0.64799  0.022  0.982  

Tobacco Abuse (with respect to "Yes")  -0.14434  0.46294  -0.312  0.756  

APOE  0.17776  0.36646  0.485  0.628  

OGG1  -0.28863  0.37952  -0.761  0.448  

R-squared 0.04111 p-value 0.7794 
Adjusted R-squared -0.02168 df 11 and 168 

F-statistic 0.6547 Sample n 180 

 
Additional prediction modelling used cognitive status as a binary variable to combine the 

effects of AD and MCI compared to NCs. Our results showed similar results to the models with 

greater resolution on cognitive status (Appendix V-AC). 

 
Assessment of ccf-mtDNA 8oxoG Variant Count in MA and NHW TARCC Participants  

The subset of participants included for the ccf-mtDNA 8oxoG variants are provided in 

Table 12. Sample size and participant selection used for the plasma analysis were selected from 

subjects included in the buffy coat portion of the study to compare the blood fractions collected 

from the same visit. Age, sex, and years of education were considered confounding variables for 

cognitive impairment and were utilized with the aim to pairwise match AD with normal control 

cases to help reduce the risk of confounders influencing false associations to AD due to the 

smaller sample size. Previously, our lab demonstrated a population-sex difference in 

mitochondrial 8oxoG variant count within the Mexican American population44. Genotype 

frequencies for APOE and OGG1 are shown in Table 13 distributed by cognitive status in each 

population. 
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Table 12. Descriptive statistics of participants classified by population and cognitive phenotype 
in TARCC for plasma (i.e., ccf) mitochondrial DNA oxidative mutational load 
 

 NC AD P-value 

Total Number of Subjects 63 59  

Non-Hispanic Whites 33 32  

Age [CI] 72.30 ± 3.112 72.19 ± 1.913 0.951 

Sex (F) [n, %] 19, 57.58% 19, 58.62%  

Mini Mental State Exam (MMSE) [CI] 28.91 ± 0.4296 20.41 ± 2.214 < 0.001 

Clinical Dementia Rating (CDR) Sum [CI] 0.000 ± 0.000 5.625 ± 1.353 < 0.001 

Years of Education [CI] 14.12 ± 0.9178 14.13 ± 0.9549 0.996 

BMI kg/m^2 [CI] 27.997 ± 2.291 27.709 ± 1.632 0.842 

Diabetes (Y) [n, %] 15, 45.45% 16, 50.00% 

 

Hypercholesterolemia (Y) [n, %] 17, 51.52% 27, 84.38% 

Hyperlipidemia (Y) [n, %] 11, 33.33% 24, 75.00% 

Hypertension (Y) [n, %] 23, 69.70% 22, 68.75% 

Obesity (Y) [n, %] 25, 75.76% 26, 81.25% 

Depression (Y) [n, %] 6, 18.18% 12, 37.50% 

Tobacco Abuse (Y) [n, %] 13, 39.39% 16, 50.00% 

Alcohol Abuse (Y) [n, %] 1, 3.03% 2, 6.25% 
    

 NC AD P-value 

Mexican Americans 30 27  

Age [CI] 73.23 ± 1.971 73.89 ± 3.184 0.733 

Sex (F) [n, %] 17, 56.67% 14, 51.85%  

Mini Mental State Exam (MMSE) [CI] 27.83 ± 0.6846 19.63 ± 2.111 < 0.001 

Clinical Dementia Rating (CDR) Sum [CI] 0.017 ± 0.03267 5.574 ± 1.282 < 0.001 

Years of Education [CI] 9.93 ± 1.971 9.63 ± 1.794 0.824 

BMI kg/m^2 [CI] 31.06 ± 2.166 28.319 ± 1.8647 0.065 

Diabetes (Y) [n, %] 12, 40.00% 13, 48.15% 

 

Hypercholesterolemia (Y) [n, %] 17, 56.67% 17, 62.96% 

Hyperlipidemia (Y) [n, %] 13, 43.33% 8, 29.63% 

Hypertension (Y) [n, %] 21, 70.00% 18, 66.67% 

Obesity (Y) [n, %] 17, 56.67% 23, 85.19% 

Depression (Y) [n, %] 3, 10.00% 11, 40.74% 

Tobacco Abuse (Y) [n, %] 12, 40.00% 13, 48.15% 

Alcohol Abuse (Y) [n, %] 1, 3.33% 2, 7.41%  
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Table 13. APOE and OGG1 genotype frequencies in each population based on cognitive 
phenotype in TARCC participants assessed via plasma. 

Non-Hispanic Whites  N = 65  NC  AD  

APOE Genotype  

e2/e2  0 (0%)  0 (0%)  

e2/e3  2 (6.1%)  0 (0%)  

e2/e4  1 (3%)  0 (0%)  

e3/e3  19 (57.6%)  8 (25%)  

e3/e4  5 (15.2%)  16 (50%)  

e4/e4  0 (0%)  7 (21.9%)  

        

OGG1 Genotype  

Ser326  10 (30.3%)  15 (46.9%)  

Ser/Cys326  8 (24.2%)  7 (21.9%)  

Cys326  2 (6.1%)  1 (3.1%)  

        

Mexican Americans  N = 57  NC  AD  

APOE Genotype  

e2/e2  0 (0%)  0 (0%)  

e2/e3  3 (10%)  0 (0%)  

e2/e4  0 (0%)  0 (0%)  

e3/e3  22 (73.3%)  14 (51.2%)  

e3/e4  5 (16.7%)  12 (44.4%)  

e4/e4  0 (0%)  0 (0%)  

        

OGG1 Genotype  

Ser326  5 (16.7%)  9 (33.3%)  

Ser/Cys326  20 (66.7%)  9 (33.3%)  

Cys326  3 (10%)  4 (14.8%)  

 
Although we attempted to match samples based on age, the final data set was not a complete 

match; in order to determine if age is a potential cofounder, we conducted a Pearson correlation 

to determine if age was associated to total 8oxoG variant count (Figure 15). The results 

demonstrate that age does not need to be considered a covariate in our dataset as it was not 

correlated with total ccf-mtDNA 8oxoG variant count. 
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Figure 15. Scatter plot of plasma 8oxoG variant count by age. Sample means of total log 
transformed plasma 8oxoG variant count was assessed by age using a two-tailed Pearson 
correlation (n = 122). Dotted lines represent 95% confidence interval (-0.2113 to 0.1438), and the 
solid line indicates the best-fit line. Correlation statistics: r = -0.03489, R squared = 0.001217, p-
value = 0.7028.   
 
 In the whole cohort ccf-8oxoG variant count was significantly elevated in the Mexican 

American population compared to non-Hispanic Whites; mean = 0.8500 and 0.7160, respectively 

(Figure 16). Interestingly, ccf-8oxoG variant count did not significantly differ based on cognitive 

status or sex (Figure 17 and Figure 18).  

 
Figure 16. ccf-mtDNA 8oxoG variant count is significantly elevated in the Mexican American 
population. a Log transformed ccf-mtDNA 8oxoG variant count grouped by population using an 
unpaired, two-tailed t-test (n = 122, t-statistic = 4.666, df = 120, p = <0.0001). Error bars represent 
standard error of the mean. b Violin plot demonstrating distribution of 8oxoG variant count in 
MAs and NHWs (n= 122) with effect size and confidence interval plotted on right y-axis. Dashed 
lines indicate the mean and dotted lines represent the 1st and 3rd quartile. The triangle represents 
the difference of the means. 
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Figure 17. ccf-mtDNA 8oxoG variant count is not significantly associated with cognitive status 
in the whole cohort. Log transformed ccf-mtDNA 8oxoG variant count by cognitive phenotype 
was analyzed via an unpaired two-tailed t-test (n = 122, t-statistic = 0.6647, df = 120, p = 0.5075). 
Black filled circles represent individual data points and error bars represent standard error of the 
mean. Effect size and confident interval plotted on right y-axis. The triangle represents the 
difference of the means. 
 

 
Figure 18. ccf-mtDNA 8oxoG variant count does not significantly differ by sex in the whole 
cohort. Log transformed ccf-mtDNA 8oxoG variant count grouped by sex via unpaired, two-tailed 
t-test (n = 122, t-statistic = 0.6705, df = 120, p = 0.5039). Closed circles indicate individual points 
and error bars are representative of the standard error of the mean. Effect size and confident 
interval plotted on right y-axis. The triangle represents the difference of the means. 
 
 Multiple linear regression modelling of ccf-mtDNA 8oxoG variant count in the whole 

cohort with respect to population- sex and education interactive effects demonstrated APOE 

status as a dosage effect (i.e., no e4 allele, one e4 allele, two e4 alleles) was indicated as a 

significant factor with a positive association (Table 14). Also, the population  sex interaction 

terms showed a significant positive association to plasma 8oxoG variant count while additional 

independent variables in the regression displayed significant association (population, AD, sex, 

age, years of education, BMI, diabetes, depression, tobacco abuse, APOE, OGG1, and population 
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 education. When assessing for a diabetes  cognition interaction, the multiple linear regression 

model revealed a significant association between ccf-8oxoG variant count and both population 

and APOE (Table 15). Other factors included in the regression model did not demonstrate 

significant association (AD, sex, age, years of education, diabetes, depression, tobacco abuse, and 

OGG1). 

 
Table 14. Multiple linear regression predictive model for ccf-mtDNA 8oxoG variant count by 
cognitive status considering a population interaction with sex and education in the whole 
cohort. 

Variable Coefficient Std. Error t-statistic p-value 

Constant 1.102547 0.228363 4.828 6.73E-06 

Population with respect to NHW -0.139851 0.137758 -1.015 0.3132 

Cognitive Status with respect to AD -0.065175 0.038484 -1.694 0.0943 
Sex with respect to Male -0.059352 0.046196 -1.285 0.2027 

Age -0.003315 0.002438 -1.36 0.1778 

Years of Education -0.001013 0.004628 -0.219 0.8274 

BMI 0.002149 0.003673 0.585 0.5602 

Diabetes with respect to "Yes" -0.054443 0.036822 -1.479 0.1433 
Depression (with respect to "Yes")  0.009989 0.039548 0.253 0.8013 

Tobacco Abuse (with respect to "Yes")  -0.037633 0.034184 -1.101 0.2743 

APOE  0.081716 0.032133 2.543 0.013 

OGG1  0.006464 0.026095 0.248 0.805 

Interaction: NHW x Male "Yes"  0.164836 0.065672 2.51 0.0141 
Interaction: NHW x Years of Education  -0.006752 0.009877 -0.684 0.4962 

R-squared 0.3607 p-value 0.0003819 
Adjusted R-squared 0.2541 df 13 and 78 

F-statistic 3.385 Sample n 92 
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Table 15. ccf-8oxoG variant count and cognitive status (NC vs AD) multiple linear regression 
model prediction considering diabetes interaction effect with AD. 

Variable Coefficient Std. Error t-statistic p-value 

Constant 1.038734 0.23642 4.394 3.43E-05 

Population with respect to NHW -0.15482 0.041881 -3.697 0.000401 

Cognitive Status with respect to AD -0.045167 0.048985 -0.922 0.359305 
Sex with respect to Male 0.019822 0.035072 0.565 0.573558 

Age -0.002561 0.002497 -1.026 0.308072 

Years of Education -0.003067 0.004381 -0.7 0.485864 

BMI 0.002128 0.003805 0.559 0.577609 

Diabetes with respect to "Yes" -0.041097 0.054135 -0.759 0.450019 
Depression (with respect to "Yes")  0.011365 0.040498 0.281 0.77973 

Tobacco Abuse (with respect to "Yes")  -0.045777 0.035072 -1.305 0.195608 

APOE  0.071074 0.032932 2.158 0.033946 

OGG1  -0.001863 0.026801 -0.069 0.944769 

Interaction: AD x Diabetes "Yes" -0.03728 0.071914 -0.518 0.605626 

R-squared 0.309 p-value 0.001998 
Adjusted R-squared 0.204 df 12 and 79 

F-statistic 2.943 Sample n 92 

 
Stratified multiple linear regression models were conducted to evaluate the effect of 

population at a higher resolution. The MA regression model did not demonstrate any statistical 

significance between plasma 8oxoG variant count and included predictive variables (Table 16). 

Interestingly, multiple linear regression modelling in NHWs denoted ccf-mtDNA 8oxoG variant 

count was marginally significant with AD and diabetes (Table 17). Further, the model showed 

significant statistical association with sex and age, as well, but other variables included did not 

approach statistical significance.  
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Table 16. Multiple linear regression results for ccf-8oxoG variant count within Mexican 
Americans. 

Variable Coefficient Std. Error t-statistic p-value 

Constant 0.9313922 0.3197653 2.913 0.00597 

Cognitive Status with respect to AD -0.0295081 0.056698 -0.52 0.60577 

Sex with respect to Male -0.0522656 0.0513703 -1.017 0.31538 
Age -0.0001923 0.0033756 -0.057 0.95487 

Years of Education -0.0007496 0.0052637 -0.142 0.88751 

BMI -0.0017547 0.0053372 -0.329 0.74414 

Diabetes with respect to "Yes" -0.0261234 0.056394 -0.463 0.64584 

Depression (with respect to "Yes")  -0.003124 0.0668592 -0.047 0.96298 
Tobacco Abuse (with respect to "Yes")  -0.0360425 0.0543473 -0.663 0.51121 

APOE  0.0682865 0.0631564 1.081 0.28641 

OGG1  0.0406068 0.0392238 1.035 0.30709 

R-squared 0.153 p-value 0.7303 
Adjusted R-squared -0.06992 df 10 and 38 

F-statistic 0.6863 Sample n 49 

 
Table 17. Multiple linear regression results for ccf-8oxoG variant count within non-Hispanic 
Whites. 
 

Variable Coefficient Std. Error t-statistic p-value 

Constant 1.115392 0.327981 3.401 0.00182 

Cognitive Status with respect to AD -0.107136 0.05317 -2.015 0.05237 

Sex with respect to Male 0.107027 0.046919 2.281 0.02934 
Age -0.007998 0.003727 -2.146 0.03954 

Years of Education -0.002487 0.008295 -0.3 0.76624 

BMI 0.009303 0.00555 1.676 0.10345 

Diabetes with respect to "Yes" -0.096071 0.051379 -1.87 0.07068 

Depression (with respect to "Yes")  0.017801 0.048754 0.365 0.71742 
Tobacco Abuse (with respect to "Yes")  -0.06144 0.044716 -1.374 0.17898 

APOE  0.057165 0.039934 1.431 0.16199 

OGG1  -0.024474 0.036719 -0.667 0.50986 

R-squared 0.4417 p-value 0.2672 
Adjusted R-squared 0.2672 df 10 and 32 

F-statistic 2.532 Sample n 43 

 

DISCUSSION 
 Ethnic/racial differences in the development of cognitive impairment are known to exist, 

yet there are a substantial number of reports investigating biological, behavioral, and lifestyle 

factors that lead to neurodegeneration in non-Hispanic Whites as opposed to other population 
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groups burdened by cognitive decline. Previously, our group demonstrated that peripheral levels 

of cellular mitochondrial 8oxoG transversion substitution mutations from buffy coat PBMCs were 

associated with population, sex, and years of education44. Multiple linear regression analyses 

approached statistical significance for association between 8oxoG variant count and AD 

compared to NC44. 

Here, our group expanded our previous investigation by including depression, tobacco 

abuse, and OGG1 genotype to determine if these known AD risk factors may be associated with 

buffy coat PBMC and circulating cell-free mitochondrial (ccf-mtDNA) 8oxoG variants. 

Additionally, we were interested in characterizing the predictability of 8oxoG variant count from 

buffy coat PBMCs versus ccf-mtDNA in assessing risk for cognitive decline in both populations. 

We hypothesized that accounting for depression, tobacco abuse, and OGG1 genotype would 

build better predictive models for assessing 8oxoG variant count in association with cognitive 

impairment, T2D, and comorbidity (i.e., cognitive impairment and T2D) within the Mexican 

American population compared to non-Hispanic Whites. We also hypothesize that evaluating 

mitochondrial dysfunction through ccf-mtDNA may be a better predictor for NHWs due to their 

inflammatory endophenotype compared to the metabolic endophenotype observed in MAs. 

Therefore, we hypothesize cellular mitochondrial 8oxoG variant load may serve as a better 

biomarker for MAs due to their observed endophenotype and metabolic burden. Altogether, our 

results confirm MAs, especially females, show greater oxidative damage to their mitochondrial 

genome compared to NHWs. Within the MA population tobacco abuse was closely related to 

increasing 8oxoG mutational load; however, interestingly, non-depressed individuals showed 

elevated 8oxoG load. Stratified regression analysis by population in buffy coat PBMCs 

demonstrated a suggestive association with AD cognitive status in the MA population for 

females, while this was not observed in NHWs. On the other hand, stratified regression analysis 

for NHWs in plasma showed a suggestive association with AD in younger aged males with 

diabetes. 

Depression is a known risk factor for developing MCI and AD, and a previous study 

including MA participants from TARCC demonstrated a depressive endophenotype of MCI and 

AD126. Thus, it is not surprising that there are numerous studies reporting MAs experience more 
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depressive symptoms compared to other Hispanic/Latino subpopulations130,131, as well as non-

Hispanic Whites65,96,132–135. Furthermore, accumulating evidence indicates that individuals with 

depression have higher levels of 8oxoG and oxidative damage, as it is recognized that oxidative 

stress encompasses a critical role in depression pathophysiology through the activity of 

ROS136,137. Interestingly, our data indicated that MAs without depression experienced reduced 

levels of cellular 8oxoG variants. It is important to note that depression seemed to be 

underrepresented in our MA participants, since there is a substantial amount of evidence 

observing a higher prevalence of depression and depressive symptoms among MAs, yet our 

descriptive statistics demonstrate that more individuals without depression are included in the 

MCI and AD groups. Subsequent linear regression models in the whole cohort and MA population 

mostly show a negative association with 8oxoG variant count indicating MAs without depression 

are at an increased risk for elevated levels of oxidative damage compared to NHWs. It is possible 

that surveying for the presence or absence of depression may have poor resolution when 

investigating cognitive associations compared to assessing for a collection of depressive 

symptoms. Previous studies have reported distinct clustering of depressive symptoms is 

imperative when taking into account the connection between cognition and depression138,139. 

Our results for 8oxoG and depression among MAs warrants further investigation by 

implementing depressive symptoms and/or other indicators of depression. 

Unsurprisingly, our results revealed increased levels of 8oxoG variants in buffy PMBCs of 

MAs with a history of tobacco abuse. Smoking tobacco and even exposure to tobacco smoke has 

been shown to cause elevated levels of 8oxoG compared to non-smokers140–143 because of the 

various carcinogens contained within144,145. As previously mentioned, carcinogens are capable of 

forming DNA adducts and can lead to oxidative stress through the production of ROS. 

Additionally, cigarette smoke has been recognized to cause chronic inflammation leading to 

increasing oxidative stress which further results in accumulating oxidative damage, creating a 

vicious cycle144,146. The link between elevated 8oxoG levels in MA smokers could be attributed to 

the prevalence and frequency of smoking among this population, especially in MAs with lower 

educational attainment and income147–149. A recent study investigating the effect of smoking on 

cognitive function among aging Mexican Americans, concluded that smoking tobacco increased 
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risk for cognitive decline150. Following linear regression models that included MAs with 8oxoG 

mutational load as the outcome all demonstrated a significant link with tobacco abuse. These 

results seem to indicate tobacco use as a strong modifiable risk factor for increased mitochondrial 

oxidative damage in MAs and demonstrates the importance of addressing such behaviors in this 

population to prevent increased mtDNA 8oxoG damage that could lead to age-related diseases. 

 Generally, our higher resolution linear regression models evaluating several variables on 

predicting 8oxoG somatic variants in the whole cohort established that population  sex, tobacco 

abuse, BMI, years of education, and population were statistically associated. AD was suggestively 

associated with cellular 8oxoG somatic variants when assessing an interaction between diabetes 

and cognitive status. In the US aging population, it was reported that 25% of individuals are living 

with diabetes (whether they are aware or not) and approximately 50% of individuals are pre-

diabetic151. Increasing evidence connects AD and T2D, showing a greater risk for cognitive decline 

due to T2D. Robust correlations have been previously reported between AD and high blood 

sugar, whereby high blood sugar was associated with the presence of A plaques151. Moreover, 

brain dysfunction is frequently observed in earlier stages of T2D, and hemoglobin A1C (the 

established biomarker for T2D) has been related to decline in functional memory and reduced 

hippocampal size151. Links between T2D and AD implicate mitochondria dysfunction as a 

participating factor in the development and/or progression of neurodegeneration and may be of 

exceptional importance for ethnic/racial differences in disease severity and manifestation. In our 

data, population stratification limited to MAs evaluating the same independent variables 

indicated similar associations with AD. These results were not observed in the NHW population, 

and perhaps of interest is the fact that many of the coefficients were in the opposite direction 

(though not significant). This evidence further suggests that mitochondrial health could be the 

reason for the unexplained prevalence of cognitive impairment among Mexican Americans. 

Results from evaluating ccf-mtDNA 8oxoG somatic variants demonstrated elevated levels 

in MAs; however, associations with both cognitive status and sex were not noteworthy. The 

elevated cell-free oxidative DNA damage in the MA population could be related to their 

mitochondrial health due to the various metabolic comorbidities affecting the population as 

previously mentioned. Linear regression modelling results show cell-free 8oxoG variant load was 
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notably associated with APOE when accounting for both the population  sex and diabetes  

cognitive status interaction terms in the whole cohort. Knowing APOE status is of greater 

importance in the NHW population compared to MAs, it was not surprising the subsequent 

stratified regression in MAs did not demonstrate statistical significance compared to NHWs. 

Regression model stratification in NHWs showed significant associations between ccf-mtDNA 

8oxoG count with sex and age. Cognitive status with respect to AD in NHWs was suggestively 

associated with 8oxoG (marginal significance). These accumulating results point to a 

differentiating role of mitochondrial dysfunction assessed by mitochondrial 8oxoG somatic 

variants in buffy coat PBMCs compared to ccf-mtDNA of plasma in relation to the metabolic and 

inflammatory endophenotypes, respectively. Biomarkers of cellular mitochondrial oxidative DNA 

damage may be more applicable in evaluating connections to cognitive decline in MAs, whereas 

cell-free could better explain the association to cognitive impairment in NHWs. 

 

CONCLUSION 
Altogether, the results of this study contribute to the current body of literature regarding 

oxidative damage in the context of aging and neurodegenerative disease.  Uniquely, our data 

specifically point to novel, population-based effects in 8oxoG damage in cellular and cell-free 

mtDNA and investigate the relationship between 8oxoG damage and key comorbidities, 

modifiable risk factors, and AD. It is important to note that this study has its limitations including 

(1) the indirect measurement of 8oxoG lesions and oxidative damage, (2) a small sample size for 

the plasma dataset, (3) lacking biochemical, metabolic, and inflammatory phenotypes, (4) lack of 

assessment for nDNA variants, (5) only blood tissue is sampled, (6) evaluation was performed in 

one cohort, and (7) APOE in the NHW model could have reduced power due to a larger number 

of missingness compared to MAs.  

To better understand the biological and mechanistic roles of mitochondrial dysfunction 

and oxidative DNA damage, future studies should incorporate a larger sample size, include more 

biological markers indicative of metabolic health and systemic inflammation, determine if 

utilizing MMSE, CDR sum, and/or other neuropsychological tests for cognitive function 

strengthens our power to further support/validate our results, and characterize the nuclear 

genetic background associated with the mitochondrial genome for each subject. Additionally, 
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future studies will aim to validate the applicability of peripheral cellular and cell-free 

pathophysiological phenotypes as biomarkers for assessing brain pathology, disease risk, and/or 

disease stage. These studies will also investigate expression of DNA repair machinery, the role of 

sex hormones, and validate mitochondrial oxidative DNA load using novel and established 

alternative methods. 

 

ACKNOWLEDGEMENTS 
 We thank Nicole Hales (currently at 10X Genomics) for library preparation and sequencing 

of mtDNA from buffy coat PBMCs. We thank Viviana Mancilla (UNTHSC Genomic Core) for library 

preparation and sequencing of plasma mtDNA. Research reported in the publication was 

supported by the National Institute of General Medical Sciences of the National Institutes of 

Health under Award Number R25GM125587 and by the National Institutes on Minority Health 

and Health Disparities of the National Institutes of Health under Award Number U54MD006882 

and S21MD012472. R.J.T. was supported by the National Institutes on Minority Health and Health 

Disparities of the National Institutes of Health under Award Number U54MD000214 and the 

National Institutes on Aging under Award number P30AG059298. This study was made possible 

by the Texas Alzheimer’s Research and Care Consortium (TARCC) funded by the state of Texas 

through the Texas Council on Alzheimer’s Disease and Related Disorders. The content is solely 

the responsibility of the authors and does not necessarily represent the official views of the 

National Institutes of Health. 

 
  



 

Danielle Reid 
 

80 

CHAPTER IV: DISCUSSION AND FUTURE DIRECTIONS 
 

INTEGRATING BLOOD-BASED SIGNATURES OF OXIDATIVE DAMAGE IN 
MITOCHONDRIAL DNA FOR PHENOTYPES OF COGNITIVE IMPAIRMENT 
 There is particular interest in identifying and validating blood-based biomarkers capable 

of evaluating risk for cognitive impairment in addition to aiding in diagnosis and prognosis in the 

clinical setting because typically disease tissue biopsy may not be available152, especially in 

Alzheimer's disease. It is important to note that biomarkers are not diagnostic tests and are used 

to determine underlying brain changes causing cognitive impairment due to dementia by 

distinguishing the presence or absence of disease or risk for disease12. Blood tissue is a great 

alternative to utilizing brain tissue, as it is less invasive in nature and represents the whole body 

since these cells are in the periphery. It is recognized that the brain is particularly susceptible to 

OS attributed to the high energy demand, high oxygen consumption, abundance of easily 

peroxidizable polyunsaturated fatty acids, high levels of catalyst iron, etc., in addition to engaging 

approximately 25% of inhaled oxygen107. Furthermore, brain neuronal cells are remarkably 

defenseless against elevated levels of ROS and brain astrocytes are known for their 

neuroprotective functionality, as they help alleviate the oxidative environment by neutralizing 

ROS via glutathione107. Astrocytes aid in the removal cellular debris from dead/dying cells and 

hallmark AD pathology observed in neurodegeneration18,107. The oxidative environment, 

neuroinflammation, and mitochondrial dysfunction such as reduced energy metabolism are 

often observed in combination with AD pathophysiology18,107,153 and indices of these features 

may serve as biomarkers for cognitive decline related to Alzheimer’s disease, especially in 

populations disproportionately burdened by the disease or other metabolic comorbid conditions 

that may propagate the vicious cycle of these underlying pathophysiological conditions. 

  Oxidized mtDNA is a prominent pro-inflammatory initiator due to its recognition as a 

DAMP triggering an inflammatory response. There is accumulating evidence and urge supporting 

its application in serving as an inflammatory biomarker since it is frequently observed at elevated 

levels in inflammatory diseases. Further, evidence from a recent lupus study suggests oxidized 

mtDNA in the form of 8oxoG is more inflammatory compared to nDNA154. We have discussed in 

length mechanisms contributing to oxidized mtDNA and logic implicates OS, impaired 
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mitochondrial dysfunction, inflammation, and mitochondrial capacity related to mitochondrial 

inheritance, therefore our integrative blood-based assessment of oxidative mtDNA in MAs 

compared to NHWs could help better understand the cause of ethnic/racial differences in 

cognitive decline. In the literature, there are a limited number of studies investigating blood-

based biomarkers specifically in cognitively impaired Mexican Americans. These studies have 

demonstrated that mitochondrial dysfunction is a clear prominent feature of MAs with cognitive 

impairment and blood-based biomarkers are capable of distinguishing the presence of disease 

and/or comorbidity2,31,96,155,156. In general, blood-based biomarkers of mitochondrial dysfunction 

investigated in various diseases indicate distinct differences between normal healthy controls 

and those with disease2,81,86,121,122,154. Studies characterizing mitochondrial blood-based markers 

in disease usually focus on one particular blood fraction or use whole blood157. Cellular mtDNA 

are encompassed in mitochondria for encoding mitochondrial encoded genes essential for 

OXPHOS and protein synthesis, whereas ccf-mtDNA are mitochondrial genome fragments that 

potentiate inflammatory responses that could lead to disease pathology157. As a consequence, 

the functional differences in cellular and cell-free mtDNA in peripheral blood from different blood 

fractions is important to describe in combination and separately for elucidation of the role of 

mtDNA in related pathology158. Here we characterized mtDNA 8oxoG variants in two different 

blood fractions: buffy coat PBMCs and plasma, to capture the degree of mitochondrial 

dysfunction in cognitively impaired individuals from different ethnic/racial groups with distinct 

risk and comorbid factors affecting health outcome.  

 Overall, our results indicate both cellular and ccf- 8oxoG variants mtDNA are significantly 

elevated in the MA population compared to the NHW population (Figure 19). Also, sex-

differences in 8oxoG variant levels are observed from both. Notably, our results from evaluating 

oxidized cellular mtDNA compared to ccf-mtDNA ultimately signifies strong predictive capability 

in MAs, especially MA females, compared to NHWs due to the observed statistical significance of 

assessing various independent variables in the MA population that also demonstrated to have 

opposite effects in NHWs. This evidence implies mitochondrial dysfunction in cellular mtDNA may 

be distinctly related to disease pathology in MAs with cognitive decline. In contrast, our ccf-

mtDNA results within each population separately revealed distinct differences in associations 
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between 8oxoG variants and variables known to influence risk for cognitive impairment 

compared to results from cellular mtDNA. 8oxoG variant count in ccf-mtDNA displayed poor 

associations in the MA population compared to NHWs. This evidence altogether supports the 

notion that (1) blood-based signatures of mitochondrial dysfunction differ between ethnic 

populations, (2) cellular and ccf-mtDNA possess different functionality in potentially developing 

pathophysiological condition, and (3) ethnic/racial differences exist in the manifestation of 

neurodegeneration through the assessment of mitochondrial oxidative DNA damage from 

different blood fractions. 

 
Figure 19. Overall results from cellular and ccf-mtDNA 8oxoG variants in MA vs NHW 
participants of TARCC. In the buffy coat PBMC blood fraction (left) observations in cellular 8oxoG 
variant count were found to be significant in MAs and the effects were not observed in NHWs. In 
buffy coat PBMCs, cellular 8oxoG variant count was significantly elevated in MAs, especially 
females, and was associated with CI and tobacco abuse. Modifiable risk factors, biological 
processes, and genetics such as lifestyle, environment, social determinants of health, immune 
cell function, and mito-nuclear interactions are theorized to contribute to elevated oxidative 
damage to mtDNA in MAs from TARCC. In the blood plasma fraction (right) observations of ccf-
8oxoG variant count were significantly reduced in NHW females and were associated with AD 
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and diabetes. These results suggest possible alterations in mitochondrial quality control and/or 
lack of sensing in NHW females. Overall results from cellular and ccf-mtDNA 8oxoG variant loads 
suggest mitophagy may play a role in ethnic/racial differences in AD etiology. 
 
 Future directions of this approach for characterizing oxidative mtDNA damage in the 

context of neurodegeneration will investigate mtDNA deletions from both blood fractions to 

determine mechanistic differences in oxidized mtDNA from mitochondria compared to 

circulating cell-free. Genomic deletions are representative of DNA damage and are associated 

with oxidative DNA damage159. Mitochondrial genomic deletions are frequently observed in 

Alzheimer’s disease— the 5kb “common deletion” that primarily causes Kearns-Sayre syndrome 

and accumulates in specific tissues with age is a predominant deletion observed in AD 

patients159,160. We will have information on mitochondrial genomic deletions for participants 

involved in our studies (Appendix AD and AE) to evaluate severity of damage by population, 

disease, sex, etc. 

 

NOVEL NGS METHOD FOR 8OXOG DETECTION 
 With the technological advances in sequencing chemistry researchers are able to gain 

insight on mitochondrial health by obtaining information on mitochondrial variants, mutational 

load, nuclear-encoded variants impacting mitochondrial bioenergetics, and mtDNA CN152. Two 

single-molecule long-read sequencing platforms are currently available through Pacific 

Biosciences (PacBio) and Oxford Nanopore Technologies (ONT)50,58,59. Interestingly, these 

platforms are not actually generating long-reads, but are based on library preparation 

approaches using barcodes to computationally generate long-reads59. While both PacBio and 

ONT platforms are able to produce long reads and detect modifications in native strands of DNA, 

each utilizes a distinct detection mechanism for base determination, and thus present unique 

advantages and disadvantages50,51.  

PacBio’s Single Molecule Real-Time sequencing (SMRT-seq) platform was introduced as 

one of the first single molecule sequencing technologies50,58,59. The SMRT-seq platform collects 

data during replication of target DNA51,59. Attachment of two hairpin adapters during library 

preparation produces a SMRTbell template that facilitates continuous circular 

sequencing40,50,51,59. Reads obtained from SMRT-seq can be as long as 60kb and has reduced PCR 
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amplification bias compared to previous sequencing generations50,51,59. Despite the numerous 

advantages offered by this third-generation sequencing platform, SMRT-seq possesses several 

limitations including relatively low throughput, higher cost, PCR product bias when compared to 

ONT, and high error rate typically observed as single base pair insertions and deletions40,51. The 

cost of sequencing runs can be exceptionally high due to the need for high coverage ($1000 per 

Gb) and pose a challenge for accessibility for small laboratories59. SMRT-seq is able to detect 

modified bases such as C5-methylcytosine (m5C), N6-methylaadenosine (m6A), and 5-

hydroxymethylcytosine (hm5C) due to shift in kinetics of the DNA polymerase. Accurate 

characterization, however, requires deep coverage because of the dynamic nature of the DNA 

polymerase incorporating modified bases at a slower rate58. 

In contrast to the detection of fluorescently labeled nucleotides used in PacBio SMRT-seq, 

ONT sequencing platforms rely on a nanoscopic hole formed in an electrically resistant synthetic 

polymer membrane occupied by a biological pore protein to directly read strands in a given 

library40,50,161. Hundreds to thousands of bespoke nanopore proteins are contained within the 

sensor array of a given flowcell, allowing for many strands of DNA to be sequenced 

simultaneously50,59. The MinION flowcell contains up to 2048 pores that is monitored in groups 

of 512 via the MinKNOW software program50,59,161. Nanopore sequencing is facilitated by a 

molecular motor protein attached during library preparation59. This enzyme not only directs 

strands to an available nanopore for sequencing, but also unwinds the DNA and facilitates the 

strands passage through at a specific speed. As bases are ratcheted through (3-6 k-mer length of 

bases or base pairs within a given sequence) the electrical conductance of the pore will change 

due to voltage across the membrane59,161. Unique disruptions caused by the motif presence 

within the pore at any given time is detected and recorded by the ASIC sensor50,59. The raw data 

is represented by squiggle tracings from changes in voltage and can then be converted into the 

traditional four nucleotides (A, G, C, and T) by the Guppy basecaller integrated into 

MinKNOW50,59. There are several workflows that can be utilized depending on the type of analysis 

desired and real-time sequencing allows users to analyze data during sequencing runs50. 

Although this device has a higher error rate than competitors (i.e., PacBio), particularly in regions 

of low complexity such as the homopolymeric stretches characteristic of mitochondrial genome, 
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great efforts have been taken to improve the accuracy and data generated50. Performance and 

reproducibility of the device was assessed by the MinION Analysis and Reference Consortium and 

the investigators reported low variations in performance, as well as consistency with base error 

rate, throughput, and read length50. 

The MinION device allows for real-time, direct sequencing of long DNA/RNA fragments, 

has a low startup fee (~$1000 for instrument and $750 per Gb), uses minimal technology, and is 

small in size; the smallest sequencing device currently available40,50,51,59. While the capabilities 

and limitations of nanopore-based sequencing platforms are similar to those of SMRT-seq long 

read lengths, relatively high error rates, and capabilities in base modification detection there are 

numerous advantages that set ONT technology apart from other commercially available 

platforms40,58,162. First and foremost, nanopore-based sequencing is scalable, offering a range of 

devices that can meet the needs of any size laboratory. The device is approximately 3 cm x 10 cm 

and uses a USB port to run off computers making the device able to accommodate laboratories 

of any size with any throughput need59. Other advantages of nanopore-based sequencing 

include: (1) users have flexibility in their desired read length, (2) can obtain reads covering 

repetitive regions, (3) simple/fast workflows, (4) less costly materials, (5) is easily accessible to 

labs, (7) portable, (8) PCR-free and chemical labeling free library preparation, and (9) achieves 

high yields of data up to 30 Gb40,51,161. The size of the device and its ability to detect oxidative 

modifications is ideal for clinical/biomedical settings51,161. 

Several studies have recently demonstrated the ability to detect and accurately 

characterize modified bases using the MinION device162. Nanopore sequencing chemistry 

monitors the electrical conductance to allow for more than 1,000 signals to be detected 

depending on the k-mer59,162. Thus, the presence of a modified base within the pore will cause a 

unique disruption from that of a modified base presented in the squiggle tracings59,161. Currently, 

only m5C and m6A have been evaluated and applied using nanopore sequencing methods58. 

Successful detection of methylated bases provides compelling support for the proposed success 

of detecting both forms of oxidatively modified guanine. Machine learning and statistical testing 

tools/packages using nanopore sequencing exist to detect modified bases, however, there are 

no validated algorithms to detect oxidative modifications. Currently, there is an assortment of 
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tools available to use for detection of additional modifications58. In particular, the open-source 

research basecaller Bonito (https://github.com/nanoporetech/bonito) is presently the most 

accurate basecaller for nanopore sequencing data compared to their current recommended 

basecaller Guppy163. Bonito can be utilized to develop algorithms for modified base detection. 

Therefore, Oxford nanopore sequencing technology may perform as an improved alternative 

approach to detect and quantify oxidative damage by training basecalling models in Bonito. 

 

SCIENTIFIC IMPACT 
 Mitochondrial genetics has been shown great importance in various diseases and has 

continually gained recognition for its involvement in disease pathophysiology. Results reported 

here are insightful and may shape our understanding in the role of mitochondria in 

neurodegeneration, such as AD. It has been recognized that ethnic/racial differences exist for AD 

risk, development, and manifestation. The growing MA aging population poses a great threat to 

our healthcare system, yet research efforts are low in number investigating the AD continuum in 

MAs. Our studies confirm previous reports of enhanced mitochondrial dysfunction and oxidative 

DNA damage in AD. Further we demonstrate population-based differences in mitochondrial DNA 

oxidative damage of cognitively impaired individuals. Our results show incorporating biological, 

molecular, and behavioral phenotypes allow for a more comprehensive understanding of their 

associations to population and sex differences observed in AD. Also, this work described here 

evaluated and partially revealed the potential use of mitochondrial indices of mitochondrial 

dysfunction in peripheral blood. Our results provide new information regarding blood-based 

signatures of mitochondrial dysfunction in the MA population compared to NHWs in relation to 

factors influencing risk for cognitive decline which could prove valuable in improving the 

prevention, diagnosis, and/or identification of therapeutic targets for cognitive decline. 

  

https://github.com/nanoporetech/bonito
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APPENDIX 

 
APPENDIX A. Scatter plot of cellular 8oxoG variant count by age. 

  
Sample means of total 8oxoG variant count was assessed by age using a two-tailed Pearson 
correlation (n = 559). Dotted lines represent 95% confidence interval (-0.03757 to 0.1333), and 
the solid line indicates best-fit line. Correlation statistics: r = 0.04824, R squared = 0.002327, p-
value = 0.2704. 
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APPENDIX B. Cellular 8oxoG variant count multiple linear regression model prediction 
considering cognitive status (NC vs MCI or AD) and diabetes interaction effect. 

Variable Coefficient 
Std. 

Error 
t-statistic p-value 

Constant 2.065866 2.198627 0.94 0.34783 

Population (with respect to NHW) -1.959649 0.406268 -4.824 1.84E-06 
Cognitive Status (with respect to AD) 1.086334 0.570781 1.903 0.05754 

Cognitive Status (with respect to MCI) 0.50188 0.525202 0.956 0.3397 

Sex (with respect to Male) -0.68253 0.322023 -2.12 0.0345 

Diabetes (with respect to “Yes”) -0.009736 0.444694 -0.022 0.98254 

APOE ε2/ε2 -1.464225 2.70427 -0.541 0.58842 
APOE ε2/ε3 0.84649 0.813543 1.04 0.29857 

APOE ε2/ε4 0.138294 2.235666 0.062 0.9507 

APOE ε3/ε3 0.716064 0.620893 1.153 0.2493 

APOE ε3/ε4 0.380755 0.670123 0.568 0.57014 

APOE ε4/ε4 0.989753 0.918605 1.077 0.28176 
BMI 0.035386 0.02488 1.422 0.15552 

Years of Education 0.107933 0.041059 2.629 0.00881 

Age 0.039031 0.025168 1.551 0.12154 

Interaction: AD x Diabetes “Yes” -1.170123 0.864129 -1.354 0.17627 
Interaction: MCI x Diabetes “Yes” -0.224683 0.807738 -0.278 0.78099 

R-squared 0.07337 p-value 4.185e-04 
Adjusted R-squared 0.04601 df 16 and 542 

F-statistic 2.682 Sample n 559 
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APPENDIX C. Cellular 8oxoG variant count multiple linear regression model prediction 
considering cognitive impairment (NC vs MCI + AD) and diabetes interaction effect. 

Variable Coefficient Std. Error t-statistic p-value 

Constant 2.058131 2.195539 0.937 0.34896 

Population (with respect to NHW) -1.927984 0.404489 -4.766 2.41E-06 

Cognitive Impairment 0.76542 0.439084 1.743 0.08186 
Sex (with respect to Male) -0.685558 0.321389 -2.133 0.03336 

Diabetes (with respect to "Yes") -0.003315 0.444255 -0.007 0.99405 

APOE ε2/ε2 -1.469991 2.701135 -0.544 0.58652 

APOE ε2/ε3 0.805548 0.808028 0.997 0.31924 

APOE ε2/ε4 0.111867 2.231898 0.05 0.96004 
APOE ε3/ε3 0.71578 0.616826 1.16 0.24638 

APOE ε3/ε4 0.408495 0.668919 0.611 0.54167 

APOE ε4/ε4 0.95647 0.916872 1.043 0.29732 

BMI 0.034368 0.024827 1.384 0.16683 

Years of Education 0.109596 0.040924 2.678 0.00763 
Age 0.039027 0.025094 1.555 0.12048 

Interaction: Cognitive Impairment x 
Diabetes "Yes" 

-0.653041 0.663536 -0.984 0.32546 

R-squared 0.07159 p-value 1.875e-04 
Adjusted R-squared 0.0477 df 14 and 544 

F-statistic 2.997 Sample n 559 
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APPENDIX D. Cellular 8oxoG variant count and cognitive impairment (NC vs MCI + AD) multiple 
linear regression model prediction considering population interaction effect with both sex and 
education. 

Variable Coefficient Std. Error t-statistic p-value 

Constant 2.88116 2.21084 1.303 0.19306 

Population (with respect to NHW) -0.51694 1.46467 -0.353 0.72427 
Cognitive Impairment 0.49811 0.34392 1.448 0.1481 

Sex (with respect to Male) -1.42915 0.44298 -3.226 0.00133 

Diabetes (with respect to "Yes") -0.35695 0.33806 -1.056 0.2915 

Years of Education 0.1441 0.04539 3.175 0.00158 

APOE ε2/ε2 -2.34923 2.69473 -0.872 0.38371 
APOE ε2/ε3 0.62346 0.80435 0.775 0.43861 

APOE ε2/ε4 0.46293 2.23149 0.207 0.83573 

APOE ε3/ε3 0.6054 0.60887 0.994 0.32051 

APOE ε3/ε4 0.36706 0.66375 0.553 0.58049 

APOE ε4/ε4 0.65263 0.91027 0.717 0.4737 
BMI 0.03332 0.02463 1.353 0.17657 

Age 0.03107 0.02514 1.236 0.2171 

Interaction: NHW x Male "Yes" 1.59823 0.64596 2.474 0.01366 

Interaction: NHW x Years of Education -0.15208 0.09796 -1.553 0.12111 

R-squared 0.08267 p-value 3.163e-05 
Adjusted R-squared 0.05733 df 15 and 543 

F-statistic 3.262 Sample n 559 

 

APPENDIX E. Cellular 8oxoG variant count stratification in the Mexican American population by 
cognitive impairment (NC vs MCI + AD). 

Variable Coefficient Std. Error t-statistic p-value 

Constant 5.09069 3.63725 1.4 0.16271 

Cognitive Impairment 0.95919 0.53876 1.78 0.07607 

Sex (with respect to Male) -1.43742 0.52445 -2.741 0.00651 

Diabetes (with respect to "Yes") -0.24172 0.52806 -0.458 0.64747 

APOE ε2/ε2 -1.85575 4.71698 -0.393 0.6943 
APOE ε2/ε3 0.06738 2.16343 0.031 0.97517 

APOE ε3/ε3 -0.60564 1.95648 -0.31 0.75712 

APOE ε3/ε4 -0.80412 2.00258 -0.402 0.68832 

APOE ε4/ε4 -1.07929 2.90559 -0.371 0.71057 

BMI 0.02298 0.03896 0.59 0.55584 
Years of Education 0.14618 0.05408 2.703 0.00728 

Age 0.01642 0.03892 0.422 0.67335 

R-squared 0.05647 p-value 0.1096 
Adjusted R-squared 0.02031 df 11 and 287 

F-statistic 1.562 Sample n 299 
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APPENDIX F. Stratification analysis in NHWs for cellular 8oxoG variant count by cognitive 
impairment (NC vs MCI or AD). 

Variable Coefficient Std. Error t-statistic p-value 

Constant 0.61747 2.80517 0.22 0.826 

Cognitive Impairment -0.11555 0.41685 -0.277 0.7819 

Sex (with respect to Male) 0.18141 0.37302 0.486 0.6272 
Diabetes (with respect to "Yes") -0.54057 0.40557 -1.333 0.1838 

APOE ε2/ε2 -4.01421 2.98532 -1.345 0.18 

APOE ε2/ε3 0.37297 0.79069 0.472 0.6376 

APOE ε2/ε4 0.34083 1.78683 0.191 0.8489 

APOE ε3/ε3 0.93935 0.5389 1.743 0.0826 
APOE ε3/ε4 0.76551 0.65468 1.169 0.2434 

APOE ε4/ε4 1.29813 0.81143 1.6 0.1109 

BMI 0.04823 0.02878 1.676 0.095 

Years of Education -0.02983 0.07078 -0.421 0.6738 

Age 0.0556 0.03095 1.796 0.0736 

R-squared 0.04768 p-value 0.4212 
Adjusted R-squared 0.001411 df 12 and 247 

F-statistic 1.03 Sample n 260 

 
APPENDIX G. Distribution of cellular 8oxoG variant in mitochondrial genome by number of 
individuals with 8oxoG variant- 8oxoG “hotspot” variant selection. 

 
The red dashed line intercepts at 25 subjects with cellular 8oxoG variant. 8oxoG variants above 
the intercept were conveniently selected as “hotspots”. 
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APPENDIX H. Cellular 8oxoG “hotspot” variant count does not differ between populations. 

 
Welch’s t-test was performed to determine statistical difference in cellular 8oxoG “hotspot” 
variant count between MAs and NHWs (n = 559). Error bars represent standard error of the mean. 
 
APPENDIX I. Cellular 8oxoG “hotspot” variant count does not differ between sexes. 

 
Welch’s t-test was performed on cellular 8oxoG “hotspot” variant count by sex (n =559). Error 
bars represent standard error of the mean. 
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APPENDIX J. Cellular 8oxoG “hotspot” variant count multiple linear regression model prediction 
considering cognitive status (NC vs MCI or AD) and diabetes interaction effect. 

Variable Coefficient Std. Error t-statistic p-value 

Constant 1.031513 1.106376 0.932 0.3516 

Population with respect to NHW -0.236656 0.204439 -1.158 0.2475 

Cognitive Status with respect to AD 0.034295 0.287224 0.119 0.905 
Cognitive Status with respect to MCI 0.09451 0.264288 0.358 0.7208 

Sex with respect to Male 0.077441 0.162046 0.478 0.6329 

Diabetes with respect to "Yes" 0.089844 0.223776 0.401 0.6882 

APOE ε2/ε2 0.462665 1.360822 0.34 0.734 

APOE ε2/ε3 0.662786 0.409385 1.619 0.106 
APOE ε2/ε4 1.064559 1.125014 0.946 0.3444 

APOE ε3/ε3 0.623034 0.312441 1.994 0.0466 

APOE ε3/ε4 0.606919 0.337214 1.8 0.0724 

APOE ε4/ε4 0.963228 0.462253 2.084 0.0376 

BMI 0.016726 0.01252 1.336 0.1821 
Years of Education 0.007475 0.020661 0.362 0.7177 

Age 0.012951 0.012665 1.023 0.307 

Interaction: AD x Diabetes "Yes" -0.182847 0.43484 -0.42 0.6743 

Interaction: MCI x Diabetes "Yes" -0.767987 0.406463 -1.889 0.0594 

R-squared 0.02788 p-value 0.4869 
Adjusted R-squared -0.0008199 df 16 and 542 

F-statistic 0.9714 Sample n 559 
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APPENDIX K. Cellular 8oxoG “hotspot” variant count multiple linear regression model prediction 
considering cognitive impairment (NC vs MCI + AD) and diabetes interaction effect.  

Variable Coefficient Std. Error t-statistic p-value 

Constant 0.996468 1.105562 0.901 0.3678 

Population with respect to NHW -0.241563 0.20368 -1.186 0.2361 

Cognitive Impairment 0.060094 0.221101 0.272 0.7859 
Sex with respect to Male 0.070685 0.161835 0.437 0.6624 

Diabetes with respect to "Yes" 0.086946 0.223705 0.389 0.6977 

APOE ε2/ε2 0.430834 1.360154 0.317 0.7516 

APOE ε2/ε3 0.636282 0.406882 1.564 0.1184 

APOE ε2/ε4 1.028611 1.123871 0.915 0.3605 
APOE ε3/ε3 0.587519 0.310602 1.892 0.0591 

APOE ε3/ε4 0.591401 0.336834 1.756 0.0797 

APOE ε4/ε4 0.989615 0.46169 2.143 0.0325 

BMI 0.016723 0.012502 1.338 0.1816 

Years of Education 0.008087 0.020607 0.392 0.6949 
Age 0.013824 0.012636 1.094 0.2744 

Interaction: Cognitive 
Impairment x Diabetes "Yes" 

-0.501576 0.334123 -1.501 0.1339 

R-squared 0.02471 p-value 0.4677 
Adjusted R-squared -0.0003888 df 14 and 544 

F-statistic 0.9845 Sample n 559 
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APPENDIX L. Cellular 8oxoG “hotspot” variant count and cognitive status (NC vs MCI or AD) 
multiple linear regression model prediction considering population interaction effect with both 
sex and education. 

Variable Coefficient Std. Error t-statistic p-value 

Constant 2.246331 0.974249 2.306 0.0215 

Population with respect to NHW -0.753823 0.743259 -1.014 0.3109 
Cognitive Status with respect to AD -0.055 0.228654 -0.241 0.81 

Cognitive Status with respect to MCI -0.185378 0.206759 -0.897 0.3703 

Sex with respect to Male -0.163209 0.22485 -0.726 0.4682 

Diabetes with respect to “Yes” -0.089799 0.167338 -0.537 0.5917 

Years of Education 0.002068 0.023077 0.09 0.9286 
APOE ε2/ε2 0.223413 1.367797 0.163 0.8703 

APOE ε2/ε3 0.578424 0.410699 1.408 0.1596 

APOE ε2/ε4 0.949603 1.132505 0.838 0.4021 

APOE ε3/ε3 0.514769 0.310391 1.658 0.0978 

APOE ε3/ε4 0.545231 0.33675 1.619 0.106 
APOE ε4/ε4 0.853611 0.461773 1.849 0.0651 

Age 0.007646 0.012544 0.61 0.5424 

Interaction: NHW x Male “Yes” 0.471257 0.328227 1.436 0.1516 

Interaction: NHW x Years of Education 0.016038 0.049696 0.323 0.747 

R-squared 0.02163 p-value 0.6776 
Adjusted R-squared -0.005392 df 15 and 543 

F-statistic 0.8005 Sample n 559 
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APPENDIX M. Cellular 8oxoG “hotspot” variant count and cognitive impairment (NC vs MCI + 
AD) multiple linear regression model prediction considering population interaction effect with 
both sex and education. 

Variable Coefficient Std. Error t-statistic p-value 

Constant 2.221287 0.972313 2.285 0.0227 

Population with respect to NHW -0.743506 0.742467 -1.001 0.3171 
Cognitive Impairment -0.129473 0.174356 -0.743 0.4581 

Sex with respect to Male -0.172106 0.224002 -0.768 0.4426 

Diabetes with respect to "Yes" -0.09046 0.167219 -0.541 0.5888 

Years of Education 0.002985 0.02299 0.13 0.8967 

APOE ε2/ε2 0.203655 1.366297 0.149 0.8816 
APOE ε2/ε3 0.555142 0.407812 1.361 0.174 

APOE ε2/ε4 0.928906 1.130984 0.821 0.4118 

APOE ε3/ε3 0.499258 0.30865 1.618 0.1063 

APOE ε3/ε4 0.546107 0.336514 1.623 0.1052 

APOE ε4/ε4 0.854969 0.461449 1.853 0.0645 
Age 0.008026 0.012513 0.641 0.5215 

Interaction: NHW x Male "Yes" 0.482702 0.327216 1.475 0.1407 

Interaction: NHW x Years of Education 0.015416 0.049646 0.311 0.7563 

R-squared 0.02118 p-value 0.6246 
Adjusted R-squared -0.004013 df 14 and 544 

F-statistic 0.8407 Sample n 559 

 
APPENDIX N. Multiple linear regression results for cellular 8oxoG “hotspot” variant count and 
cognitive status (NC vs MCI or AD) within Mexican Americans. 

Variable Coefficient Std. Error t-statistic p-value 

Constant 3.119633 1.728499 1.805 0.0722 

Cognitive Status (with respect to AD) -0.18077 0.382078 -0.473 0.6365 

Cognitive Status (with respect to MCI) -0.427275 0.2831 -1.509 0.1323 

Sex (with respect to Male) -0.099865 0.250312 -0.399 0.6902 
Diabetes (with respect to "Yes") -0.04695 0.251607 -0.187 0.8521 

APOE ε2/ε2 0.721106 2.243469 0.321 0.7481 

APOE ε2/ε3 -0.64859 1.032714 -0.628 0.5305 
APOE ε3/ε3 -0.711241 0.933457 -0.762 0.4467 

APOE ε3/ε4 -0.583709 0.95293 -0.613 0.5407 
APOE ε4/ε4 -0.060057 1.388688 -0.043 0.9655 

BMI 0.003853 0.018646 0.207 0.8364 

Years of Education -0.007986 0.025716 -0.311 0.7564 
Age 0.012322 0.018637 0.661 0.509 

R-squared 0.01516 p-value 0.974 
Adjusted R-squared -0.02616 df 12 and 286 

F-statistic 0.3669 Sample n 299 
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APPENDIX O. Multiple linear regression results for cellular 8oxoG “hotspot” variant count and 
cognitive impairment (NC vs MCI + AD) within Mexican Americans. 

Variable Coefficient Std. Error t-statistic p-value 

Constant 3.108745 1.726513 1.801 0.0728 

Cognitive Impairment -0.353629 0.255736 -1.383 0.1678 

Sex (with respect to Male) -0.114114 0.248945 -0.458 0.647 
Diabetes (with respect to "Yes") -0.035737 0.250658 -0.143 0.8867 

APOE ε2/ε2 0.663692 2.239034 0.296 0.7671 

APOE ε2/ε3 -0.708339 1.026924 -0.69 0.4909 

APOE ε3/ε3 -0.762167 0.928691 -0.821 0.4125 

APOE ε3/ε4 -0.61417 0.950576 -0.646 0.5187 
APOE ε4/ε4 -0.15056 1.379213 -0.109 0.9131 

BMI 0.0025 0.018493 0.135 0.8926 

Years of Education -0.007422 0.025671 -0.289 0.7727 

Age 0.013734 0.018472 0.743 0.4578 

R-squared 0.01388 p-value 0.9677 
Adjusted R-squared -0.02392 df 11 and 287 

F-statistic 0.3672 Sample n 299 

 

APPENDIX P. Multiple linear regression results for cellular 8oxoG “hotspot” variant count and 
cognitive status (NC vs MCI or AD) within non-Hispanic Whites. 

Variable Coefficient Std. Error t-statistic p-value 

Constant -0.37463 1.60903 -0.233 0.8161 

Cognitive Status (with respect to AD) 0.05397 0.2804 0.192 0.8475 
Cognitive Status (with respect to MCI) 0.19302 0.30975 0.623 0.5338 

Sex (with respect to Male) 0.30995 0.21397 1.449 0.1487 

Diabetes (with respect to "Yes") -0.31488 0.23322 -1.35 0.1782 
APOE ε2/ε2 -1.33584 1.71249 -0.78 0.4361 

APOE ε2/ε3 0.63187 0.46154 1.369 0.1722 

APOE ε2/ε4 0.93667 1.02604 0.913 0.3622 

APOE ε3/ε3 0.6952 0.31339 2.218 0.0274 

APOE ε3/ε4 0.52071 0.37546 1.387 0.1667 
APOE ε4/ε4 0.80166 0.46547 1.722 0.0863 

BMI 0.03831 0.01651 2.321 0.0211 

Years of Education 0.03061 0.04068 0.753 0.4524 

Age 0.01545 0.01775 0.87 0.3849 

R-squared 0.06899 p-value 0.1585 
Adjusted R-squared 0.01979 df 13 and 246 

F-statistic 1.402 Sample n 260 
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APPENDIX Q. Multiple linear regression results for cellular 8oxoG “hotspot” variant count and 
cognitive impairment (NC vs MCI + AD) within non-Hispanic Whites. 

Variable Coefficient Std. Error t-statistic p-value 

Constant -0.36081 1.60594 -0.225 0.8224 

Cognitive Impairment 0.11329 0.23864 0.475 0.6354 

Sex (with respect to Male) 0.30798 0.21355 1.442 0.1505 
Diabetes (with respect to "Yes") -0.30786 0.23218 -1.326 0.1861 

APOE ε2/ε2 -1.31871 1.70907 -0.772 0.4411 

APOE ε2/ε3 0.66673 0.45266 1.473 0.1421 

APOE ε2/ε4 0.95804 1.02294 0.937 0.3499 

APOE ε3/ε3 0.71626 0.30852 2.322 0.0211 
APOE ε3/ε4 0.52254 0.3748 1.394 0.1645 

APOE ε4/ε4 0.80645 0.46454 1.736 0.0838 

BMI 0.03815 0.01647 2.316 0.0214 

Years of Education 0.02952 0.04052 0.728 0.467 

Age 0.01533 0.01772 0.865 0.3877 

R-squared 0.06837 p-value 0.1206 
Adjusted R-squared 0.02311 df 12 and 247 

F-statistic 1.511 Sample n 260 

 
APPENDIX R. Cellular 8oxoG “hotspot” variant count and cognitive status (NC vs MCI or AD) 
multiple linear regression model prediction considering OGG1 genotype and population 
interaction effect with both sex and education. 

Variable  Coefficient  Std. Error  t-statistic  p-value  

Constant  2.262487  1.248584  1.812  0.0707  

Population (with respect to NHW)  -1.267441  0.898335  -1.411  0.159  

Cognitive Status (with respect to AD)  -0.051627  0.26992  -0.191  0.8484  

Cognitive Status (with respect to MCI)  -0.038292  0.247408  -0.155  0.8771  

Sex (with respect to Male)  -0.213908  0.263429  -0.812  0.4173  

Age  0.004708  0.014752  0.319  0.7498  

Years of Education  0.007887  0.026846  0.294  0.7691  

BMI  0.025208  0.018139  1.39  0.1654  

Diabetes (with respect to "Yes")  -0.160855  0.212408  -0.757  0.4493  

Depression (with respect to "Yes")  -0.096772  0.260993  -0.371  0.711  

Tobacco Abuse (with respect to "Yes")  0.205513  0.197733  1.039  0.2993  

APOE  0.086777  0.177063  0.49  0.6243  

OGG1  -0.154641  0.148929  -1.038  0.2997  

Interaction: NHW x Male "Yes"  0.41861  0.387636  1.08  0.2808  

Interaction: NHW x Years of Education  0.044539  0.059512  0.748  0.4547  

R-squared  0.2393  p-value  0.7656  
Adjusted R-squared  -0.009812  df  14 and 405  

F-statistic  0.7092  Sample n  420  
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APPENDIX S. Cellular 8oxoG “hotspot” variant count and cognitive status (NC vs MCI or AD) 
multiple linear regression model prediction considering OGG1 genotype as well as diabetes and 
cognitive status interaction. 

Variable  Coefficient  Std. Error  t-statistic  p-value  

Constant  2.036356  1.236478  1.647  0.1004  

Population (with respect to NHW)  -0.37884  0.239963  -1.579  0.1152  

Cognitive Status (with respect to AD)  -0.06664  0.321575  -0.207  0.8359  

Cognitive Status (with respect to MCI)  0.266971  0.309107  0.864  0.3883  

Sex (with respect to Male)  0.003812  0.197416  0.019  9.85e-01  

Age  0.005012  0.014672  0.342  0.7328  

Years of Education  0.015568  0.024098  0.646  0.5186  

BMI  0.023945  0.018147  1.319  0.1878  

Diabetes (with respect to "Yes")  0.053767  0.279997  0.192  0.8478  

Depression (with respect to "Yes")  -0.10751  0.259868  -0.414  0.6793  

Tobacco Abuse (with respect to "Yes")  0.161687  0.196587  0.822  0.4113  

APOE  0.061665  0.176915  0.349  0.7276  

OGG1  -0.13653  0.148512  -0.919  0.3585  

Interaction: AD x Diabetes "Yes"  0.044303  0.506826  0.087  0.9304  

Interaction: MCI x Diabetes "Yes"  -0.86358  0.48535  -1.779  0.0759  

R-squared  0.02768  p-value  0.6436  
Adjusted R-squared  -0.005934  df  14 and 405  

F-statistic  0.8235  Sample n  420  
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APPENDIX T. Cellular 8oxoG “hotspot” variant count and cognitive status (NC vs MCI or AD) 
multiple linear regression model prediction considering OGG1 genotype within the Mexican 
American population. 

Variable  Coefficient  Std. Error  t-statistic  p-value  

Constant  3.186749  1.725239  1.847  0.066  

Cognitive Status (with respect to AD)  0.082055  0.425397  0.193  0.847  

Cognitive Status (with respect to MCI)  -0.086177  0.337315  -0.255  0.799  

Sex (with respect to Male)  -0.329255  0.292614  -1.125  0.262  

Age  -0.004077  0.020858  -0.195  0.845  

Years of Education  0.003534  0.02952  0.12  0.905  

BMI  0.014829  0.023773  0.624  0.533  

Diabetes (with respect to "Yes")  -0.254014  0.292223  -0.869  0.386  

Depression (with respect to "Yes")  -0.375336  0.375911  -0.998  0.319  

Tobacco Abuse (with respect to "Yes")  0.454095  0.283764  1.6  0.111  

APOE  0.206517  0.307277  0.672  0.502  

OGG1  -0.088752  0.201158  -0.441  0.659  

R-squared  0.02522  p-value  0.8775  
Adjusted R-squared  -0.02181  df  11 and 228  

F-statistic  0.5363  Sample n  240 

 
APPENDIX U. Cellular 8oxoG “hotspot” variant count and cognitive status (NC vs MCI or AD) 
multiple linear regression model prediction considering OGG1 genotype within the non-
Hispanic White population. 

Variable  Coefficient  Std. Error  t-statistic  p-value  

Constant  0.240313  1.997209  0.12  0.904  

Cognitive Status (with respect to AD)  -0.053166  0.33765  -0.157  0.875  

Cognitive Status (with respect to MCI)  0.276141  0.382296  0.722  0.471  

Sex (with respect to Male)  0.188589  0.267741  0.704  0.482  

Age  0.009629  0.021702  0.444  0.658  

Years of Education  0.06132  0.049302  1.244  0.215  

BMI  0.040103  0.029228  1.372  0.172  

Diabetes (with respect to "Yes")  -0.097021  0.313935  -0.309  0.758  

Depression (with respect to "Yes")  0.35329  0.381463  0.926  0.356  

Tobacco Abuse (with respect to "Yes")  -0.119536  0.272527  -0.439  0.661  

APOE  -0.079565  0.215729  -0.369  0.713  

OGG1  -0.287485  0.223417  -1.287  0.2  

R-squared  0.04725  p-value  0.6819  
Adjusted R-squared  -0.01513  df  11 and 168  

F-statistic  0.7574  Sample n  180  
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APPENDIX V. Total cellular 8oxoG variant count multiple linear regression model prediction 
considering cognitive impairment (NC vs MCI + AD), OGG1 genotype, and population interaction 
effect with both sex and years of education. 

Variable  Coefficient  Std. Error  t-statistic  p-value  

Constant  3.09706  2.4955  1.241  0.215301  

Population (with respect to NHW)  -1.74819  1.7973  -0.973  0.331292  

Cognitive Impairment  0.65399  0.42223  1.549  0.122185  

Sex (with respect to Male)  -1.80365  0.52479  -3.437  0.000649  

Age  0.01777  0.02942  0.604  0.546137  

Years of Education  0.15093  0.05362  2.815  0.005119  

BMI  0.0789  0.03611  2.185  0.029476  

Diabetes (with respect to "Yes")  -0.63093  0.42414  -1.488  0.137643  

Depression (with respect to "Yes")  -0.71806  0.52188  -1.376  0.169612  

Tobacco Abuse (with respect to "Yes")  1.04785  0.39541  2.65  0.008363  

APOE  0.18073  0.35033  0.516  0.606218  

OGG1  -0.12746  0.2979  -0.428  0.668967  

Interaction: NHW x Male "Yes"  2.27335  0.77412  2.937  0.003506  

Interaction: NHW x Years of Education  -0.11929  0.11907  -1.002  0.316985  

R-squared  0.122  p-value  7.353e-07  
Adjusted R-squared  0.09385  df  13 and 406  

F-statistic  4.338  Sample n  420  
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APPENDIX W. Total cellular 8oxoG variant count multiple linear regression model prediction 
considering cognitive impairment (NC vs MCI + AD), OGG1 genotype, and diabetes interaction 
effect. 

Variable  Coefficient  Std. Error  
t-

statistic  
p-value  

Constant  2.20767  2.4953  0.885  0.3768  

Population (with respect to NHW)  -2.31379  0.48336  -4.787  2.37e-06  

Cognitive Impairment  0.8922  0.51652  1.727  0.0849  

Sex (with respect to Male)  -0.79321  0.39745  -1.996  0.0466  

Age  0.02638  0.02955  0.893  0.3725  

Years of Education  0.12382  0.0486  2.548  0.0112  

BMI  0.08066  0.03652  2.208  0.0278  

Diabetes (with respect to "Yes")  -0.22149  0.56487  -0.392  0.6952  

Depression (with respect to "Yes")  -0.69608  0.5208  -1.337  0.1821  

Tobacco Abuse (with respect to "Yes")  0.94259  0.39659  2.377  0.0179  

APOE  0.15661  0.35343  0.443  0.6579  

OGG1  -0.18157  0.29956  -0.606  0.5448  

Interaction: Cognitive Impairment x 
Diabetes "Yes"  -0.69414  0.79965  -0.868  0.3859  

R-squared  0.1041  p-value  9.263e-06  
Adjusted R-squared  0.07766  df  12 and 407  

F-statistic  3.94  
Sample 

n  
420  
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APPENDIX X. Cellular 8oxoG “hotspot” variant count multiple linear regression model prediction 
considering cognitive impairment (NC vs MCI + AD), OGG1 genotype, and population interaction 
effect with both sex and years of education within the whole cohort. 

Variable  Coefficient  Std. Error  t-statistic  p-value  

Constant  2.265021  1.24577  1.818  0.0698  

Population (with respect to NHW)  -1.267594  0.897224  -1.413  0.1585  

Cognitive Impairment  -0.044081  0.21078  -0.209  0.8344  

Sex (with respect to Male)  -0.212817  0.261981  -0.812  0.4171  

Age  0.004656  0.014688  0.317  0.7514  

Years of Education  0.007817  0.026768  0.292  0.7704  

BMI  0.025288  0.018028  1.403  0.1615  

Diabetes (with respect to "Yes")  -0.161449  0.211734  -0.763  0.4462  

Depression (with respect to "Yes")  -0.097161  0.260528  -0.373  0.7094  

Tobacco Abuse (with respect to "Yes")  0.205233  0.197392  1.04  0.2991  

APOE  0.085599  0.174886  0.489  0.6248  

OGG1  -0.154501  0.148714  -1.039  0.2995  

Interaction: NHW x Male "Yes"  0.417555  0.386446  1.081  0.2806  

Interaction: NHW x Years of Education  0.044535  0.059439  0.749  0.4541  

R-squared  0.02392  p-value  0.6969  
Adjusted R-squared  -0.00733  df  13 and 406  

F-statistic  0.7655  Sample n  420  

 
  



 

Danielle Reid 
 

113 

APPENDIX Y. Cellular 8oxoG “hotspot” variant count multiple linear regression model considering 
cognitive impairment (NC vs. MCI + AD), OGG1 genotype, and diabetes interaction with cognition. 

Variable  Coefficient  Std. Error  t-statistic  p-value  

Constant  1.969724  1.234291  1.596  0.111  

Population (with respect to NHW)  -0.39896  0.239093  -1.669  0.096  

Cognitive Impairment  0.094742  0.255492  0.371  0.711  

Sex (with respect to Male)  -0.01567  0.196599  -0.08  0.937  

Age  0.005782  0.014616  0.396  6.93e-01  

Years of Education  0.016958  0.02404  0.705  0.481  

BMI  0.024231  0.018065  1.341  0.181  

Diabetes (with respect to "Yes")  0.046774  0.27941  0.167  0.867  

Depression (with respect to "Yes")  -0.05664  0.257613  -0.22  0.826  

Tobacco Abuse (with respect to "Yes")  0.181266  0.196172  0.924  0.356  

APOE  0.075946  0.174825  0.434  0.664  

OGG1  -0.15207  0.148175  -1.026  0.305  

Interaction: Cognitive Impairment x Diabetes "Yes"  -0.43665  0.395542  -1.104  0.27  

R-squared  0.02215  p-value  0.6835 
Adjusted R-squared  -0.006685  df  12 and 407 

F-statistic  0.7681  Sample n  420 

 
APPENDIX Z. Cellular 8oxoG variant count multiple linear regression prediction model considering 
cognitive impairment (NC vs. MCI + AD) and OGG1 genotype in the Mexican American population. 

Variable  Coefficient  Std. Error  t-statistic  p-value  

Constant  5.22225  3.65763  1.428  0.154721  

Cognitive Impairment  1.36712  0.64952  2.105  0.036397  

Sex (with respect to Male)  -2.28525  0.61787  -3.699  0.000271  

Age  -0.01356  0.04394  -0.308  0.757991  

Years of Education  0.15573  0.06265  2.486  0.013646  

BMI  0.06814  0.05009  1.36  0.17506  

Diabetes (with respect to "Yes")  -0.92301  0.61752  -1.495  0.136364  

Depression (with respect to "Yes")  -1.4394  0.79812  -1.803  0.072626  

Tobacco Abuse (with respect to "Yes")  1.99263  0.60204  3.31  0.001084  

APOE  0.21207  0.6515  0.326  0.745087  

OGG1  -0.05146  0.42638  -0.121  0.904049  

R-squared  0.1172  p-value  0.001224  
Adjusted R-squared  0.07869  df  10 and 229  

F-statistic  3.041  Sample n  240  

 
  



 

Danielle Reid 
 

114 

APPENDIX AA. Cellular 8oxoG “hotspot” variant count multiple linear regression considering 
cognitive impairment (NC vs. MCI + AD) and OGG1 genotype in the Mexican American population. 

Variable  Coefficient  Std. Error  t-statistic  p-value  

Constant  3.150962  1.719516  1.832  0.0682  

Cognitive Impairment  -0.031558  0.30535  -0.103  0.9178  

Sex (with respect to Male)  -0.340996  0.290473  -1.174  0.2416  

Age  -0.003081  0.020658  -0.149  0.8816  

Years of Education  0.00384  0.029454  0.13  0.8964  

BMI  0.013702  0.023548  0.582  0.5612  

Diabetes (with respect to "Yes")  -0.243125  0.290305  -0.837  0.4032  

Depression (with respect to "Yes")  -0.375051  0.37521  -1  0.3186  

Tobacco Abuse (with respect to "Yes")  0.458274  0.283027  1.619  0.1068  

APOE  0.212727  0.306281  0.695  0.488  

OGG1  -0.093201  0.200451  -0.465  0.6424  

R-squared  0.02459  p-value  0.8318  
Adjusted R-squared  -0.01801  df  10 and 229  

F-statistic  0.5773  Sample n  201  

 
APPENDIX AB. Cellular 8oxoG variant count multiple linear regression predictive model 
considering cognitive impairment (NC vs. MCI + AD) and OGG1 genotype in non-Hispanic Whites. 

Variable  Coefficient  Std. Error  t-statistic  p-value  

Constant  0.513269  3.380988  0.152  0.88  

Cognitive Impairment  0.016123  0.495422  0.033  0.974  

Sex (with respect to Male)  0.604656  0.453736  1.333  0.184  

Age  0.044461  0.036718  1.211  0.228  

Years of Education  0.008396  0.083286  0.101  0.92  

BMI  0.07249  0.049341  1.469  0.144  

Diabetes (with respect to "Yes")  -0.175279  0.532067  -0.329  0.742  

Depression (with respect to "Yes")  -0.02399  0.642238  -0.037  0.97  

Tobacco Abuse (with respect to "Yes")  -0.14622  0.461915  -0.317  0.752  

APOE  0.151415  0.362023  0.418  0.676  

OGG1  -0.29547  0.378453  -0.781  0.436  

R-squared  0.03962  p-value  0.7262  
Adjusted R-squared  -0.01721  df  10 and 169  

F-statistic  0.6971  Sample n  180  
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APPENDIX AC. Multiple linear regression predictive model assessing cellular 8oxoG “hotspot” 
variant count with cognitive impairment (NC vs. MCI + AD) and OGG1 genotype in non-Hispanic 
Whites. 

Variable  Coefficient  Std. Error  t-statistic  p-value  

Constant  0.319717  1.9925  0.16  0.873  

Cognitive Impairment  0.080826  0.291964  0.277  0.782  

Sex (with respect to Male)  0.192608  0.267398  0.72  0.472  

Age  0.008598  0.021639  0.397  0.692  

Years of Education  0.05812  0.049082  1.184  0.238  

BMI  0.042181  0.029078  1.451  0.149  

Diabetes (with respect to "Yes")  -0.093654  0.31356  -0.299  0.766  

Depression (with respect to "Yes")  0.318328  0.378487  0.841  0.402  

Tobacco Abuse (with respect to "Yes")  -0.121255  0.272218  -0.445  0.657  

APOE  -0.103619  0.213349  -0.486  0.628  

OGG1  -0.293728  0.223032  -1.317  0.19  

R-squared  0.04369  p-value  0.6556  
Adjusted R-squared  -0.0129  df  10 and 169  

F-statistic  0.772  Sample n  180  

 
APPENDIX AD. Example TSV of deletion profile for one sample. 
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APPENDIX AE. Example mtDNA plot of deletions (blue) and duplications (red) with varying 
heteroplasmy for one sample.

 


