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Abstract Introduction: We sought to determine if our previously validated proteomic profile for detecting
Potential Conflict

OPKO, Proteome Sci

Sanofi; has served as

Department of Defens

Parkinson Disease As

Department of Defens

Fox Foundation, and A

multiple patents pend

eases; is the founding

https://doi.org/10.1016

2352-8729/� 2019 T

license (http://creative
Alzheimer’s disease would detect Parkinson’s disease (PD) and distinguish PD from other
neurodegenerative diseases.
Methods: Plasma samples were assayed from 150 patients of the Harvard Biomarkers Study
(PD, n 5 50; other neurodegenerative diseases, n 5 50; healthy controls, n 5 50) using
electrochemiluminescence and Simoa platforms.
Results: The first step proteomic profile distinguished neurodegenerative diseases from controls
with a diagnostic accuracy of 0.94. The second step profile distinguished PD cases from other
neurodegenerative diseases with a diagnostic accuracy of 0.98. The proteomic profile differed in
step 1 versus step 2, suggesting that a multistep proteomic profile algorithm to detecting and
distinguishing between neurodegenerative diseases may be optimal.
Discussion: These data provide evidence of the potential use of a multitiered blood-based proteomic
screening method for detecting individuals with neurodegenerative disease and then distinguishing
PD from other neurodegenerative diseases.
� 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Background

Parkinson’s disease (PD) is the second most common
neurodegenerative disease affecting over 1% of people
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aged 65 years and older in the United States [1]. The cost
of PD to our society was reported to be $23 billion annually
in the United States in 2005 [2]. Considering the estimated
15% growth in the elderly US population during the last
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Table 1

Descriptive characteristics of the sample

Characteristic PD

Neurodegenerative

controls

Healthy

controls

Total, N 50 50 50

Male/female, N 25/25 25/25 25/25

UPDRS 49.6 6 23.9 - -

Age 72.4 6 9.4 72.64 6 10.3 69.08 6 9.7

MMSE 26.5 6 3.7 20.4 6 6.7 29.2 6 1.6

PD medications 36 (72%) 0 (0%) 0 (0%)

Abbreviations: MMSE, Mini-Mental State Examination; PD, Parkinson’s

disease; UPDRS, unified Parkinson’s disease rating scale.
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decade, these costs can be expected to increase dramatically
as the population ages. Neuropathologically, PD is a
progressive disorder of unknown cause affecting multiple
neurotransmitter systems. Common nonmotor features of
the disease include autonomic failure, urinary incontinence,
hallucinations, and dementia [3]. Although a number of
treatments have been developed that improve the
“dopaminergic deficit,” no treatment has been demonstrated
to slow the neuronal degeneration of the substantia nigra
neurons. Novel therapeutic approaches are needed with
new disease-modifying therapies currently being examined
that may ultimately improve patient outcomes.

A major impediment to treatment developments and
clinical trials for neurodegenerative diseases is the lack of
a sensitive, easily obtained biomarker of disease presence
[4–8]. The “cornerstone” to the development of novel
disease-modifying therapies in PD is the identification and
validation of biomarkers of disease presence and
progression [9]. Over the last several decades, the search
for biomarkers that have diagnostic and prognostic use in
neurodegenerative diseases has grown exponentially
[5,10,11] with most work focusing on neuroimaging and
cerebrospinal (CSF) methods [5,10–14] and increasingly
clinical-genetic algorithms [15,16]. In fact, amyloid-beta
(Ab) positron emission tomography (PET) scanning tracers
and CSF assays have been approved by the Food and Drug
Administration for use in the diagnostic process for
Alzheimer’s disease (AD), and dopamine transporter single
photon emission computed tomography [17] has been
established for PD. Recent work suggests CSF markers
may also have use in the differential diagnosis of
neurodegenerative diseases [18]. Although advance imaging
and CSF methods have tremendous potential as biomarkers
of PD and other neurodegenerative diseases, invasiveness,
accessibility, and cost barriers preclude these from being
used as initial detection procedures [6,7,19,20]. Therefore,
it has been proposed that blood-based methods require
additional investigation [21–23] and may serve as first step
in a multitier detection process [6,19] similar to the
models used in cancer [24].

There has been a surge in the search for blood-based
biomarkers for PD [25–27]. Blood-based biomarkers have
the potential to serve as the initial step in the neurodiagnostic
process used in large-scale screening, in primary care
settings [19], as well as screening into novel clinical trials,
the latter of which will result in substantial cost savings
to the overall trial itself. As is the case with all initial
screening tests, the goal of the first step is to screen out those
patients who should not undergo more expensive and
invasive confirmatory diagnostic procedures [19]. This is
the same model used by cancer biomarkers that have
received both regulatory and reimbursement approval [24].
Our work on blood-based biomarkers of AD has consistently
shown that a multimarker approach identifying biomarker
profiles of disease presence can yield excellent results
[28–30], and our initial work suggested that this same
proteomic profile could distinguish AD from PD [31], as
well as accurately detect neurodegenerative disease [32].
Therefore, we hypothesize that our blood-based biomarker
profile approach may serve to provide a cost- and
time-effective means for establishing a rapidly scalable
multitiered neurodiagnostic process [19,32] for detecting
neurodegenerative disease, including PD. With this initial
screening approach, appropriate referrals can be made for
subsequent specialty examinations and confirmatory
diagnostic biomarkers (imaging, CSF), following the
multistage models used for diagnosing cancer [24].

Here, we test the hypothesis that our previously validated
proteomic profile for detecting AD [31,32] would be
successful in (1) detecting neurodegenerative diseases (PD
and other neurodegenerative diseases vs. controls) and
(2) discriminating PD from other neurodegenerative
disease. This study was conducted by examination of
plasma samples from the Harvard Biomarker Study (HBS).

2. Methods

2.1. Subjects

The study sample included 150 patients from theHBS (PD
n 5 50; other neurodegenerative diseases n 5 50, controls
n 5 50). The other neurodegenerative diseases category
included AD (n 5 12), frontotemporal dementia (n 5 25),
progressive supranuclear palsy (n 5 7), and corticobasal
degeneration (n 5 6) (Table 1). HBS is a longitudinal,
case-control study that tracks clinical phenotypes and linked
biospecimens of individualswith neurodegenerative diseases
and controls without neurologic disease. High-quality
biosamples and high-resolution clinical phenotypes are
longitudinally tracked over time. HBS was designed for the
primary goal of developing biomarkers that track disease
progression and allow go/no go decisions in phase II clinical
trials. The HBS specifically fosters research across
neurodegenerative diseases, such as the proof-of-concept
study described in this study. HBS has been published
extensively [15,33–40].

2.2. Proteomics

Plasma samples were assayed using two technological
platforms. The proteomic assays were conducted using



Table 2

Accuracy of step 1 in detecting neurodegenerative diseases

Predicted

SVM model

PD/AD/FTD/others NC

PD/AD/FTD/others 92 17

NC 8 31

Sensitivity 92.0%

Specificity 64.6%

AUC 0.94

Abbreviations: AD, Alzheimer’s disease; AUC, area under the receiver

operating characteristic curve; FTD, frontotemporal dementia; NC, normal

control; PD, Parkinson’s disease; SVM, support vector machine.
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two automated systems. The electrochemiluminescence
(ECL) assays from our previously validated AD blood
screen were captured via the multiplex platform QuickPlex
from Meso Scale Discovery per our previously published
methods [31,32], with assay preparation performed via
automation using the Hamilton Robotics StarPlus system.
We recently reported the analytic performance of each of
these markers for .1300 samples across multiple cohorts
and diagnoses (normal cognition, mild cognitive
impairment, AD) [32]. The assays are reliable, and our
experience with these assays show excellent spiked
recovery, dilution linearity, coefficient of variation (CV),
and detection limits. Interassay and intraassay variability
has been excellent. A total of 250 ml of plasma was used
to assay the following markers: fatty acid–binding
protein (FABP), b2-microglobulin, pancreatic polypeptide,
C-reactive protein, intercellular adhesion molecule 1,
thrombopoietin, a2-macroglobulin, eotaxin 3, tumor
necrosis factor a, tenascin C, interleukin (IL)-5, IL6, IL7,
IL10, IL18, I309, factor VII, vascular cell adhesion
molecule 1, thymus and activation regulated chemokine,
and serum amyloid A. With automation, the average CV
for these assays on .1000 samples in our laboratory has
been excellent with nearly all having CVs , 10% and
62% having CVs , 5%. Given the recent surge in the
literature examining ultrasensitive blood-based markers of
neuropathological markers in neurodegenerative diseases,
here the Simoa assays for Ab40, Ab42, tau, a-synuclein,
and neurofilament light polypeptide were conducted using
the automated HD-1 analyzer from Quanterix. The
performance of the assays in our laboratory from .1000
samples has been excellent with all CVs � 5%.
2.3. Proteomic profile

In our prior work, we have generated and cross-validated
an AD proteomic profile across platforms [28,31], cohorts
[28,30,32,41,42], species (human, mouse) [31], tissue (brain,
serum, plasma) [31], and ethnicities (non-Hispanic white,
Mexican American) [28,43]. In our preliminary work, we
found that this same proteomic profile could discriminate
PD from AD [31]. In that work, we found that the relative
importance of the proteins varied between PD and AD, but
the overall algorithm was still highly accurate in detecting
both diseases. In a subsequent study, we found that our
proteomic profile was highly accurate in detecting
neurodegenerative diseases [32]. Therefore, here we sought
to cross-validate and expand on that work by demonstrating
the accuracy of our proteomic profile approach for detecting
neurodegenerative diseases and discriminating PD from
other neurodegenerative diseases.
2.4. Statistical analysis

Statistical analyses were conducted using R (V 3.3.3)
statistical software [44] and SPSS 24 (IBM). Diagnostic
accuracy was calculated via receiver operating characteristic
(ROC) curves. First, support vector machine (SVM)
analyses were used to discriminate controls from neuro-
degenerative disease (i.e., PD/Other), with resulting
diagnostic accuracy statistics generated (step 1). Then,
SVM analysis was restricted only to PD versus other
neurodegenerative diseases (step 2). SVM analyses were
conducted with internal 5-fold cross-validation. In our prior
work, we have found that the overall proteomic profile
varies between different neurodegenerative diseases [31].
Therefore, our two-step approach was used to capitalize on
these differences to increase accuracy and also to allow for
the overall algorithm to be more robust and avoid multilevel
analyses simultaneously. The latter reduces risk for error and
sample overidentification.

3. Results

Descriptive statistics of the sample are provided in
Table 1. The average age of the sample was 71.37 years
(standard deviation [SD] 5 9.9). There were even numbers
of males and females across all three groups. An analysis
of variance showed there were no significant age differences
among the PD group, the healthy control group,
and the other neurodegenerative disorders group
(F(2, 147) 5 2.04, P 5 .13). There were significant group
differences in Mini-Mental State Examination score among
the three groups (F(2, 118) 5 39.9, P 5 .,.001). Tukey’s
honestly significant difference post hoc analysis revealed
that participants with PD (M 5 26.5, SD 5 3.7) scored
significantly lower than healthy controls (M 5 29.2,
SD 5 1.6) but higher than those with other neuro-
degenerative diseases (M 5 20.4, SD 5 6.7).

In step 1, our SVM-based proteomic profile was highly
accurate in detecting neurodegenerative disease (PD and
other) as compared to normal controls. The overall area
under the receiver operating characteristic curve (AUC)
was 0.94 with an observed sensitivity (SN) of 0.92 and
specificity (SP) of 0.65. Table 2 shows all the correct and
incorrect predictions while the variable importance plot
and ROC curve are presented in Fig. 1. Inclusion of
demographic factors did not significantly change the AUC.

In the step 2, the overall SVM-proteomic profile also
showed excellent accuracy at distinguishing PD from other



False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Factor.7
Ab42
SAA
sICAM.1
CRP
IL.6
I.309
Tenacin.C
TNFA
Tau
Ab40
B2M
sVCAM.1
IL.10
IL.5
Eotaxin.3
A.syn
TPO
TARC
IL.7
IL.18
FABP3
PPY
NFL

2 4 6 8 10 12

SVM Importance Score

Fig. 1. ROC curve and variable importance plot for proteomic profile for detecting neurodegenerative disease. Abbreviations: ROC, receiver operating char-

acteristic; IL, interleukin.
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neurodegenerative diseases. In this model, the AUC5 0.98,
SN 5 0.94, and SP 5 .89. Table 3 shows all classifications
(correct and incorrect) while the variable importance plot
and ROC curve are presented in Fig. 2. Inclusion of
demographic factors did not significantly change the AUC.

When reviewing the variable importance plots (Figs. 1
and 2), the overall profiles for discriminating PD/other
neurodegenerative diseases from controls were different
than the profile for discriminating PD from other
neurodegenerative diseases, as was the case in our
prior work. The top 10 markers for discriminating
neurodegenerative diseases from controls were as follows:
neurofilament light polypeptide, pancreatic polypeptide,
FABP3, IL18, IL7, thymus and activation regulated
chemokine, thrombopoietin, a-synuclein, Eotaxin 3, and
IL5. However, the top 10 variables for discriminating PD
from other neurodegenerative diseases were intercellular
adhesion molecule 1, vascular cell adhesion molecule 1,
Ab42, B2M, Tenascin C, Ab40, tumor necrosis factor alpha,
pancreatic polypeptide, thymus and activation regulated
chemokine, and IL6. Fig. 3 provides box plots by protein
across the three diagnostic groups for all proteins.
Table 3

Classification accuracy for proteomic profile for distinguishing PD from

other neurodegenerative diseases

Predicted

SVM model

PD AD/FTD/others

PD 44 7

AD/FTD/others 3 55

Sensitivity 93.6%

Specificity 88.7%

AUC 0.98

Abbreviations: AD, Alzheimer’s disease; AUC, area under the receiver

operating characteristic curve; FTD, frontotemporal dementia; PD, Parkin-

son’s disease; SVM, support vector machine.
Given our prior work looking at our proteomic profile in
AD, we conducted preliminary analyses with (1) only our
AD proteomic algorithm, (2) only the Simoa assays, and
(3) all markers combined for discriminating PD from AD
as well as PD from controls in this sample. For PD versus
AD, the Simoa assays alone yielded an excellent SN of 1.0
but only an SP of 0.25. However, our standard ECL
proteomic profile (described earlier) yielded a superior
balance of SN (also 1.0) and SP (0.75). When the Simoa
assays were combined with our standard ECL proteomic
panel, there was a modest increase in SP to 0.80. When
distinguishing PD from controls, the Simoa assays yielded
an SN 5 0.74 and SP 5 .83. Our standard ECL profile
yielded an improved SN5 0.92 and SP5 .90. The combined
algorithm with our ECL and Simoa assays resulted in an
increase of SP to 0.94. These results are very preliminary
given the size of the sample.
4. Discussion

In the present study, we cross-validated in an indepen-
dent cohort the findings that our previously validated
proteomic profile for AD can also (1) detect neurodegener-
ative diseases and (2) discriminate PD from other
neurodegenerative diseases. In detecting neurodegenerative
disease versus controls, the current AUC was 0.94 with an
observed SN of 0.92 and SP of 0.65. When distinguishing
PD from other neurodegenerative diseases, the overall
accuracy improved to an AUC 5 0.98, SN 5 0.94, and
SP 5 .89.

While our proteomic profile has previously been validated
for detecting AD and neurodegenerative diseases combined,
there is also significant literature to implicate many of these
markers in PD. For example, multiple inflammatory markers
such as tumor necrosis factor alpha, C-reactive protein, and
IL6 have previously been linked with PD [45,46], and



False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TPO
IL.18
Factor.7
A.syn
CRP
IL.7
IL.10
FABP3
IL.5
Tau
I.309
SAA
Eotaxin.3
NFL
IL.6
TARC
PPY
TNFA
Ab40
Tenacin.C
B2M
Ab42
sVCAM.1
sICAM.1

5 10 15 20

SVM Importance Score

Fig. 2. ROC curve and variable importance plot for proteomic profile for distinguishing PD from other neurodegenerative diseases. Abbreviations:

ROC, receiver operating characteristic; IL, interleukin; PD, Parkinson’s disease.

S.E. O’Bryant et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 11 (2019) 374-382378
inflammation has been shown to improve after exercise
interventions in persons with PD [47,48]. Mollenhauer
et al. [49] found FABP to be differentially expressed in PD
and dementia with Lewy bodies compared with controls,
and FABP was among the top 10 markers in discriminating
PD from AD in our prior work [31]. A meta-analysis of
877 PD cases and 1296 controls found polymorphisms
associated with alpha-2-macroglobulin (r669 in particular)
are associated with the risk for PD [50]. Recent work
demonstrated that the VCAM1 genewas one of 7 novel genes
that displayed significant changes in PD [51] while Tan et al.
[52] also recently showed that intercellular adhesion
molecule 1 was a hub that participated in the pathogenesis
of PD. Scherzer et al [40] found differential expression of
PD gene a-synuclein (SNCA) in PD, and low SNCA
transcript abundance predicted cognitive decline
longitudinally in PD [40]. Therefore, there is substantial
extant of literature to support the underlying rationale for
these markers being altered PD.

It is important to put these SN and SP estimates into
perspective relative to the specific context of use. All
first-line screening tools are designed to rule out disease,
not rule in disease given the population base rates of
disease presence. Therefore, assuming a 20% neuro-
degenerative disease base rate in the population of those
aged 65 years and older, the SN 5 0.92 and SP 5 .64
would yield a negative predictive power of 0.97 with a
positive predictive power of 0.39 using Bayesian statistics
for appropriate calculations. This means that a trial would
be accurate in saying that a specific patient should not
undergo a lumbar puncture, PET scan, or additional
clinical evaluations 97% of the time, thereby allowing
large-scale screening at substantially reduced cost.
Our group has previously provided the same sorts of
calculations for AD clinical trials [32].
This work also provides novel data when putting the
newly designed ultrasensitive assays of amyloid, tau,
a-synuclein, and neurofilament light polypeptide in context
with other proteomic markers. In our prior work, our
refined algorithm has been highly accurate in detecting
both AD and PD. Here, we cross-validate the accuracy of
the approach for detecting PD in an independent cohort
(HBS). However, we also demonstrate that adding these
new markers may increase the accuracy. On the other
hand, these new markers were not very accurate at
detecting PD or distinguishing PD from AD alone. The
SN of 1.0 obtained by both approaches is likely an artifact
of sample size and will not hold in larger samples. The
current team is assaying additional PD samples to
(1) cross-validate the current findings in independent
samples/cohorts and (2) working to build a larger database
for combined analyses across cohorts for a clinically
relevant estimate of the overall accuracy of these
algorithms and markers. If cross-validated, this approach
should be applied prospectively within the specific
population reflective of the intended context of use as the
current group is actively doing with our AD blood screen.

There are limitations to the present study. First, the
sample size is relatively small, and the results are proof of
concept and must be validated in independent cohorts and
larger sample sizes. Instead of splitting the sample into
training and test samples, internal 5-fold cross-validation
was conducted. However, the results strongly support the
justification for such validation studies, which are being
carried out by the current team. Second, addition analyses
are needed to determine the impact of preanalytic conditions
on the assay performance as we have previously pointed out
in the AD space [53]. Interestingly, our group recently
assayed an independent cohort of PD and dementia with
Lewy bodies with preanalytic protocols different from



Fig. 3. Box plots for the top 10 variables. Abbreviations: AD, Alzheimer’s disease; PD, Parkinson’s disease; DLB, dementia with Lewy bodies; IL, interleukin.
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HBS and found comparable diagnostic accuracy [54].
Additional variables such as fasting duration, storage time,
medication status, and so forth should be examined in future
studies. Third, the reliability of the findings over time should
also be tested. The usability of any blood test is reliant on the
accuracy of the test over time. Therefore, longitudinal
application of the blood test to the same samples over time
is warranted. Finally, the current analyses do not compare
the blood proteomics to CSF-defined or PET scan–defined
pathology. It is certainly possible that the blood proteomic
profiles are detecting underlying amyloid-, tau-, or
a-synuclein-related pathologies, but that has not yet been
tested. It is also possible that the algorithms, specifically
of the underlying targeted pathology (e.g., amyloid vs.
tau), would be different. This should also be tested. If
validated, the next step will be to determine the scalability
of the methods to meet the population needs at the primary
care office level.

Overall, the current findings are strongly supportive of
follow-up application of the current proteomic profiles to
larger biorepository samples, such as the full HBS cohort.
The current team is working toward that goal. Ultimately,
the goal is to provide clinicians and companies with a rapidly
scalable tool (or tools) that can streamline and increase
access (while cost containing) to novel clinical trials to
improve patient outcomes.
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RESEARCH IN CONTEXT

1. Systematic Review: Literature was identified and re-
viewed using PubMed. Several articles described the
importance of rapid and cost-effective biomarkers
for neurodegenerative diseases, including Parkin-
son’s disease (PD). However, no such blood-based
biomarkers currently exist as a first step in a multi-
tiered neurodiagnostic process.

2. Interpretation: Our findings show that a blood-based
biomarker profile can detect neurodegenerative dis-
ease (PD/other) and distinguish PD from other
neurodegenerative diseases.

3. Future Directions: This article provides support for
the notion that a blood-based biomarker profile can
accurately detect PD and even distinguish PD from
other neurodegenerative diseases. Future work will
be conducted to expand the sample size, particularly
among other neurodegenerative diseases. A blood-
based biomarker profile for PD would be of
tremendous use for screening into novel therapeutic
trials.
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