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Chapter 1   Introduction 

 

1.1. Introduction: Influenza Surveillance  

Each year, the incidence of seasonal influenza (flu) and its financial costs are 

substantial in the Unite State (U.S.) every year. Flu causes major economic burden due 

to hospitalization and absenteeism form work and school. The Centers for Disease 

Control and Prevention (CDC) indicates that approximately 25 million people in the 

U.S. were infected with flu during the 2015-2016 flu season, leading to 11 million flu-

related medical visits, and 12,000 flu-associated deaths.1 Timeliness in detecting the 

onset of flu season is a critical component of flu surveillance to delay the spread of the 

disease and mitigate its adverse consequences.2 The earlier we can detect a flu season 

onset, the more time we have to plan and implement proactive prevention strategies 

against the spread of the disease.2 Preparation for preventing and controlling diseases, 

including seasonal flu, is not a quick and simple process.3 The time required for the 

planning and implementation of a detailed and comprehensive plan for managing 

seasonal flu takes anywhere from a few days to even weeks.3 The current gold standard 

of flu surveillance as practiced by the CDC includes reporting an onset of flu season 

whenever flu activity levels exceed a predetermined epidemic threshold.4,5 However, 

as the flu activity is estimated based on clinical data, there is always a delay of up to 

three weeks between the occurrence of flu season onset and dissemination of this 

information.5 That is, using the current gold standard of flu surveillance, we are only 

able to detect the onset after flu season has already begun. Thus, there is an urgent 

need for improving and strengthening the seasonal flu surveillance system to provide 

timely information of flu season onset for guiding public health decisions that seek to 

prevent and control the disease. To this end, the first goal of this dissertation was to 

test an innovative strategy that applies a statistical detection algorithm to the near real-

time seasonal flu activity data to predict the onset of flu season weeks prior to flu 

season beginning.  

The crucial first component of our innovative strategy for improving flu surveillance is 

the availability of real-time or at least, near real-time flu activity data. Studies suggest 

that internet-based information, such as volume of online search queries on flu-related 

topics may serve as novel, convenient, and cost-effective data sources for providing 
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near real-time information of flu activity to be in complement, or even in lieu of, 

traditional flu information.6-9 The Pew Internet and American Life Project reported that 

80 percent of American internet users indicated that they accessed health-related 

information through internet searches.10  Specifically, Google search query volume of 

specific flu-related search terms has attracted the most research interest.11-14 Recently, 

Yang and colleagues developed a statistical model called AutoRegression with General 

Online (ARGO) data model which can be used to accurately estimate flu activity using 

Google search query data.15,16 The aggregated Google search query data are publicly 

available on a near real-time basis, the resulting ARGO flu activity estimates are far 

superior and pragmatic for flu season onset detection compared to the current gold 

standard of flu activity reporting. 

The second critical component of our strategy for improving flu surveillance is 

applying change point detection (CPD) methods to real-time flu activity data obtained 

from the ARGO model. Change point detection is a class of statistical methods in 

sequential analysis applied to time series data, e.g., stock market data, to determine a 

point in time when the distribution of the series is different before and after.17,18 CPD 

methods are classified as “offline” or “online”.17 The online CPD methods search for 

change points concurrently as data become available. Therefore, online CPD methods 

are ideal for early detection of flu season onset due to their ability of identifying 

change points in real-time. In this dissertation, we are proposing to apply a Bayesian 

online change point detection (BOCPD) method to the real-time data. However, 

because the BOCPD algorithm requires the specification of necessary conditions for 

assumptions, there is a need to determine the best way to specify these conditions to 

make the BOCPD algorithm more robust and practical when applying to for flu 

surveillance. Another barrier of direct application of BOCPD method for flu 

surveillance is it lacks a systematic way to determine informative change points that 

may signal the onset of flu season. Thus, we are proposing to modify the BOCPD 

method to expand its application to flu surveillance. We hypothesize that by applying 

the modified BOCPD method to the ARGO real-time estimated flu activity data, we 

will be able to create a surveillance system that will allow for the prediction of an 

imminent onset of flu season with enough lead time for public health officials to take 

appropriate actions to prevent and control the spread of the disease. Our goal to create 

a more practical flu surveillance system was accomplished through the following Aim. 
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Aim 1: To apply the modified Bayesian online change point detection (BOCPD) 

algorithm to real-time flu activity data obtained from the ARGO model to create a new 

surveillance system that will provide early detection of the onset of flu season. The 

number of weeks prior to the actual flu season beginning was determined. A systematic 

way to satisfy the necessary conditions for assumptions of the BOCPD algorithm was 

developed. A systematic approach to determine informative change points that may 

signal the onset of flu season was established.  

 

1.2. Introduction: Probationers Absconding Surveillance 

Probation is a court-order period of correctional supervision in the community, 

generally the most widely used alternative sanction to incarceration for qualifying 

offenders.19 Probationers can maintain their normal lives in the community if they 

abide by certain conditions of probation.19 If a probationer fails to comply with all 

required conditions, the court may revoke probation and require the probationer to 

serve a prison sentence.20 Despite the opportunity for avoiding incarceration, there is a 

significant segment of offenders who are sentenced to probation fail to complete 

probation by absconding from supervision.19 According to the Annual Probation 

Survey, approximately 10% of probationers abscond from supervision each year.21 

Based on the report from the U.S. Department of Justice, 16% of offenders sentenced 

to probation were re-arrested for committing new crimes during their period of 

supervision. It is reasonable to assume that the re-arrest rate would be even higher if 

we include the probationers who abscond from probation supervision. However, due to 

the limited financial resources and the increasing population of probationers, little 

effort has been made toward locating and examining these probation absconders.19 The 

current knowledge about absconders may be insufficient to prevent the occurrence of 

probation absconding. There is a scarcity of research on probation absconders. Limited 

studies have examined risk factors associated with probation absconding and have 

found associations with demographic characteristics, substance use, offense types, and 

offender risk scores.22   

However, in most probation systems, much of the detailed information about each 

probationer are written in text form as chronological case notes, which are part of the 
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standard record keeping procedures. These case notes are electronically recorded by 

probation officers in an ad hoc fashion and describe their interactions with the 

probationers.23 The case notes contain details about their meeting and notes on 

probationer’s behaviors, compliance with conditions, and violations while in custody 

or under supervision management.23,24 These records may be a rich source for 

important yet previously untapped information that could be used to discover novel 

and meaningful knowledge that can be used to prevent probation absconding. 

Nonetheless, due to the free-text nature of these case notes, using case notes as source 

of data is challenging. A possible solution is to apply natural language processing 

(NLP) techniques to the chronologic case notes data. NLP is a field of study that deals 

with the comprehension and analysis of human-produced texts.25-27 Utilizing NLP 

techniques allows the researchers to extract meaningful information that can be used to 

generate critical knowledge buried in the text documents.28 Thus, we hypothesize that 

by applying NLP to chronological case notes we will be able to discover knowledge 

that may help to reduce the number of probationers who abscond. Our goal to discover 

novel and meaningful knowledge about probationers who abscond supervision was 

accomplished through the following Aim. 

Aim 2: To apply natural language processing (NLP) techniques to the chronological 

case notes of adult probationers in Tarrant County, Texas to discover hidden risk 

factors related to probationers absconding from supervision. To our knowledge, no 

study has ever applied NLP techniques to the case note data to explore content 

associated with probation absconders and completers. Factors that discriminate 

between probation absconders and completers were identified.  
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Chapter 2   Literature Review 

2.1. Overview  

Surveillance is a critical foundation of effective public health practice. The key 

objective of public health surveillance is to provide valid information to guide 

appropriate public health actions in a timely manner to contribute to the health of a 

population.29 Reasons for conducting public health surveillance include the need to 

monitor trends and patterns of disease activity (e.g., influenza, dengue, and specific 

cancers), track health-related behaviors (e.g., illicit drug use, violence, and injuries), 

establish public health priorities, and facilitate prevention program planning and 

management.2,30,31 However, many current surveillance methods and procedures in 

public health have a variety of deficiencies, such as out-of-date and possible vulnerable 

technology, lack of real-time surveillance systems that impact the ability to effectively 

detect and control threats in public health.32,33 With the advancement of technology and 

availability of various sources of data, there should be opportunities for substantial 

improvement in these areas. This dissertation focused on two important types of 

surveillance: influenza surveillance and probationers absconding surveillance.  

As data become more and more ubiquitous every day, different kinds of data are 

constantly generated from a plurality of sources, including web-based searches, social 

media, electronic health records, occupational injury records from Occupational Safety 

and Health Administration (OSHA) system, records from probation system, and many 

more.34-37 Such data that have large volumes, velocity, and/or variety are commonly 

referred to as big data.38 These data can take on many forms: structured or 

unstructured, quantitative or qualitative, collected near real-time or retrospectively, 

etc.38 Big data analytics exhibits abundant potential to support a wide range of public 

health functions, such as tracking infectious diseases outbreaks, monitoring health-

related behavior, and improving planning and delivery of public health interventions.38-

40 We believed that taking advantage of big data and associated technologies will 

benefit current public health surveillance systems. This dissertation consists of two 

topics with application of big data, one is to create an innovative flu surveillance 

system using Google flu-related search queries data, the other is to create a new 

surveillance system of probationers absconding from supervision using data generated 

from chronological case notes written by probation officers.  
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2.2. Literature Review: Influenza Surveillance 

Influenza (flu) is an acute viral disease that mainly impacts the respiratory system.41 

The World Health Organization (WHO) estimates that worldwide 5-15% of the 

population is affected by influenza each year, with between three and five million 

cases of severe illness.41,42 Flu has become one of the leading causes of death, where 

up to 56,000 are killed each year.42 Health and economic burden of seasonal flu are 

substantial. The Centers for Disease Control and Prevention (CDC) indicated that 

approximately 25 million people in the United States (U.S.) were infected with 

influenza during the 2015-2016 flu season, leading to 11 million flu-related medical 

visits, 12,000 flu-associated deaths, and over $10 billion in medical costs, lost 

productivity, and lost wages.43 Although seasonal flu happens every year, the timing of 

onset is different from season to season. Timeliness in detecting the onset of flu season 

plays a critical role in flu surveillance to delay the spread and control the impact of the 

disease. Early knowledge about the onset of flu season allows health officials to 

properly prepare prevention strategies, such as reinforcing flu prevention messages to 

the general public to increase vaccination rates. Early uptake of flu vaccinations is 

critical in preventing the spread of the flu because flu vaccines are not fully effective 

until about 2 weeks after the shot.44 In addition, early detection can help health 

administrators make optimal staffing and medical resourcing decisions in preparation 

for potential surges of patient visits to hospital facilities. Preparation for preventing and 

controlling diseases, including seasonal flu, is not a quick and simple process. The time 

required for the planning and implementation of a detailed and comprehensive strategy 

for managing a flu season takes anywhere from a few days to even weeks. The earlier 

the detection of the potential onset of flu season, the more time there is to implement 

proactive prevention strategies against the spread of the disease. Presently, the gold 

standard of flu surveillance in U.S. is the one practiced by the CDC. CDC is 

responsible for flu surveillance using the following key indicators from laboratories 

and clinics: percent of patient visits for influenza-like illness (ILI), percent of 

respiratory specimens testing positive for flu viruses, rate of influenza-associated 

hospitalizations, and percent of deaths resulting from pneumonia or influenza. CDC 

uses this information to determine the onset of flu season and the types of flu viruses 

that are circulating, detect non-seasonal flu viruses (e.g., H1N1), and measure the 

impact of flu on hospitalization and deaths. CDC reports the onset of flu season 
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whenever flu activity levels exceed a predetermined epidemic threshold4. Among the 

many indicators the CDC collects, the onset of flu season is determined based on 

clinical data. However, due to the time needed to process clinical information and 

report it to the CDC, there is always a delay between the actual time of flu season onset 

and public dissemination of this information. That is, using the current gold standard of 

flu surveillance, there is no way to monitor flu activity in real-time fashion, and an 

onset can only be detected after flu season has already begun. Furthermore, the current 

flu surveillance system only captures information from patients who are seen by health 

care providers, and hence, it cannot capture information from patients who have the flu 

but do not go to healthcare providers, which most likely leads to an underestimation of 

flu activity. Thus, there is an urgent need for improving and strengthening the seasonal 

flu surveillance system to provide timely flu season onset information for guiding 

public health decisions that seek to prevent and control the disease. In particular, there 

needs to a surveillance system, that can monitor flu activity in real or near real time 

and can utilize this real-time information to detect the onset of flu season prior to flu 

season beginning. 

To this end, the crucial first step of developing a more practical flu surveillance system 

is the availability of real-time, or at least near real-time flu activity data. In recent 

decades, the rapid expansion of the internet has dramatically changed how people 

search for information, especially about health-related information. An increasing 

amount of health-related information has become available on Web sites9. The Pew 

Internet and American Life Project reported that 80 percent of American internet users 

indicated that they accessed health-related information using internet search engines 

(e.g., Google, Yahoo, etc.).10 Thus, the frequency of online search queries may provide 

information regarding disease activity, e.g., seasonal flu activity. Because internet-

based information can be obtained in real-time, studies have suggested that volume of 

queries from online search engines on flu-related topics may serve as a novel, 

convenient, and cost-effective way to track flu activity.6-9 Unfortunately, there is no 

existing surveillance system that utilizes online search query data to monitor trend of 

flu activity in U.S. In previous versions, Google launched the Google Flu Trends 

(GFT) service, which attempted to track flu activity by monitoring and analyzing 

health care seeking behavior in the form of queries to its online search engine. 

However, the GFT algorithm for flu activity estimation was found lacking in reliability 
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and accuracy.6,45 As a result, this service was shut down in August of 2015.46 Recently, 

Yang and colleagues developed a statistical model called AutoRegression with General 

Online (ARGO) data model which can be used to accurately estimate real-time flu 

activity using Google search queries data.15,16 As the arrogated results of the Google 

search query data are publicly available on a near real-time basis, the resulting flu 

activity estimates are pragmatic for flu season onset detection compared to the gold 

standard of flu activity reporting.  

Once real-time flu activity data are available, the second critical component of our 

innovative strategy for improving flu surveillance is to apply a statistical method that 

can detect the onset of flu season prior to flu season beginning when applied to the 

real-time data. In each season, flu activity starts to elevate gradually leading to the 

onset of flu season. Specifically, CDC identifies the onset of flu season as the first 

week when the percentage of patients seeking medical attention with ILI symptoms is 

at or above a predetermined epidemic baseline for two consecutive weeks.4 As flu 

activity tends to grow gradually, the initial uptick in %ILI data should be an indicator 

for the eventual onset of flu season. Change point detection (CPD) is a statistical 

method that can be used to identify such initial uptick in the data. CPD is a class of 

statistical methods in sequential analysis applied to time series data, e.g., CDC’s 

weekly ILI data, to determine a point in time when the distribution of the series is 

different before and after, i.e. point where the distribution changes.17,18 A data point 

separates two different distributions of the time series is known as a change point. We 

posit that in general, CDC’s identified date of flu season onset is usually not a change 

point. Rather, the change point most likely occurs prior, when there is an initial uptick 

in flu activity. Then the change point identified would provide early detection for 

imminent flu season onset. CPD methods are classified as either “offline” or 

“online”.17 Offline CPD methods identify the change point retrospectively, after the 

entire sequence of data is observed, which makes meaningless for flu surveillance, 

because the flu season onset can only be detected after the fact. In contrast, online CPD 

methods search for change points concurrently as data become available. Therefore, 

online CPD methods are ideal for detection of flu season onset due to their capability 

of identifying change points in a real-time, or at least near real-time fashion.  

In this dissertation, we applied a Bayesian online change point detection (BOCPD) 

method to real-time flu activity data obtained from the ARGO model to create a flu 
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surveillance system that can provide early detection of the imminent flu season onset. 

The BOCPD algorithm uses posterior probabilities to determine change points, where 

the posterior probabilities are updated at each time point given newly observed data. In 

particular, posterior probabilities are calculated for run length, which is the number of 

observations since the most recent change point (actual change point and not a detected 

change point). Because a change point can be detected at any time, run length is a 

random variable. At each time point, posterior probabilities are calculated for all 

possible run lengths, where the support is defined to be all positive integers less than or 

equal to the current sample size. This method makes two assumptions to calculate the 

posterior probabilities for run lengths. First, the distribution of the data and its 

parameters must be specified a priori. Second, because only one new datum is 

observed at each time point, given the run length at each time point, the run length at 

the next time point can either grows by 1 if no change point occurs or resets to 0 if a 

change point occurs at this time. The probability of these two events must also be 

specified a priori. These two assumptions play a crucial role in the process and they are 

applied at every time point no matter how long the process continues. Thus, the 

practical application of the BOCPD algorithm to detect flu season onset would require 

determining the best way to specify the conditions of these assumptions. Because the 

historical flu activity data collected by the CDC’s flu surveillance system are available, 

we incorporated these data to develop a systematic way to satisfy the necessary 

conditions for the aforementioned assumptions. Another barrier of direct application of 

BOCPD method for flu surveillance is there is no systematic way to determine 

informative change points that may signal the onset of flu season. During the change 

point detection process, there may be multiple change points detected over time, some 

of which may be false detections or uninformative change points. There is need to 

develop a systematic way to determine change points that can provide early signal of 

flu season onset.  

 

2.2. Literature Review: Probationers Absconding Surveillance 

Based on the degrees of severity and control, the criminal justice system encompasses 

a variety of punishments for criminal behaviors.20,47 Depending on the types and risk 

level of crimes that the offender has committed, probation can be used as an alternative 
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to incarceration.20,47 Probation is a court-ordered period of correctional supervision in 

the community, generally as an alternative to incarceration for qualifying offenders.20 

As the most widely used alternative sanction to incarceration, probation provides an 

opportunity for offenders to avoid prisons and the criminal environment contained 

therein.19 Probationers can maintain their normal lives in the community if they abide 

by certain conditions of probation and report regularly to an appointed probation 

officer.20 General conditions of probation may include participating in rehabilitation 

programs, submitting to drug and alcohol tests and maintaining employment.20 If a 

probationer fails to comply with all required conditions, the court may revoke 

probation and require the probationer to serve a prison sentence.20,21 Despite the 

opportunity for avoiding prison, there is a significant segment of offenders sentenced 

to probation who fail to complete probation by absconding from supervision.21 By the 

end of 2016, about 4.5 million adults were under some form of criminal justice 

supervision in the community in the U.S.21 Approximately 10% of probationers 

abscond from supervision each year.21 According to the report from the U.S. 

Department of Justice, 16% of offenders sentenced to probation were re-arrested from 

committing a new crime during their period of supervision.21 It is reasonable to assume 

that the re-arrest rate would be even higher if the probationers who abscond from 

probation supervision are included. Crime is a serious public health issue. Criminal 

activities can carry heavy health consequences for victims, including physical injury 

and mental health difficulties.48 Absconders pose potential threats to community 

safety, as they may be reengaged in criminal activities, that are going undetected.19 

locating absconders is a critical component to prevent criminal activities and improve 

community safety. 

However, locating absconders is made difficult by limited financial resources and 

increasing population of probationers.19 Moreover, there is scarcity of research on 

absconders. The current knowledge about absconders may be insufficient to prevent 

the occurrence of probation absconding. Without adequately addressing probation 

absconders, a relatively risky population, public safety risks will remain high. Limited 

studies have examined risk factors associated with probation absconding and have 

found associations with demographic characteristics, offense types, and offender risk 

scores.19,22 However, much of the detailed information about each probationer are 

written in text form as chronological case notes, which are part of the standard record 



14 
 

keeping procedures for most probation systems.49 Probation officers record case notes 

every time they meet with probationers. These case notes are electronically recorded 

and describe the interactions between the probation officers and the probationers 

during their meetings.23 The interactions can be from formally scheduled meetings or 

from unscheduled meetings when probationers show up unannounced.23,24 In addition, 

case notes also contain details about probationer’s behaviors, compliance with 

conditions, and violations while in custody or under supervision management.23,24 

These case notes may be a rich source of previously untapped information that could 

be used to discover novel and meaningful knowledge about offenders who abscond 

from probation supervision. Key words and phrases in the case notes may be linked to 

the knowledge that are critical to probation officers to have a better understanding of 

factors associated with probation absconding and strengthen probation system. 

However, using case notes as data is challenging. The first challenge is the free-text 

nature of this type of data. The case notes are rather unstructured because the contents 

documented in case notes are based on conversations between the officer and 

probationer. Conventional statistical methods cannot be directly applied to data in text 

form. In addition, there is a large amount (in the hundreds of thousands) of case notes 

corresponding to the growing probationer population. Trying to make sense of them in 

an ad hoc fashion is generally not feasible. Therefore, there is a need to apply more 

complex statistical methods that can incorporate words, phrases, and their meaning to 

determine additional risk factors for probation absconding. To this end, applying 

natural language processing techniques may be a possible solution to analyzing the 

chronological case notes more efficiently and systematically. 

Natural language processing (NLP) is a field of study that deals with the 

comprehension and analysis of human-produced texts.25-27 By utilizing NLP 

techniques, we may be able to extract meaningful information in terms of key words 

and/or phrases that can be used to discover critical knowledge buried in the text 

documents.28 NLP techniques have been successfully applied in many domains, such 

as surveillance in occupational injury and illness, improving medical diagnosis, etc.28,50 

To our knowledge, no study has applied NLP techniques to chronological case notes to 

explore contents associated with probation absconders and completers. By applying 

NLP to case notes of probationers, we may be able to shed light on previously 

untapped risk factors for probation absconders and generate useful knowledge that may 



15 
 

help to reduce the number of probationers who abscond. The potential major 

contributions of this topic included identifying previously unknow commonalities, i.e., 

key words and phrases, in the case note of absconders and completers as well as 

contributing to a new surveillance system that uses case notes systematically to prevent 

probation absconding.  
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Chapter 3 Methods 

 

3.1. Overview of study design 

The goal of this study was to create innovative strategies for improving surveillance for 

two public health issues: influenza and probationers absconding. For Aim 1, the 

approach for improving seasonal flu surveillance was to apply a modified Bayesian 

online change point detection (BOCPD) algorithm to real-time flu activity data. We 

used data that represent the percentages of patients seeking medical attention with 

influenza-like illness (ILI) symptoms, which were estimated by applying the ARGO 

model to Google flu-related search query volume data. For Aim 2, our strategy for 

improving probation absconding surveillance was to apply natural language processing 

(NLP) techniques to data generated from chronological case notes to identify 

commonalities in contents associated with probation absconders.  

Aim 1: To apply the modified Bayesian online change point detection (BOCPD) 

algorithm to real-time flu activity data obtained from the ARGO model to create a new 

surveillance system that will provide early detection of the onset of flu season. 

 

3.2. Methods of Aim 1 

Our strategy for improving seasonal flu surveillance involved two components: (1) 

using a data source that can monitor flu activity real-time; (2) using a statistical method 

that can detect the onset of flu season prior to flu season beginning. 

3.2.1. Estimation of real-time flu activity by applying the ARGO model to the 

Google flu-related search query volume data and the historical CDC %ILI data 

3.2.1.1. Data sources  

The ARGO model used to estimate real-time flu activity required data from two 

sources: (a) Google flu-related search query volume data and (b) the historical 

CDC %ILI data. 

a. Selection of Google flu-related search terms 

The flu-related search terms, e.g., “flu duration,” “symptoms of flu,” “flu versus cold,” 
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“flu care,” etc. were identified from Google Correlate 

(www.google.com/trends/correlate), which is a Google tool that provides the top 100 

most highly correlated search terms given a user specified time series data, e.g., 

CDC %ILI data.51 Previous studies indicated that internet search behavior was 

different during the 2009 influenza virus A (H1N1) pandemic. Internet users tended to 

search for different flu-correlated search terms to seek information after the H1H1 

outbreak. Thus, to capture the most commonly used flu-related Google search terms, as 

done in Yang et al.,15 two sets of top 100 highly flu-correlated search terms were used 

to estimate flu activity before and after H1N1 period.52 The first set prior to the H1N1 

pandemic was identified using CDC %ILI data from January 2004 to December 2006 

and were used to estimate flu activity from January 2007 through May 2010. The 

second set was identified using CDC %ILI data from January 2004 to May 2010 

(including the H1N1 season) to estimate real-time flu activity from May 2010 through 

August 2015. In these two sets, 52% of search terms overlapped.  

b. Google flu-related search query volume data  

Search volume data of all identified Google flu-related search terms were obtained 

from Google Correlate (www.google.com/trends/correlate) and Google Trends 

(www.google.com/trends). The identified flu-related search terms for a given 

estimation time period were fixed, but the search volume of each term may vary from 

week to week. The search volume of each term was standardized to a standard normal 

distribution (i.e., mean of 0 and standard deviation of 1) using the search volume of all 

queries submitted for that week. Google Correlate data were available on a weekly 

basis across time, but data were only available from January 2004 to March 2015 from 

Google Correlate. Search volume data for the time period after March 2015 were 

obtained from Google Trends which publishes relative weekly search volume of search 

terms specified by the user. These search frequencies were divided by the total number 

of online searches done on Google over the same time period. This number was 

normalized to an integer values from 0 to 100, where 100 corresponds to the maximum 

weekly search since January 2004. To make search volume data obtained from Google 

Correlate compatible with those obtained from Google Trends, the Google Correlate 

data were linearly transformed to the same scale of 0 to 100. 

c. CDC percentage of ILI (%ILI) data  

http://www.google.com/trends/correlate
http://www.google.com/trends/correlate
http://www.google.com/trends)
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The weighted version of the historical CDC percentage (%) of ILI data (available at 

www.cdc.gov/grasp/fluview/fluportaldashboard. html) were used in the ARGO model. 

The CDC % ILI data were collected through the Outpatient Influenza-like Illness 

Surveillance Network (ILINet).5 The CDC ILI Surveillance consists of a network of 

health care providers who record the weekly total number of patients seen and the 

number of those patients with ILI and report these information to the CDC on a weekly 

basis.5 An ILI is defined as a body temperature of 100° Fahrenheit or greater and a 

cough or a sore throat in the absence of a known cause other than influenza.5  

3.2.1.2. ARGO formulation 

The ARGO model with the following form was used to retrospectively estimate real-

time %ILI from 2007 week 21 to 2015 week 20,  

𝑦𝑇 = 𝜇𝑦 + ∑ 𝛼𝑗

𝑁

𝑗=1

𝑍𝑇−𝑗 + ∑ 𝛽𝑖

𝐾

𝑖=1

𝑋𝑖,𝑇 + 𝜖𝑇 , 𝜖𝑇 ~ 𝒩(0, 𝜎2), 

where 𝜶 = (𝛼1,…,𝛼𝑁) are the autoregressive coefficients defining the importance of 

lagged values; 𝜷=(𝛽1,...,𝛽𝐾) are the coefficients indicating the strength for the 𝑖𝑡ℎ 

search term; 𝜇𝑦 is the intercept; and 𝜖𝑇 is the normally distributed error term which 

represents the randomness in the time series. Because we do not have the actual %ILI 

at time T, we assumed that the %ILI of current time has a regressive relationship with 

the previous CDC %ILI data. The components used to estimate this were N logit-

transformed historical CDC %ILI observations 𝑍𝑇−1, 𝑍𝑇−2, . . . , 𝑍𝑇−𝑁 at time T, and 

𝑋𝑖,𝑇, the log-transformed relative search volume of the 𝑖𝑡ℎ identified Google flu-related 

search term at time T. As most flu seasons tend to have an annual trend, we used N = 

52 (weeks) to capture the within-year seasonality in the %ILI visits. At any given time 

T, ARGO only uses CDC data available up to time T - j to estimate the flu activity at 

time T, whereas the CDC will have the same information at time T + k (i.e., k weeks 

later than ARGO) where j, k are some positive integers. Without loss of generality 

(WLOG), we assumed that k = 1 for the application of the ARGO model, i.e., a one-

week delay in availability of CDC %ILI data. This assumes the best-case scenario; in 

reality, the lag could be as long as 4 weeks.  

For any given time t = T, CDC ILI data and Google search volume data from the 

previous two years (104 weeks, i.e., t = T – 1, T – 2,…,T – 104) were used as the 

http://www.cdc.gov/grasp/fluview/fluportaldashboard.%20html
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training data to estimate the parameters 𝜶,̂ 𝜷,̂ 𝜇̂𝑦 of the ARGO model. Because this 

window moves forward with time, all parameters of the ARGO model were 

dynamically updated every week. The parameters of the ARGO model were estimated 

using a least absolute shrinkage and selection operator (LASSO) method to minimize 

the sum of squared residuals plus the sum of absolute values of the coefficients,  

𝜶,̂ 𝜷,̂ 𝜇̂𝑦 = 𝑎𝑟𝑔 𝑚𝑖𝑛 ∑ (𝑦𝑡 − 𝜇𝑦 − ∑ 𝛼𝑗𝑍𝑡−𝑗

𝑁

𝑗

− ∑ 𝛽𝑖𝑋𝑖,𝑡

𝐾

𝑖

)

2

+ 𝜆𝛼 ∑ |

𝑁

𝑗=1

𝛼𝑗|

𝑇−104

𝑡=𝑇−1

+ 𝜆𝛽 ∑ |

𝐾

𝑖=1

𝛽𝑖| 

where 𝜆𝛼 and 𝜆𝛽 are regularization hyperparameters. Theoretically, some kind of 

cross-validation method should be used to estimate all 2 hyperparameters in the ARGO 

model. However, because the ARGO model only uses a 2-year rolling window as the 

training data, any cross-validation result would be highly variable. Therefore, we set 

𝜆𝛼 = 𝜆𝛽 to obtain more stable estimates. The final estimated ARGO model has the 

form, 

𝑦̂𝑇 = 𝜇̂𝑦 + ∑ 𝛼̂𝑗

𝑁

𝑗=1

𝑍𝑇−𝑗 + ∑ 𝛽̂𝑗

𝐾

𝑖=1

𝑋𝑖,𝑇. 

 

3.2.2. Detection informative change points that may signal the imminent onset of 

flu season by applying the Bayesian online change point detection (BOCPD) 

method to ARGO estimated %ILI data.  

The second step of our strategy of flu surveillance was to apply a statistical change 

point detection method to the ARGO estimated %ILI at each time t to identify an 

informative change point that signal the imminent onset of flu season prior to the 

actual flu season beginning. 

3.2.2.1. Rationale 

Change point detection is a method applied to time series data to determine a point in 

time when the distribution of the series changes. Each flu season, flu activity starts to 
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elevate gradually leading to the onset of flu season. CDC identifies the onset of flu 

season as the first week when the percentage of patients seeking medical attention with 

ILI symptoms is at or above a predetermined epidemic baseline for two consecutive 

weeks4. Figure 1 shows the CDC %ILI data at the national level from 2012 to 2016. 

The red lines represent the epidemic baselines for each season, which is the mean 

percentage of patient visits of ILI for the previous three seasons. Periods above the red 

lines are considered to be flu seasons. 

Figure 1. CDC-reported percentage of visits with ILI symptoms, 2007 – 2015 seasons.   

We hypothesized that the CDC identified flu season onset (solid orange line in Figure 

2) is not actually a change point. Rather, the actual change point occurs prior when 

there is an initial uptick in %ILI data (dotted green line in Figure 2). Thus, the 

identified change point would provide early detection for imminent onset of flu season.  

Figure 2. Rational for using change point detection for flu season onset. 
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3.2.2.2. Bayesian online change point detection 

We applied the Bayesian online change point detection (BOCPD) method to the 

ARGO estimated weekly %ILI data to detect change points that may signal the onset 

of flu season. BOCPD is an online change point detection method that can detect 

change points concurrently as data become available. The BOCPD algorithm uses 

posterior probabilities to determine change points53. It applies a Bayesian framework at 

each time point to update the posterior probabilities given newly observed data. The 

BOCPD algorithm calculates the posterior probabilities for the run length (r) at each 

time point. A run length is defined as the number of observations since the most recent 

change point. Because a change point can be detected at any time, run length is a 

random variable. At time t, posterior probabilities, i.e., 𝛲(𝑟𝑡|𝒚1:𝑡), are calculated for all 

possible run lengths, rt = 0, 1, …, t – 1, where 𝒚1:𝑡 is vector of observed values from 

the beginning to time t. WLOG, we assumed that a change point occurred at t = 1. 

Therefore, for example, rt = t - 1 indicated that no change point had occurred during 

the last t observations, while rt = 0 indicates that a change point just occurred at time t. 

At each t, the goal is to recursively estimate the posterior distribution of all possible 

run lengths given all the observed data up to t, so that change points can be determined 

from these distributions. The posterior distribution is calculated as follows. 

Let 𝑦𝑡 ∈ ℝ be an observation from a time series data at each time point t. Define a 

partition of the sequence 𝑦1, 𝑦2, … , 𝑦𝑡 as any subset of observations between two 

consecutive change points. Observations in each partition are assumed to be 

independent and identically distributed (i.i.d.) from a distribution 𝑃(𝑦𝑡|𝜽𝑡
(𝑟)

) and 

independent from observations in the other partitions. The notation 𝜽𝑡
(𝑟)

 represents the 

parameters associated with a subset of observations given run length rt in each time t.  

The posterior distribution of the run length is found by normalizing the joint 

probability 𝑃(𝑟𝑡, 𝒚1:𝑡), 

𝛲(𝑟𝑡|𝒚1:𝑡) =  
𝑃(𝑟𝑡,  𝒚1:𝑡)

𝑃(𝒚1:𝑡)
. 

The joint probability 𝑃(𝑟𝑡, 𝒚1:𝑡) is updated at every t by using a recursive message 

passing scheme, 
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       𝑃(𝑟𝑡, 𝒚1:𝑡) = ∑ 𝑃(𝑟𝑡, 𝑟𝑡−1, 𝒚1:𝑡)
𝑡−1

𝑟𝑡−1=1

= ∑ 𝑃(𝑟𝑡, 𝒚𝑡|𝑟𝑡−1, 𝒚1:𝑡−1)
𝑡−1

𝑟𝑡−1=1
𝑃(𝑟𝑡−1, 𝒚1:𝑡−1)

= ∑ 𝑃(𝑦𝑡|𝑟𝑡, 𝑟𝑡−1, 𝒚1:𝑡−1)𝑃(𝑟𝑡|𝑟𝑡−1, 𝒚1:𝑡−1)𝑃(𝑟𝑡−1, 𝒚1:𝑡−1)
 𝑡−1

𝑟𝑡−1=1

= ∑ 𝑃(𝑟𝑡|𝑟𝑡−1)
𝑡−1

𝑟𝑡−1=0
𝑃(𝑦𝑡|𝑟𝑡−1, 𝒚𝑡−1

(𝑟𝑡−1)
)𝑃(𝑟𝑡−1, 𝒚1:𝑡−1) 

 

 

Figure 3 illustrates the recursive updates of the posterior probability of all possible run 

length at a given time point t in BOCPD algorithm. In this figure, the path of 

calculation under the given hazard, where, in red, all possible routes to get a run length 

of 1 at time 4 (i.e., 𝑟4 = 1) are shown. The BOCPD algorithm incorporates all these 

possible paths, estimating the probability of reaching that point under every path. 

 

Figure 3. The run length illustrated for t = 1,…,6. The orange shaded node gives r4 = 1, where 

the red path signifies the forward paths possible to reach that run length under the model 

assumptions. 

WLOG, we assumed that a change point just occurred before the first datum, i.e., at t 

=1, therefore the probability for the initial run length is 𝑃 (𝑟1 = 0) = 1. As shown 

above, the posterior probability is calculated through the following components: (1) the 

hazard function H(y) which represents the conditional prior probability of a change 

point occurring given the run length 𝑟𝑡 at time t, (2) the predictive probability of a 

newly observed datum belonging to each run length, and (3) the run length probability 

 predictive 

probability 

run length probability 

from previous time step 

hazard  
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from the previous time step t - 1. At time t, the current run length 𝑟𝑡 can take one of 

two values: 0 if a change point occurs at this time or 𝑟𝑡−1 + 1 if no change point 

occurs. The probability of these two events must be specified a priori as the hazard 

function H,  

. 

Here, 

𝐻(𝑦) =
𝑃𝑔𝑎𝑝(𝑔 = 𝑦)

∑ 𝑃𝑔𝑎𝑝(𝑔 = 𝑦)∞
𝑡=𝑦

 , 

and 𝑃𝑔𝑎𝑝(𝑔) is a prior distribution for the interval between change points. As with 

Adams and MacKay,53 we assumed that the length of the interval between change 

points followed a geometric distribution with fixed time scale parameter 𝜆𝑔𝑎𝑝. Thus, 

the hazard function was constant at the prior hazard rate 1/ 𝜆𝑔𝑎𝑝. Although by 

convention, regular flu season occurs during the fall and winter months every year, we 

used a very conservative window of time for flu season to occur (i.e., from week 40 to 

week 20 of the following year). Therefore, we set 𝜆𝑔𝑎𝑝 to be 20, representing our prior 

belief of the time interval between change points, and hazard rate H = 1/20. Algorithm 

1 shows the mathematical steps of the BOCPD algorithm. 

Algorithm 1 BOCPD algorithm 

1: Initialize: 

𝑃(𝑟1 = 0) = 1; 𝑃(𝑦1, 𝑟1) = 𝑃(𝑦1|𝜽1
(0)

) 

                                     𝜽1
(0)

= 𝜽𝑝𝑟𝑖𝑜𝑟 

2: Update sufficient statistics: 

                                     𝜽2
(0)

= 𝜽𝑝𝑟𝑖𝑜𝑟; 

                                     𝜽2
(1)

= 𝜽1
(0)

+  𝑈(𝑦1) 

3: for t = 2, 3, … do 
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4: Calculate predictive probabilities: 

                                  𝜋𝑡
(𝑟)

= 𝑃(𝑦𝑡|𝑟𝑡 = 𝑟, 𝒚𝑡−1
𝑟𝑡−1) = 𝑃(𝑦𝑡|𝜽𝑡

(𝑟)
) 

5: Calculate growth probabilities: 

                                 𝑃(𝑟𝑡 = 𝑟𝑡−1 + 1, 𝒚1:𝑡) = 𝑃(𝑟𝑡−1, 𝒚1:𝑡−1) 𝜋𝑡
(𝑟𝑡)

(1 − 𝐻) 

6: Calculate change point probabilities: 

                                𝑃(𝑟𝑡 = 0, 𝒚1:𝑡) = ∑ 𝑃(𝑟𝑡−1, 𝒚1:𝑡−1) 𝜋𝑡
(0)

𝐻𝑟𝑡−1
 

7: Calculate marginal probabilities: 

                                𝑃(𝒚1:𝑡) = ∑ 𝑃(𝑟𝑡 = 𝑟, 𝒚1:𝑡)𝑡−1
𝑟=0  

8: Normalize the run length probabilities: 

                               𝑃(𝑟𝑡 = 𝑟|𝒚1:𝑡) =
𝑃(𝑟𝑡=𝑟,𝒚1:𝑡)

𝑃(𝒚1:𝑡)
, 𝑟 =  0, . . . , 𝑡 –  1 

9: Update sufficient statistics: 

                               𝜃𝑡+1
(0)

= 𝜃𝑝𝑟𝑖𝑜𝑟; 

                               𝜃𝑡+1
(𝑟𝑡+1)

= 𝜃𝑡
(0)

+  𝑈(𝑦𝑡) 

end for 

 

The predictive probability 𝑃(𝑦𝑡|𝑟𝑡 = 𝑟, 𝒚𝑡−1
𝑟𝑡−1) = 𝑃(𝑦𝑡|𝜽𝑡

(𝑟)
) of a new datum 𝑦𝑡 given 

the run length 𝑟𝑡 at time t was calculated based on the data distribution and its 

parameters. We assumed that the ARGO estimated %ILI data followed a normal 

distribution with unknown mean and unknown precision (inverse of variance). 

Because the normal distribution is an exponential family distribution with conjugate 

priors, the predictive probability associated with a particular current run length can be 

characterized by a finite number of sufficient statistics, which in turn can be 

calculated incrementally as data arrives. If the prior density is specified as 

p(θ) ∝ 𝑔(𝜃)𝜂𝑒𝜙(𝜃)𝑇𝜈, 

then the posterior density is  
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𝑝(𝜃) ∝ 𝑔(𝜃)𝜂+𝑛𝑒𝜙(𝜃)𝑇(𝜈+𝑡(𝑦)). 

This is of the same distributional form as the prior and shows that the prior density is a 

conjugate54. For data that follow a normal distribution with unknown mean 𝜇 and 

unknow precision τ, the conjugate prior is the normal-gamma distribution55, a 

combination of a normal prior on 𝜇 and a gamma prior on τ, 

𝑁𝐺 (𝜇, 𝜏|𝜇0, 𝑘0, 𝛼0, 𝛽0) = 𝒩(𝜇, 𝜏|𝜇0, (𝑘0𝜏)−1)𝐺𝑎𝑚𝑚𝑎(𝜏|𝛼0, 𝛽0), 

where 𝜃 = {𝜇0, 𝑘0, 𝛼0, 𝛽0} are the model hyperparameters. Using a conjugate prior, the 

posterior predictive distribution at each 𝑟𝑡 will always have a known, closed parametric 

form of the same family as the prior distribution, giving the simplified computations of 

all desired predictive probabilities 𝑃(𝑦𝑡|𝜽𝑡
(𝑟)

) without involving inefficient 

integrations.54 In particular, the parameters of the posterior predictive distribution 

𝑁𝐺(𝜇, 𝜏|𝜇𝑟𝑡
, 𝜅𝑟𝑡

, 𝛼𝑟𝑡
, 𝛽𝑟𝑡

) given 𝑟𝑡 have the form, 

𝜇𝑟𝑡
=

𝜅0𝜇0 + ∑ 𝑦𝑖
𝑡
𝑖=𝑡−𝑟𝑡

𝜅0 + 𝑟𝑡
 

𝜅𝑟𝑡
= 𝜅0 + 𝑟𝑡 

𝛼𝑟𝑡
= 𝛼0 + 𝑟𝑡/2 

𝛽𝑟𝑡
= 𝛽0 +

𝜅0𝑟𝑡((
∑ 𝑦𝑖

𝑡
𝑖=𝑡−𝑟𝑡

𝑟𝑡
)−𝜇0)

2

2(𝜅0+𝑟𝑡)
 . 

Note that the application can be extended to non-exponential families, provided that 

the posterior distributions can be computed numerically. In our application, 𝑦𝑡 will be 

the ARGO estimated %ILI data. 

Specifying the prior values of the hyperparameters of the data distribution will 

influence the results in the process. The BOCPD algorithm requires that the initial 

values of hyperparameters of the data distributions are specified a priori. These initial 

values are used to update the parameters in the recursive scheme shown above 

(Algorithm 1). However, unlike many numerical algorithms that replace the initial 

values with newly obtained values each run, the BOCPD algorithm uses the same 

initial values for the entirety of the process. Thus, correctly specifying these initial 
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values and/or modifying the algorithm to allow for the reconciliation of these values is 

crucial for a pragmatic application of the algorithm. As flu activity is seasonal, and the 

historical flu activity data collected by the CDC are always publicly available, we 

incorporated these data to determine the initial values systematically.  

Direct application of BOCPD to the ARGO data will result in a never-ending process 

where more and more change points are detected as time progresses. As such, the 

number of possible run lengths (i.e., the support of the run length) keeps growing 

although many run length values will have a very small posterior probability in order 

to account for the possibility that no change point has occurred since the beginning, 

resulting in a computationally inefficient algorithm. However, seasonal flu is a 

recurrent infectious disease, and hence, it is improbable that no change point occurs 

within a given season year. Thus, by allowing the BOCPD algorithm to restart each 

year and re-estimate the initial values of the hyperparameters based on data from 

previous flu seasons, it may result in a more efficient and accurate detection process. 

Therefore, we assessed the performance of the following four strategies: (1) without 

restarting the BOCPD algorithm and using an uninformative prior for the data 

distribution; (2) restarting the BOCPD algorithm on week 21 (around May 20th) every 

year with an uninformative prior for the data distribution; (3) without restarting the 

BOCPD algorithm and using historical CDC %ILI data to estimate prior values; (4) 

restarting the BOCPD algorithm and re-estimating prior values using historical 

CDC %ILI data on week 21 every year. For strategies (1) and (2), we set the prior 

values of hyperparameters of prior predictive distribution as 𝜇0 = 0, 𝑘0 = 0.001, 𝛼0 =

1, and 𝛽0 = 0.00001. The choice of these values was arbitrary, representing the 

situation where the prior of hyperparameters were set up without a systematic 

principle. For strategy (3), the hyperparameters of the data distribution were estimated 

only once at the beginning of the study period (i.e., 2007 week 21), and the same initial 

values were used until the end of the study period (i.e., 2015 week 20). For strategy 

(4), we restarted the BOCPD algorithm in week 21 and re-estimated the initial values 

of hyperparameters of the data distribution each time using historical CDC %ILI data 

from all past regular flu seasons available to up each year. For this strategy, different 

initial values of hyperparameters were used to detect change points each year. For 

example, all historical CDC %ILI data up to week 20 of 2007 were used to estimate the 

hyperparameters for the detection process during the 2007 – 2008 season. However, 
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because H1N1 outbreak that occurred in 2009 was not like other flu seasons, the trends 

of flu activity for this season was very different. Therefore, the CDC %ILI data from 

2009 week 21 to 2010 week 20 were not used to estimate hyperparameters for 

subsequent seasons. For example, during the 2010 – 2011 season, only historical 

CDC %ILI data up to week 20 of 2009 were used to estimate the hyperparameters. We 

used the properties of the BOCPD algorithm to estimate the initial values of 

hyperparameters with the historical CDC %ILI data by computing the derivatives of 

the log marginal likelihood of the predictive distribution given 𝑟𝑡 with respect to the 

hyperparameters 𝜽𝑡={𝜇, 𝑘, 𝛼, 𝛽} of the posterior predictive distribution,56 

𝑙𝑜𝑔 𝑃 (𝒁1:𝑇|𝜽𝑡) = 𝑙𝑜𝑔 ∑ 𝑃(𝑍𝑡|𝒁1:𝑡−1, 𝜽𝑡)

𝑇

𝑡=1

, 

where 𝒁1:𝑇 represent all historical CDC ILI data available up to each year (Algorithm 

2). Then the partial derivatives of hyperparameters 
𝜕𝑃(𝒁1:𝑡)

𝜕𝜃
 were plugged into a 

conjugate gradient optimizer to find the optimal values of hyperparameters. These 

values were used as the prior in the BOCPD algorithm.   

Algorithm 2 Estimation of prior values of hyperparameter using property of 

BOCPD algorithm 

1: Initialize: 

𝑃(𝑟1 = 0) = 1; 𝑃(𝑍1, 𝑟1) = 𝑃(𝑍1|𝜽1
(0)

) 

                                     𝜽1
(0)

= 𝜽𝑝𝑟𝑖𝑜𝑟= {𝜇0 = 0, 𝑘0 = 0.1, 𝛼0 = 0.1, 𝛽0 = 0.1} 

                                     
𝜕𝑃(𝑍1,𝑟1)

𝜕𝜽
= 0 

2: Update sufficient statistics: 

                                     𝜽2
(0)

= 𝜽𝑝𝑟𝑖𝑜𝑟; 

                                     𝜽2
(1)

= 𝜽1
(0)

+  𝑈(𝑍1) 

3: for t = 2, 3, … do 

4: Calculate predictive probabilities: 
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                                  𝜋𝑡
(𝑟)

= 𝑃(𝑥𝑡|𝑟𝑡 = 𝑟, 𝒁𝑡−1
𝑟𝑡−1) = 𝑃(𝒁𝑡|𝜽𝑡

(𝑟)
) 

5: Calculate growth probabilities: 

                                 𝑃(𝑟𝑡 = 𝑟𝑡−1 + 1, 𝒁1:𝑡) = 𝑃(𝑟𝑡−1, 𝒁1:𝑡−1) 𝜋𝑡
(𝑟𝑡)

(1 − 𝐻) 

6: Calculate partial derivatives of growth probabilities w.r.t 𝜽: 

𝜕𝑃(𝑟𝑡 = 𝑟𝑡−1 + 1, 𝒁1:𝑡)

𝜕𝜽

= (1 − 𝐻) (
𝜕𝑃(𝑟𝑡−1, 𝒁1:𝑡−1)

𝜕𝜽
𝜋𝑡

(𝑟𝑡)
+ 𝑃(𝑟𝑡−1, 𝒁1:𝑡−1)

𝜕𝜋𝑡
(𝑟𝑡)

𝜕𝜽
) 

7: Calculate change point probabilities: 

                                𝑃(𝑟𝑡 = 0, 𝒁1:𝑡) = ∑ 𝑃(𝑟𝑡−1, 𝒁1:𝑡−1) 𝜋𝑡
(0)

𝐻𝑟𝑡−1
 

8: Calculate partial derivatives of change point probabilities w.r.t 𝜽: 

𝜕𝑃(𝑟𝑡 = 0, 𝒁1:𝑡)

𝜕𝜽
= ∑ 𝐻 (

𝜕𝑃(𝑟𝑡−1, 𝒁1:𝑡−1)

𝜕𝜽
 𝜋𝑡

(0)
+ 𝑃(𝑟𝑡−1, 𝒁1:𝑡−1)

𝜕𝜋𝑡
(0)

𝜕𝜽
)

𝑟𝑡−1

 

9: Calculate marginal probabilities: 

                                𝑃(𝒁1:𝑡) = ∑ 𝑃(𝑟𝑡 = 𝑟, 𝒁1:𝑡)𝑡−1
𝑟=0  

10: Normalize the run length probabilities: 

                               𝑃(𝑟𝑡 = 𝑟|𝒁1:𝑡) =
𝑃(𝑟𝑡=𝑟,𝒁1:𝑡)

𝑃(𝒁1:𝑡)
, 𝑟 =  0, . . . , 𝑡 –  1 

11: Calculate partial derivatives of marginal probabilities w.r.t 𝜽: 

                              
𝜕𝑃(𝒁1:𝑡)

𝜕𝜽
= ∑

𝜕𝑃(𝑟𝑡=𝑟,𝒁1:𝑡)

𝜕𝜽

𝑡−1
𝑟=0  

12: Update sufficient statistics: 

                               𝜽𝑡+1
(0)

= 𝜽𝑝𝑟𝑖𝑜𝑟; 

                               𝜽𝑡+1
(𝑟𝑡+1)

= 𝜽𝑡
(0)

+  𝑈(𝑍𝑡) 

end for 
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3.2.3. Rule of detecting change points 

The BOCPD algorithm calculates the exact posterior distribution for run length at each 

time point, and change points are determined from these distributions. However, there 

is no established convention for identifying a change point when using BOCPD. 

Because the BOCPD algorithm applies a Bayesian framework at each time point to 

obtain the posterior distribution for run length, we used the maximum a posteriori 

(MAP) of the current run length distribution as a basis to formulate our rule of 

detecting change points as shown in Byrd et al57. MAP is defined as the mode of the 

run length posterior distribution. If the MAP of the current run length at time t 

decreases from the MAP of the current run length at time t – 1 by a sufficient amount 

relative to the current run length at time t – 1, then t was marked as the point in time 

when a change point just occurred. That is, there is a change point if the MAP of the 

current run length at time t satisfies, 

𝑀𝐴𝑃(𝑡 − 1) − 𝑀𝐴𝑃 (𝑡)

𝑀𝐴𝑃(𝑡 − 1)
> 𝛼, 

for some predetermined 𝛼 value. Theoretically, if there is no change point at t, the 

MAP should occur at the maximum possible run length, whereas if a change point 

occurs at t the MAP should be at the run length 0. Thus, a sufficiently large difference 

in MAP between two time points would be evidence for a change point. We evaluated 

the performance on correctly detecting by varying the 𝛼 from 0.1 to 0.8 in increments 

of 0.1 to determine the optimal level of 𝛼 that should be used in flu surveillance.  

3.2.4. Rule of identifying informative change points that may signal the onset of 

an imminent flu season 

As the BOCPD algorithm was not created specifically for flu surveillance, another 

barrier in applying the BOCPD algorithm is that there is no systematic way to 

determine which change point should be chosen as the one that may signal the onset of 

a flu season. That is, the BOCPD process may result in many change points, but there 

is not an established way to distinguish which one is more informative in signaling the 

onset of flu season. Thus, we used the following rule to identify this change point.  

During week 21 to week 39 (i.e., during the spring and summer), any change points 

detected were considered to be uninformative, because based on data from previous 
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years, they are almost surely too far from the actual starting date for any regular flu 

season. However, if the ARGO %ILI during this period was at or above a 

predetermined epidemic baseline reported by the CDC for two consecutive weeks, we 

concluded that flu season has already begun outside the conventional time period of flu 

season (e.g., H1N1 outbreak) and stopped identifying looking for any informative 

change points.  

During week 40 to week 20 of the following year (i.e., where conventional flu season 

would most likely would occur), if the ARGO %ILI was below the epidemic baseline, 

and there was a change point detected, this change point was considered as the early 

signal of the onset of the imminent flu season if it satisfied the following,  

Ɗ = 
𝑒𝑝𝑖𝑑𝑒𝑚𝑖𝑐 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝐴𝑅𝐺𝑂 %𝐼𝐿𝐼

𝑒𝑝𝑖𝑑𝑒𝑚𝑖𝑐 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 ≤ p. 

Smaller Ɗ indicates that the distance between ARGO %ILI and the epidemic baseline 

are close. If a change point satisfies this criterion, it means that the flu activity has 

significantly increased toward the epidemic baseline, suggesting that the flu activity 

level will likely cross the epidemic baseline to signal the onset of flu season. Because 

the epidemic baselines are not consistent across years, we used the relative distance 

(rather than absolute difference) to account for the seasonal variation in epidemic 

baseline. Any change points that do not satisfy this criterion were deemed 

uninformative. The choice of p was varied from 0.5 to 0.1 in increments of 0.1 to 

determine the optimal level of p in identifying informative change points. Once an 

informative change point has been identified, any subsequent change points were 

considered uninformative for this season. Therefore, based on our detection rule, only 

one informative change point will be identified for each season. Lastly, if the 

ARGO %ILI was at or above the epidemic baseline for two consecutive weeks before 

any informative change points were identified, then it was concluded that the current 

time was the onset of flu season.  

3.2.5. Evaluation of the performance of the informative change points in correctly 

predicting the onset of flu season  

To evaluate the accuracy of the change points identified, we determined how well they 

predicted the CDC-reported date of flu season onset each year. For each season, let t be 

the time of the informative change point and t * be the CDC-reported date of flu season 



31 
 

onset. We defined the interval C(t), where 

C(t) = {t: 0 < t *- t ≤ 8 weeks}      t * > t, 

to retrospectively determine if an informative change point correctly predicted the 

CDC-reported date of flu season onset. An informative change point was deemed 

correct in predicting the onset of flu season reported by the CDC if t fell within the 

interval defined by C(t). For a given season, if there was no official onset of flu season 

identified by the CDC, an informative change point detected for that season was 

deemed incorrect in predicting the onset of flu season. 

Two benchmarks were used to evaluate the performance of our methods: (1) the 

proportion of change points that correctly predicted the onset of flu season among all 

regular seasons, and (2) the average number of weeks between the change point and 

the CDC-reported date of flu season onset among all correct change points.  

 

3.3. Methods of Aim 2 

Aim 2: To apply natural language processing (NLP) techniques to the chronological 

case notes of adult probationers in Tarrant County, Texas to discover hidden risk 

factors related to probationers absconding from supervision.  

3.3.1. Study population and data source 

Our study population included misdemeanors and felony offenders who were 18 years 

or older at the time of arrest and have been sentenced to community supervision 

(probation) by local courts as well as those that lived in Tarrant County that receive 

community supervision in another county/state from January 1st, 2007 through 

December 31st, 2017. Subjects were excluded from consideration if they had not 

completed their probation. The total probation population in Tarrant County from 2007 

to 2017 was 71,045, consisting of 12% of misdemeanors and felony absconders. Given 

the heavy computational requirement of using the data from the whole probation 

population, we randomly selected 2,000 probationers with 500 for each group (i.e., 

misdemeanors and felony absconders and successfully completers, respectively) 

without replacement as our study sample. Data used were generated from 

chronological case notes and provided by the Tarrant County Community Supervision 
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and Correction Department along with information on probation completion status 

(i.e., complete or abscond). This study has received IRB approval.  

3.3.2. Preprocessing text data 

Before analyzing the data, we converted all text to lowercase, dropped all website and 

addresses, punctuations, numbers, stop words (e.g., “a”, “an” those commonly used 

words, and “absconders”, “absconded”, “absconding” those are highly associated with 

positive labeling) and extra whitespace. Moreover, due to the severity of crimes the 

offenders committed, the number of chronological case notes a probationer would have 

was varied. We combined all notes belong to the same probationer into a single 

document to take this variation into account. In the final data, each line was 

corresponding to a single document for each probationer. Let 𝑦𝑖 be the label of each 

document, i = 1, …, N, where N is the total number of probationers. We labeled each 

document as absconder-related (i.e., 𝑦𝑖 = 1) or completer-related (i.e., 𝑦𝑖 = -1).  

3.3.3. Text classification and features selection using text regression methods 

3.3.3.1. Method 1: Concise Comparative Summarization (CCS) method 

Miratrix and Ackerman developed a new text regression method known as the concise 

comparative summarization (CCS) method that can be used to efficiently obtain a 

concise regression model which is more interpretable than regression models obtained 

from the traditional text regression method (e.g., least absolute shrinkage and selection 

operator (LASSO) method).37 Essentially, the CCS is a machine learning extension to 

the general linear model, 

g(Y|X) = f(X), 

where Y is a binary outcome indicating 1 for absconders and -1 for successful 

completers, X are regressors which are important words, phrases or themes from the 

case notes related to the outcome. The core idea of this method is to regress Y on the 

counts of all words and phrases in the notes.37 

Let 𝜷 = (𝛽1, … , 𝛽𝑝) to be the vector of coefficients for all words and phrases, the CCS 

method selects features which are important words and phrase related to absconded 

status by minimizing a regularized loss function (i.e., a sum of a loss function and a 
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penalty function of a vector of parameters),37 

                                                    𝜷̂ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝛽=(𝛽1,…,𝛽𝑝)

ℒ(𝛽),                                               (1)  

where 

ℒ(𝜷) = ∑ [(1 − 𝑦𝑖 (𝛽0 + ∑ 𝑥𝑖𝑗

𝑝

𝑗=1

𝛽𝑗)) ∨ 0]

2

+ 𝐶 ∑|𝛽𝑗|

𝑝

𝑗=1

𝑁

𝑖=1

, 

 

 

and a ∨ b denoting the maximum of a and b; 𝑥𝑖𝑗 =
𝑐𝑖𝑗

√∑ 𝑐𝑖𝑗
2𝑁

𝑖=1

  is used to rescale word j 

differently based on how many times it appears in each document; N is total number of 

documents; 𝐶 is a regularization parameter and 𝐶 ∈ [0, ∞]; p is total number of 

features.  

The square hinge loss is a loss function very similar to an ordinary least squares 

(OLS)-type function. Following above notation of the regularized loss function, it can 

be written as  

ℎ(𝑦, 𝑦̂) = ∑[𝑚𝑎𝑥(1 − 𝑦𝑖𝑦̂𝑖), 0]2

𝑁

𝑖=0

, 

where 𝑦̂𝑖 = 𝛽̂0 + ∑ 𝑥𝑖𝑗
𝑝
𝑗=1 𝛽̂𝑗, is the predicted value. Figure 4 shows the squared hinge 

loss for 𝑦 = 1 with different predicted value 𝑦̂. When the true 𝑦 = 𝑦̂ = 1, and when 

𝑦̂ > 1 which is an indication that the label is sure that it’s a correct label, the square 

hinge loss would be 0. When 𝑦̂ < 1 which is an indication that the label is not sure that 

it’s the correct label, the square hinge loss would be quadratically increased. The 

square hinge loss has monotonic property which satisfies the assumption of 

optimization algorithm. 

squared hinge loss function L1 norm penalty 
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Figure 4. Relationship between squared hinge loss and the predicted value given target 𝑦 = 1. 

The CCS model applies a regularization technique to avoid the risk of over-fitting of 

the regression model by imposing the L1 norm penalty on the objective function (i.e., 

squared hinge loss) to regularize the vector of coefficients. Over-fitting means that the 

model includes too many parameters making it too complex to fit the data.58 It happens 

when we had more features than the sample size. An overfitted model may fit the 

idiosyncrasies of a sample data from the population well, but it has poor ability to fit a 

new sample or the overall population.58 The coefficients of such models would be 

misleading. The penalty term gives a larger loss for more complex models and a 

smaller loss for simpler models and hence helps to control over-fitting problem.59 

Therefore, the CCS method finds the minimum of a regularized loss function by 

finding the minimum of the sum of a loss function and the L1 norm penalty function. 

The L1 norm penalty is the sum of the absolute values of the vector of parameters. It 

has the property of shrinking some coefficients of parameters toward zero, and thus 

producing a sparse (i.e., concise) regression model with a relatively small number of 

important features (e.g., words and phrases)  that with non-zero coefficients.59,60 Figure 

5 geometrically illustrates why L1 norm penalty would give 0 coefficients which would 

result in a sparse model, assuming a model with two coefficients (𝛽1, 𝛽2). As figure 2 

shows, the blue elliptical plot represents the contours of the loss function (because we 

use a square loss function), and the red rotated square plot represents the contours of 

the L1 norm penalty. The minimum of the regularized loss function is achieved when 

these two contour plots are tangent to each other. Because the L1 norm has sharp 

corners (aligned with the coordinate axes), there is a large probability that these two 
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contours to be tangent at these corners, corresponding to one or more coefficients set to 

0. For example, figure 5 shows that at the corner (i.e., the blue point) where these two 

contours tangent, 𝛽1is set to 0. Therefore, using the L1 norm penalty, we had a sparse 

text regression model which would be relatively easy to interpret and generate useful 

knowledge.  

 

 

Figure 5. Geometric interpretation of using L1 norm penalty. 

Furthermore, in the L1 norm penalty, the magnitude of the regularization parameter 𝐶 

controls the trade-off between minimizing loss and regularization.59,61 As the value of 

𝐶 increases, the effect of regularization will be strengthened. Theoretically, a higher 

value of 𝐶 used in the CCS method will result in a more concise model with fewer 

features.37 As 𝐶 increases, the penalty function will increase. When we want to 

minimize the regularized loss function, the values of coefficients needed to be small. 

Thus, we will shrink more coefficients toward 0 with a larger 𝐶 and the resulting text 

model will be more concise with fewer words selected. Conversely, a lower 𝐶 value 

will produce a model with more features.37 However, if the 𝐶 is too small, for example, 

𝐶 = 0, the penalty term has no effect on controlling the complexity of the model and 

the estimates are obtained by minimizing the squared hinge loss function only, the 

resulting model will be at risk of over-fitting. In the CCS method, over-fitting means 

that the features obtained in the model are detected solely due to random chance in the 

appearance patterns of words not due to the relationship between the label and the 

features.37 To prevent this problem, selecting the appropriate value of 𝐶 is important. 
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We used the permutation approach suggested by Miratrix and Ackerman37 to find an 

appropriate 𝐶 that gives a statistically significant summary (i.e., regression model) 

indicating the presence of systematic differences in the text between the positively and 

negatively labeled document. Specifically, first, we regressed the data with the same 

regularized loss function shown in (1) and found the original 𝐶𝑜𝑏𝑠 that gave an empty 

model which had no selected words/phrases (all coefficients were zero), given the 

original labels. Then we repeatedly permuted the labeling 100 times across the 

documents. At each permutation, we regressed the data with the same regularized loss 

function shown in (1) and found the corresponding 𝐶∗ that gave a model without no 

selected words/phrases with the permuted label. These 𝐶∗s gave the null distribution of  

𝐶 that indicates what 𝐶 should be if there were no systematic differences in the text 

between the positive and negative labels. Finally, we compared the original 𝐶𝑜𝑏𝑠  which 

obtained with the original label to the distribution of 𝐶∗𝑠 to calculate a p-value, 

p-value = 𝑃𝑟{𝐶𝑜𝑏𝑠 ≥ 𝐶∗}. 

If 𝐶𝑜𝑏𝑠 is much larger than the permutation distribution, the corresponding p-value will 

be small which indicates that there is a real connection between the text and the 

labeling. Similarly, if we pick a 𝐶 = 𝐶∗ that is at the 95th percentile of the permutation 

distribution, we are 95% confident that by using this value of 𝐶, the resulting text 

regression is due to the relationship of the outcome and the words/phrases, and not due 

to random chance. This approach provides a useful minimum value (e.g., 𝐶 at the 95th 

percentile of the permutation distribution) for the final 𝐶. Any 𝐶 smaller than this 

bound indicates that the resulting text model could be purely due to conincidence.37 To 

find the 𝐶 value which produced a more interpretable model, we varied the 𝐶 from the 

required minimum value (i.e., 𝐶 at the 95th percentile of the permutation distribution) 

to the 𝐶𝑜𝑏𝑠 which gave an empty model in increments of 25 percentile.  

After specifying the value of 𝐶, we used this 𝐶 in the L1 norm penalty and minimized 

the equation (1) by using the greedy coordinate descent optimization algorithm to 

obtain the regression text model. As with Miratrix and Ackerman,37 in the use of 

greedy coordinate descent, we repeatedly found the feature with the highest gradient 

and then optimized its corresponding 𝛽𝑗 with a line search over the regularized loss 

function (Algorithm 3).  
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Algorithm 3 Greedy Coordinate Descent 

β = ∅; 

features = ∅;                           

while Not Converged do 

β[intercept] = updateFeature(intercept) 

f = findHighestGradient 

features. add(f) 

β [f] = updateFeature(f) 

end while 

 

The inner algorithm in the greedy coordinate descent is finding the feature with the 

largest gradient. To do this, as with Miratrix and Ackerman,37 we dynamically 

generated the features by exploiting the nested structure of any multiword phrase 

having a smaller phrase as a prefix (Algorithm 4). Specifically, we searched all single 

words and estimate the corresponding coefficients to choose the significant single 

words (i.e., those with non-zero coefficients) by minimizing the regularized loss 

function. Then we searched all two-word phrases that begin with the significant single 

words selected from the previous step and chose the significant two-word phrases 

using the same optimization algorithm as above. Then we repeated the step for three-

word phrases and four-word phrases. Using this method, the final design matrix 

included all words and phrases with non-zero coefficients selected to be important. 

Words/phrases not selected through the searching process were not included in the 

design matrix. The matrix was created on the fly to increase computational efficiency.  

Algorithm 4 findHighestGradient 

features = all non-zero features so far. 

bestf = arg 𝑚𝑎𝑥𝑓∈𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠gradient(f) 

u1,…, up1 = all unigrams in dictionary 

Q = queue( ), a queue of all features to check which unigram is important 

for u ∈ u1,..., up1 do 

      if gradient(u) > gradient(bestf) then 

         bestf = u 
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      end if 

      Q.add( u ) 

end for 

while not Q do 

        f = Q.next() 

        if not canPrune(f, bestf) then 

           for c ∈ children(f) do      // e.g., two-word phrases that begin with the   

                                                 significant single words selected from the previous 

step 

                 if gradient(c) > gradient(bestf) then 

                 bestf = c 

                 end if 

                 Q.add(c) 

            end for 

        end if 

end while 

 

The final design matrix consists of frequencies of all selected one-, two-, three- and 

four-word phrases which may be informative to generate knowledge about factors 

associated with probation absconders. 

3.3.3.2. Method 2: LASSO Regression 

As there are other text regression methods, we applied the classic linear LASSO text 

regression to the same case note data used in the CCS method to compare the results 

between two methods. In the LASSO method, we minimized the sum of square errors 

with a bound on the sum of absolute values of the coefficients (i.e., the L1 norm 

penalty), 

                𝛽̂𝐿𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝛽=(𝛽1,…,𝛽𝑝)

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗

𝑝

𝑗=1

𝛽𝑗)

2
𝑁

𝑖=1

+ 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

,             (2)   

where 𝑥𝑖𝑗 =
𝑐𝑖𝑗

√∑ 𝑐𝑖𝑗
2𝑁

𝑖=1

  is used to rescale word j differently based on how many times it 
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appears in each document; N is total number of documents; 𝜆 is a regularization 

parameter and 𝜆 ∈ [0, ∞]; p is total number of features. Coordinate descent 

optimization method was applied to minimize equation (2) to obtain regression 

coefficients. The hyperparameter 𝜆 was estimated using the 5-fold cross-validation 

method. The LASSO method also uses the L1 norm penalty to control the complexity 

of the model. Due to the nature of the L1 norm penalty explained above, this method 

shrinks the coefficients of uninfluential words and phrases to exactly zero, which 

produces a model that only includes the most important words and phrases for 

explaining the labels of the documents. However, the LASSO method cannot create the 

text matrix on the fly. We had to convert the raw text into an m × p document-term 

matrix with the frequency of p all possible words prior to applying the LASSO method, 

where m is the number of documents. Generating full document-term matrices with 

different lengths of phrases is computationally tedious. It is expensive in both time and 

memory and grows increasingly so with the number of possible phrases. Therefore, we 

only considered all possible unigrams (i.e., unique single words) when we applied the 

LASSO method.  

In this study, we compared words and phrases which were associated with probation 

absconding (positive label of documents) and associated with completion (negative 

label of documents) between the CCS and the LASSO methods.   

 

 

 

 

 

 

 

 

 

 



40 
 

Chapter 4 Results 

4.1. Results of Aim 1 

This study retrospectively estimated %ILI and identified change points that correctly 

predicted the actual date of flu season onset reported by the CDC from 2007 week 21 

(i.e., 5/26/2007) to 2015 week 20 (i.e., 5/23/2015). Although already shown to be 

accurate by others,15 figure 6 shows the retrospective estimation of ARGO %ILI 

against the weighted CDC %ILI during the study period. 

 

Figure 6. ARGO %ILI against the weighted CDC %ILI from 2007 – 2015 seasons. 

In our rule of identifying change points that predicted the onset of the imminent flu 

season for each year, we compared the ARGO %ILI to the predetermined epidemic 

baseline reported by the CDC to conclude if the flu season has already begun. Table 1 

shows the epidemic baselines reported by the CDC for each season.  

Table 1. Predetermined epidemic baselines reported by the CDC, 

2007 – 2015 seasons 

Seasons Epidemic baseline reported by the CDC 

2007-2008 2.2% 

2008-2009 2.4% 

2009-2010 2.3% 

2010-2011 2.5% 
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2011-2012 2.4% 

2012-2013 2.2% 

2013-2014 2.0% 

2014-2015 2.0% 

 

To evaluate the performance of a strategy on identifying change points that correctly 

predicted the actual onset of flu season, we used the actual date of flu season onset 

reported by the CDC and the corresponding measurement interval C(t) (Table 2). 

Table 2. Interval C(t) used to identify change points that correctly predicted the 

onset of flu season, 2007 – 2015 seasons 

Seasons Start of C(t) End of C(t)  

(CDC-reported date of onset) 

2007-2008 2007 week 44  2007 week 52 

2008-2009 2008 week 49 2009 week 4 

2009-2010 H1N1 outbreak, flu season begun on 2009 week 34  

2010-2011 2010 week 43 2010 week 51 

2011-2012 No official onset based on onset definition 

2012-2013 2012 week 40 2012 week 48 

2013-2014 2013 week 40 2013 week 48 

2014-2015 2014 week 39 2014 week 47 

 

The following tables show the proportion of change points that correctly predicted the 

actual onset of flu season among previous 7 regular flu seasons (i.e., 2007 – 2008, 

2008 – 2009, 2010 – 2011, 2011 – 2012, 2012 – 2013, 2013 – 2014, 2014 – 2015) 

included in this study and the average number of weeks between the correct change 

point and the actual onset reported by the CDC for four methods: (1) without restarting 

the BOCPD algorithm and using an uninformative prior for the data distribution; (2) 

restarting the BOCPD algorithm on week 21 (around May 20th) every year with an 

uninformative prior for the data distribution; (3) without restarting the BOCPD 

algorithm and using historical CDC %ILI data to estimate prior values; (4) restarting 

the BOCPD algorithm and re-estimating prior values using historical CDC %ILI data 

on week 21 every year. Date corresponding to each informative change point for these 
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four strategies are displayed in Appendix A: supplemental results for Aim 1. In the 

2009 – 2010 season, the ARGO %ILI started to exceed the predetermined epidemic 

baseline reported by the CDC on 2009 week 35 (i.e., 2009/9/5) for two consecutive 

weeks, we concluded that flu season had already begun outside the conventional time 

period of flu season (e.g., H1N1 outbreak) and stopped identifying any change point 

thereafter for this year.  

For the strategy (1), i.e., without restarting the BOCPD algorithm and using 

uninformative prior values, the maximum proportion of correct prediction among all 

regular seasons was 0.43 at p = 0.5 over α levels except for the extreme level of α at 

0.8 (Table 3). The corresponding average week between the correct change points and 

the CDC-reported date of flu season onset was 5.3 weeks (Table 4). The lowest 

proportion of correct prediction was 0.14 at p = 0.2 and p = 0.1 regardless of α levels.  

Table 3. Proportion of correct prediction for strategy (1) without restarting the BOCPD 

algorithm and using uninformative prior values, 2007 – 2015 seasons 

 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

p = 0.5 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.29 

p = 0.4 0.43 0.43 0.43 0.43 0.43 0.43 0.29 0.14 

p = 0.3 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.14 

p = 0.2 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 

p = 0.1 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 

 

Table 4. Average weeks of correct change points prior to the actual onset of flu season for 

strategy (1) without restarting the BOCPD algorithm and using uninformative prior, 2007 – 

2015 seasons 

 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

p = 0.5 5.3 5.3 5.3 5.3 5.3 5.3 4.3 4.3 

p = 0.4 3.7 3.7 3.7 3.7 3.7 3.7 3 3 

p = 0.3 3 3 3 3 3 3 3 3 

p = 0.2 3 3 3 3 3 3 3 3 

p = 0.1 3 3 3 3 3 3 3 3 

 

For the strategy (2), i.e., restarting the BOCPD algorithm every year and using 

uninformative prior values, the maximum proportion of correct prediction was higher 
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than the strategy (1), where the maximum was 0.57 at both p = 0.5 and p = 0.4 across 

all α levels (Table 5). Meanwhile, the maximum average week between the correct 

change points and the CDC-reported date of flu season onset was also earlier than that 

of strategy (1), was 5.8 weeks at p = 0.5 over the α levels except for α at 0.7 and 0.8 

(Table 6). Similar to strategy (1), the lowest proportion of correct was also 0.14 and 

observed at p = 0.2 and p = 0.1 across all α levels.  

Table 5. Proportion of correct prediction for strategy (2) restarting the BOCPD algorithm 

every year with uninformative prior values, 2007 – 2015 seasons 

 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

p = 0.5 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 

p = 0.4 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 

p = 0.3 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 

p = 0.2 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 

p = 0.1 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 

 

Table 6. Average weeks of correct change points prior to the actual onset of flu season for 

strategy (2) restarting the BOCPD algorithm every year with uninformative prior, 2007 – 

2015 seasons 

 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

p = 0.5 5.8 5.8 5.8 5.8 5.8 5.8 5 5 

p = 0.4 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 

p = 0.3 3 3 3 3 3 3 3 3 

p = 0.2 3 3 3 3 3 3 3 3 

p = 0.1 3 3 3 3 3 3 3 3 

 

For both strategies (3) and (4), prior values of hyperparameters were estimated using 

the historical flu activity data collected by the CDC. For strategy (3), i.e., without 

restarting the BOCPD algorithm and using prior values estimated from the historical 

CDC %ILI data, the hyperparameters of the data distribution were estimated only once 

at the beginning of the study period, and the same initial values were used throughout 

the entire study period. And those prior values were, 𝜇0 = 3.116287, 𝑘0 = 0.095282, 𝛼0 

= 0.730475,  𝛽0 = 0.009435. For strategy (4), i.e., restarting the BOCPD algorithm 

every year and using prior values of the hyperparameters estimated from the historical 
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CDC %ILI data up to each season. The prior values of hyperparameters were re-

estimated using all historical CDC %ILI data up to each season (Table 7). Because the 

2009 – 2010 season was not a conventional flu season, %ILI data of this season were 

excluded when we estimated the prior values used in the detection process for the 

subsequent seasons. 

Table 7. Prior values of hyperparameters used in the strategy (4) for each season, 

2007 – 2015 seasons  

Seasons 𝝁𝟎 𝒌𝟎 𝜶𝟎 𝜷𝟎 

2007 – 2008 3.116287 0.095282 0.730475 0.009435 

2008 – 2009 3.056904 0.093371 0.705951 0.009147 

2009 – 2010 (H1N1) 2.937169 0.090925 0.695762 0.008629 

2010 – 2011 2.937169 0.090925 0.695762 0.008629 

2011 – 2012 3.000586 0.099443 0.677238 0.007925 

2012 – 2013 3.028302 0.096231 0.741366 0.00841 

2013 – 2014 3.075587 0.10095 0.708239 0.007428 

2014 – 2015 3.119509 0.096047 0.720333 0.007635 

 

Table 8 presents the proportion of correct prediction for the strategy (3), i.e., without 

restarting the BOCPD algorithm and using prior values estimated from the historical 

CDC %ILI data. For this strategy, because the BOCPD algorithm does not restart every 

year, the prior values of the hyperparameters were estimated only once using all 

historical CDC %ILI data up to the beginning date of the study and used for the 

entirety of the process. This strategy had consistently good predictions of the onset of 

flu season with the proportion of correct being 0.86 at p = 0.4 across all α levels except 

for α = 0.8. The corresponding average number of weeks between the correct change 

point and the actual date of flu season onset was 3.3 weeks (Table 9). The poorest 

prediction was observed at p = 0.1 regardless of α levels. 

Table 8. Proportion of correct prediction for strategy (3) without restarting the BOCPD 

algorithm and using prior values estimated from the historical CDC ILI data, 2007 – 2015 

seasons 

 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

p = 0.5 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.29 
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p = 0.4 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.29 

p = 0.3 0.86 0.86 0.86 0.71 0.71 0.71 0.71 0.29 

p = 0.2 0.71 0.71 0.71 0.57 0.57 0.57 0.57 0.29 

p = 0.1 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 

 

Table 9. Average weeks of correct change points prior to the actual onset of flu season for 

strategy (3) without restarting the BOCPD algorithm and using prior values estimated from 

the historical CDC ILI data, 2007 – 2015 seasons 

 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

p = 0.5 3.2 3.2 3.2 3.2 3.2 3.2 3.2 2.5 

p = 0.4 3.3 3.3 3.3 3.3 3.3 3.3 3.3 2.5 

p = 0.3 2.7 2.7 2.7 3 3 3 3 2.5 

p = 0.2 1.8 1.8 1.8 2 2 2 2 2.5 

p = 0.1 1 1 1 1 1 1 1 1 

 

For strategy (4), i.e., restarting the BOCPD algorithm and re-estimating prior values 

every year using historical CDC %ILI data up to each season, the optimal proportion of 

correct prediction was 0.86 and was observed at p = 0.4 and p = 0.3 over all α levels 

except for α = 0.7 and α = 0.8 (Table 10), while the corresponding average number of 

weeks of the correct change point prior to the actual flu season onset was 3.2 weeks 

(Table 11). The prediction was again worst at p = 0.1 regardless of α levels.  

Table 10. Proportion of correct prediction for strategy (4) restarting the BOCPD algorithm 

every year with prior values estimated from the historical CDC ILI data, 2007 – 2015 

seasons 

 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

p = 0.5 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.14 

p = 0.4 0.86 0.86 0.86 0.86 0.86 0.86 0.71 0.14 

p = 0.3 0.86 0.86 0.86 0.86 0.86 0.86 0.71 0.14 

p = 0.2 0.57 0.57 0.57 0.57 0.57 0.57 0.29 0.14 

p = 0.1 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0 

 

Table 11. Average weeks of correct change points prior to the actual onset of flu season for 

strategy (4) restarting the BOCPD algorithm every year with prior values estimated from 

the historical CDC ILI data, 2007 – 2015 seasons 
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 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

p = 0.5 4.2 4.2 4.2 4.2 4.2 4.2 3.4 4 

p = 0.4 3.2 3.2 3.2 3.2 3.2 3.2 3.4 4 

p = 0.3 3.2 3.2 3.2 3.2 3.2 3.2 3.4 4 

p = 0.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 4 

p = 0.1 1 1 1 1 1 1 1 None 

 

Compared to strategies (1) and (2), the performance on identifying change points that 

correctly predicted the actual onset of flu season were much better using strategies (3) 

and (4). However, the average number of weeks between the correct change points and 

the CDC-reported date of flu season onset of strategies (3) and (4) were later than that 

of strategies (1) and (2). 

 

4.2. Results of Aim 2 

In our sample case notes data, there were 50,933 unique words and 1,391,750 bigrams. 

The number of trigrams would appear more times than bigrams. However, the size of 

the frequency matrix of bigrams was about 20GB which has already exceeded the limit 

of processing long vector of the statistical software R. Therefore, we limited our 

analysis using LASSO method with unigrams only.   

Let 𝐶1 to be the 95th percentile of 100 permutations of 𝐶. In the permutation test, we 

found 𝐶1= 8.8. The 𝐶𝑜𝑏𝑠 that gave an empty model which had no selected phrases (all 

coefficients were zero), given the original labels was 23.9. The 𝐶𝑜𝑏𝑠 was much larger 

than 𝐶1, the corresponding p-value from the permutation distribution of 𝐶 was 

extremely small indicating that there was a statistically significant relationship between 

the text and the labeling and the resulting model (i.e. summary of case notes) was 

informative. To find the 𝐶 value which produced a more interpretable model, we 

varied the 𝐶 from 𝐶1 to 𝐶𝑜𝑏𝑠 in increments of 25 percentile. Tables 12 and 13 display 

words and phrases associated with probation absconding and completion varied by 

different 𝐶 values. We found that in maximum there were 10 and 14 words and phrases 

were associated with probation absconding and successful completion, respectively.  
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Table 12. Words and phrases associated with probation absconding varied by 

different 𝐶 values 

Words and phrases
* 𝑪𝟏= 8.8 𝑪𝟐= 12.5 𝑪𝟑=16.3 𝑪𝟒=20.1 

technical violations     
transfer intake     

technical   NA NA 

due status   NA NA 

fee amount  NA NA NA 

cannabinoids  NA NA NA 

failed pay  NA NA NA 

technicals  NA NA NA 

reported transfer  NA NA NA 

attempts contact  NA NA NA 
NA indicates this word was not selected. 
* Words and phrases were listed from the highest coefficients to the lowest. 

 

Table 13. Words and phrases associated with probation successful completion 

varied by different 𝐶 values 

Words and phrases
* 𝑪𝟏= 8.8 𝑪𝟐= 12.5 𝑪𝟑=16.3 𝑪𝟒=20.1 

paid full     

current    NA 

current fees    NA 

alcohol use   NA NA 

paid forwarded   NA NA 

fees paid full   NA NA 

completed fees  NA NA NA 

compliance  NA NA NA 

everything going well  NA NA NA 

paid fees  NA NA NA 

payment  NA NA NA 

reported date  NA NA NA 

satisfied fees  NA NA NA 

travel  NA NA NA 
NA indicates this word was not selected.  
* Words and phrases were listed from the highest coefficients to the lowest. 

 

Table 14 shows unigrams associated with probation absconding and successful 

completion obtained by using the LASSO method. In the LASSO method, more words 

were found to be associated with probation absconding and completion than using the 

CCS method. There were 120 and 9 words that were associated with probation 
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absconding and successful completion, respectively.   

Table 14. unigrams associated with probation absconding and successful 

completion using LASSO method 

Probation absconding Successful completion 

acticitiy, anemic, anything, apmts, 

appeared, attepted, attn, befo, bogged, 

bonded, booked, boosted, budet, 

cannabinoids, cchr, ccl, certifica, 

certififcate, cetified, colostrophy, 

conference, confs, congratul, coop, cork, 

cossabone, cousin, cpts, criminal, ddc, 

deice, deliverable, develops, diminished, 

disconnected, distributing, doep, 

domain, dosent, drawer, dumps, dwli, 

emphasis, employmt, endless, engineers, 

failed, failure, field, flash, forwarding, 

ftc, fugitive, fumbled, funding, 

galbladder, gethis, gonzalezvazquez, 

grade, grandmother, hardcopy, 

harvesting, hhome, hilltop, hung, 

indegent, index, insructions, intake, 

intravenously, intrest, invpolvement, isp, 

journaling, knight, lateand, lethargy, 

lted, mailed, message, modifications, 

motives, nect, nop, noting, ntb, nurned, 

nwfsu, obser, ocked, origionated, 

painted, pasture, payslip, playi, pleaded, 

proceed, procees, provide, received, 

references, regulations, relocates, 

restitutions, rferrral, rhymes, rolled, rri, 

salace, sihned, soj, stampred, steep, 

stopper, surety, suspicion, 

unsuccessfully, vicious, voc, vop 

acceptances, acknowledge, boating, 

character, clea, coord, enr, fixes, 

jalapeno 
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Our results showed that the text regression model obtained from the CCS method is 

generally more concise (i.e. manageable number of words and phrases were selected) 

compared to the LASSO method which selected more than 100 unigrams. In addition, 

the CCS method spent approximately 15 minutes to complete the searching of 

important phrases including unigrams, bigrams, trigrams, and so forth until there were 

no more eligible phrases. Meanwhile, the LASSO method spent approximately 2 

minutes to complete the analysis. However, this efficiency only limits in searching 

unigrams. When we try to expend the analysis to bigrams, it was computationally 

prohibitive on a single computer. 
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Chapter 5 Discussion 

5.1. Discussion: Influenza Surveillance 

Our first goal of this dissertation was to create an innovative strategy to improve flu 

surveillance by applying the modified BOCPD method to the ARGO real-time 

estimated flu activity data. To find a strategy that has optimal performance on 

predicting the onset of flu season prior to flu season beginning, we evaluated the 

performance by varying the 𝛼 and the p of the following four strategies during the 

2007 – 2015 seasons: (1) without restarting the BOCPD algorithm and using an 

uninformative prior for the data distribution; (2) restarting the BOCPD algorithm every 

year with an uninformative prior for the data distribution; (3) without restarting the 

BOCPD algorithm and using historical CDC %ILI data to estimate prior values; (4) 

restarting the BOCPD algorithm and re-estimating prior values using historical 

CDC %ILI data every year.  

Our uninformative prior was different from a traditional uninformative prior defined in 

Bayesian inference which usually refers to a prior that assigns equal weight to all 

possible parameter values. We assumed that the flu activity data followed a known 

distribution but with unknown parameter values. We used the prior suggested by a 

previous study57 as the uninformative prior, representing the situation where the prior 

was determined without a systematic principle.  

We used the ℳ defined as the follow,  

ℳ =
𝑀𝐴𝑃(𝑡 − 1) − 𝑀𝐴𝑃 (𝑡)

𝑀𝐴𝑃(𝑡 − 1)
> 𝛼, 

which represented the relative decrease in the MAP for the current run length between 

two consecutive time points (i.e., time point t – 1 vs. t) to detect the occurrence of a 

change point. The 𝛼 level indicated that if there was a sufficient amount of relative 

decrease in the MAP for the current run length. If a change point occurs at t, 

theoretically, the MAP should be at the run length 0 which makes the 𝛼 level equals to 

1, suggesting a change point is detected at the same time when it occurred. However, 

the posterior probability at the current run length 0 is estimated based on the same prior 

because the BOCPD algorithm assumes the same prior belief of the new data 

distribution. The prior belief may not always well describe the new data distribution 
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because the change in the data distribution is random. As a result, the mode of the run 

length distribution, i.e., MAP, will never happen at run length 0, and thus the BOCPD 

algorithm cannot detect a change point at the same time when it occurred. Thus, a 

sufficiently large ℳ would be evidence for a change point.  

Furthermore, we used the following, 

Ɗ = 
𝑒𝑝𝑖𝑑𝑒𝑚𝑖𝑐 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝐴𝑅𝐺𝑂 %𝐼𝐿𝐼

𝑒𝑝𝑖𝑑𝑒𝑚𝑖𝑐 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 ≤ p, 

which represents the relative distance between the %ILI of a change point and the 

epidemic baseline to identify an informative change point. The threshold p indicates 

that if there is a sufficiently close relative distance between a change point and the 

epidemic baseline. We assumed that the flu activity tended to increase gradually, and 

the Ɗ would become smaller, eventually leading to the onset of flu season. Thus, 

before the flu season onset, a sufficiently small Ɗ of a change point detected would 

indicate that the flu activity has significantly increased toward the baseline and be the 

evidence for the onset of an imminent flu season.  

For all strategies, our results indicated that the performance tended to become worse at 

those extremely high α levels, e.g., α = 0.8, given any p. It suggests that it should not 

use the extremely large ℳ as the evidence for the occurrence of a change point for the 

flu activity data. For example, if the ℳ is 0.8, it means that the MAP for the run length 

decreases from 5 to 1. However, because flu activity tends to increase gradually, the 

difference between two data distributions before and after a change point may be 

small. Thus, large ℳ are unlikely. Therefore, setting α to an extremely large value will 

restrict the capability of the BOCPD algorithm to identify change points, resulting in 

the poor performance of prediction.  

Moreover, we also found that for all strategies, given any α level, the performance was 

much better at the large p level (e.g., p = 0.4) compared to the small p level (e.g., p = 

0.1). Figure 4 shows that if p = 0.1 and given the epidemic baseline is 2.2%, the %ILI 

of a change point detected should be 1.98% to be identified as informative to signal the 

onset of flu season. However, our results showed that before the flu season onset, the 

flu activity, which was extremely close to the epidemic baseline, e.g., the red dot in 

figure 7, was less likely to be detected as a change point. It may be due to the fact that 

a change point has already occurred before the flu activity becomes extremely close to 
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the epidemic baseline. The flu activity like the red dot in figure 7 may be from the 

same data distribution as a change point (e.g., the red square dot in figure 7) just 

detected. Thus, they cannot be the signal (i.e., change points) of the beginning of the 

new distribution. Therefore, using an extremely small value of p will decrease the 

chance of identifying a change point which is informative to signal the onset of flu 

season.  

 

Figure 7. Illustration of the effect of using extremely small p level on identifying an 

informative change point. 

Furthermore, our results showed that for strategies (1) and (3) both of which without 

restarting the BOCPD algorithm, the maximum proportion of correct prediction was 

0.43 for the strategy (1) which used uninformative prior values, and was 0.86 for the 

strategy (3) which used informative prior. For strategies (2) and (4) both of which 

restarted the BOCPD algorithm every year, the maximum proportion of correct 

prediction was 0.57 and was 0.86 for the strategy (2) that used uninformative prior 

values and the strategy (4) that used informative prior, respectively. At their maximum 

proportion of correct prediction, strategies (1) and (2) incorrectly predicted at least 3 

past regular flu seasons during the study period, while strategies (3) and (4) only 

falsely predicted 1 past regular flu season. The accuracy of predicting the imminent 

onset of flu season is the most critical benchmark to distinguish if a strategy is 

pragmatic for flu surveillance. Incorrectly predicting the onset of flu season may lead 

to insufficient flu season preparedness, resulting in hundreds of thousands of deaths, 

millions of hospitalizations, and hundreds of billions of dollars in direct and indirect 

costs.62 Our findings suggested that strategies that used informative prior values had 

much better predictions of the onset of flu season compared to strategies that used 
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noninformative prior values. Because the BOCPD algorithm uses the same prior for the 

entirety of the process, using uninformative prior may result in inaccurate estimates of 

the predictive probabilities of data, leading to a poor estimate of run length 

distribution. Without the accurate estimate of run length distribution, the performance 

of identifying change points that correctly predicted the onset of flu season will be 

dramatically deteriorated. These findings supported our hypothesis that incorporating 

the historical flu activity data collected by the CDC is an effective method to determine 

the prior, and thus make the strategy of providing early detection of flu season onset 

much more robust.  

Comparing strategies (3) and (4), the overall performance of identifying change points 

that correctly predicted the flu season onset was similar. The maximum proportion of 

correct prediction was 0.86, which was the same for both strategies. Furthermore, at 

their maximum proportion of correct prediction, the average number of weeks between 

the correct change points and the CDC-reported date of flu season onset was almost the 

same for both strategies, 3.3 weeks for strategy (3) and 3.2 weeks for strategy (4).  

For strategies that used informative prior, other than computation efficiency, the main 

difference between restarting and not restarting the detection process is in the support 

of the run length distribution. When the process does not restart, the number of the 

elements in the support is equivalent to the current time point t. Whereas, if the process 

restarts, the number of elements in the support is no more than 52, a 1-year period. Our 

results suggested that reducing the support of the run length distribution may have a 

different effect on strategies that use uninformative verse informative prior. While 

using informative prior, restarting the detection process did not optimize the 

performance i.e., strategies (3) and (4) performed similarly. However, restarting the 

detection process improved the performance of prediction while using an 

uninformative prior. One possible explanation is when using an informative prior, it 

does not matter that the support of the run length distribution keeps growing, because 

the probability mass on the extreme points of the support may be negligible. For 

example, table 15 shows that at t =100, the cumulative probability mass from run 

length 53 to the maximum possible run length 99 is much smaller in the strategy (3) 

compared to that of the strategy (1), and thus it is negligible. Figure 8 shows that if the 

probability mass on the extreme points of the support is negligible, there is a better 

chance that the run length distribution would be similar up to a certain time point (e.g., 
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t = 53) between restarting verse no restarting. Therefore, there was no difference in the 

performance between strategies that restated or did not restart the process while using 

informative prior. However, while using uninformative prior, the probability mass on 

the extreme run lengths was not negligible, and thus the run length distribution would 

be very different up to a certain time point between restarting verse no restarting 

(Figure 9), resulting in different performance between these two strategies.  

Table 15. Cumulative probability mass on the extreme points of support of run length for 

strategy (1) and strategy (3)  

Strategy P (53 ≤ r ≤ 99 | 

t=100) 

P (53 ≤ r ≤ 199 

| t=200) 

P (53 ≤ r ≤ 299 

| t=300) 

P (53 ≤ r ≤ 399 

| t=400) 

(1) 1.169322e-14 7.91916e-21 2.679189e-22 1.275764e-09 

(3) 2.011787e-17 2.628032e-27 2.21735e-28 1.014374e-23 

 

 

Figure 8. Posterior probability mass of the run length distribution for strategies that used 

informative prior: (a) strategy of restarting at t = 53; (b) strategy of not restarting at t =100.  
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Figure 9. Posterior probability mass of the run length distribution for strategies that used 

uninformative prior: (a) strategy of restarting at t = 53; (b) strategy of not restarting at t =100.  

Another possible explanation of why restarting the detection process did not optimize 

the performance may be the prior used for each season were relatively consistent. For 

this strategy, by just adding a few years to update the estimate of prior may not be 

helpful because flu activity pattern may be relatively similar from season to season 

during our study period. If compared to the flu activity pattern during centuries ago, 

the current flu activity pattern would be very different due to changes in climate, types 

of viruses, the effectiveness of vaccination, prevention intervention and so on. It may 

suggest that updating the prior with one additional year and using a cumulative sum of 

years may not dramatically change the estimate compare to the estimate of prior from 

the recent past. Thus, restarting the process and updating the prior did not improve the 

performance. In the future, studies will be needed to test if there is a benefit of 

restarting the process when prior values change more dramatically. However, restarting 

the detection process would make much more sense for flu surveillance because we 

will always have a chance to update the prior. Without restarting the process is not 

practically meaningful because we will keep using the same prior and losing the 
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chance to use more appropriate prior, especially our results have showed the 

importance of using informative prior. The next of the study will try to explore 

different methods to estimate the prior to see if it is beneficial to optimize the 

prediction performance.  

In this study, our optimal strategy of early detection of the imminent flu season onset 

exhibits a high accuracy of prediction. Meanwhile, the early warning signal detected in 

our optimal strategy has an average of 3-week lead time prior to the official onset of 

flu season. This lead time provides a critical period for health authorities to prepare and 

respond to a new flu season. Previous studies indicated that the rapid activation of flu 

interventions, such as reducing social and community contacts and increasing home 

isolation, may significantly prevent flu epidemic development.3,63 Previous studies 

found that if the flu interventions was implemented within 2 weeks after the 

introduction of the first infectious case into the community, it will reduce the peak 

daily illness attack rates from 474 to below 35 cases per 10,000.63 Moreover, our 

detection result is practically meaningful to improve public awareness of the current 

risk of flu to increase vaccination rates because flu vaccines are not fully effective until 

about 2 weeks after the shot.44 Furthermore, previous studies also indicated that a 20% 

stockpile of a pre-prepared vaccine against the source avian virus could significantly 

reduce, even if its efficacy was low.64 Applying our strategy, the health institutes will 

have a valuable lead time to stockpile the vaccine prior to a flu season begins.   

There are several strengths to this study. First, we applied the ARGO model to the 

Google flu-related search queries data to obtain the real-time estimates of flu activity. 

Because the aggregated Google search query data are publicly available on a near real-

time basis, and the ARGO model can accurately estimate flu activity using this data 

source, the resulting flu activity estimates are pragmatic for flu season onset detection 

compared to the gold standard of flu activity reporting. Second, we applied the 

modified BOCPD algorithm to the ARGO real-time estimated flu activity data to 

create a more practical strategy that can provide timely information on flu season 

onset. Previously, several attempts have been made to explore the feasibility of 

applying change point detection methods to provide early detection of a flu 

epidemic.65,66 67 However, most of these applications were practically meaningless for 

flu surveillance because the data sources used were not available in real-time and/or 

the change point detection algorithms used were only be able to identify the change 



57 
 

points retrospectively, leading to the flu epidemic can be detected after the fact. 

Moreover, although many flu forecasting models existed which may potentially 

provide more information about impending epidemics, including the duration of the 

season, the overall burden, and the timing and magnitude of the epidemic peak.68-70 

However, these models were not typically designed for early warning or for detecting 

the onset of flu season. Thus, our study may potentially fill these knowledge gaps. 

Third, we established a systematic rule for detecting change points and a rule of 

identifying informative change points that may signal the onset of an imminent flu 

season. In current, there is no existing studies have ever attempted to tailor the BOCPD 

algorithm for flu surveillance. Our contributions show the feasibility of using the 

BOCPD algorithm to improve flu surveillance. Fourth, the general framework of our 

strategy can be extended to provide early detection of flu season onset at the regional 

level in the U.S. and even other countries. The seasonal flu has become one of the 

global health concerns due to the heavy burden it costs.71 Worldwide, seasonal flu is 

estimated to result in at least 3 million cases of severe illness, and 290,000 respiratory 

deaths annually.71 In addition, the effectiveness of the flu surveillance system in many 

other countries is also being impacted by the same limitations identified in the U.S. flu 

surveillance system.72 Our framework provides a possible solution that can be adapted 

to improve flu surveillance globally.   

There are limitations to this study that should be noted. First, our detection rule may 

not work well for a year like 2011 – 2012 season, which did not have the official onset 

of flu season at the national level based on the definition of flu season onset because 

the %ILI exceed the epidemic baseline for only one week (i.e., 2012 week 11). Ideally, 

no change points that signaled the onset of flu season should be detected for such 

seasons. However, for this season, our strategy was able to detect the single time point 

when the %ILI was above the baseline. Second, we only included 100 Google flu-

related search terms to estimate flu activity. However, on average, the ARGO model 

only selected 14 terms out of 100 each week to estimate flu activity, suggesting that the 

most frequently used flu-related search terms may have included.15 

In conclusion, this study provided evidence to support the feasibility of applying our 

modified BOCPD algorithm to the internet-based data to improve the surveillance of 

emerging seasonal flu in the U.S. We expanded the application of the BOCPD 

algorithms to flu surveillance. We created a flu surveillance strategy that combines 
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search engine query data with the online change point detection algorithm has the 

power to predict the onset of the imminent flu season with valuable lead time. Such a 

strategy may provide valuable support for public health officials to take appropriate 

actions to prevent and control the spread of the seasonal flu epidemics. In the future, 

further improvements in our strategy may come from utilizing multiple internet-based 

data sources and extending our framework to the regional level.   

 

5.2. Discussion: Probationers Absconding Surveillance 

Our second goal of this dissertation was to explore words and phrases associated with 

probation absconders by applying natural language processing (NLP) techniques to 

official chronologic case notes written by probation officers. To find a practically 

useful strategy to explore the case notes data, we compared two text regression 

methods and applied them to the text data generated from the case notes of a random 

sample of adult misdemeanors and felony offenders who have received probation in 

Tarrant County, Texas. One method was the concise comparative summarization 

(CCS) method, and the other was the least absolute shrinkage and selection operator 

(LASSO) text regression. The LASSO method was chosen for comparison because it is 

one of the more commonly used text regression methods. In contrast, the CCS methods 

is relatively new, and its use and practicality are still being explored.   

Our results indicated that the CCS method was much more practically useful to 

generate knowledge regarding probation absconders and completers compared to the 

LASSO method. The CCS method was designed to dynamically select words and 

phrases that are unimportant by exploiting the nested structure of any multiword phrase 

having a smaller phrase as a prefix. For example, if a unigram (single word) was found 

to be unimportant, all two-word phrases that begin with this unigram (i.e., its children) 

would not be considered. This method would result in an early stop of searching for 

texts that were not important to achieve a greater computational advantage. 

Meanwhile, the LASSO method requires that the full document-term matrix, i.e., 

matrix with frequency of all words and/or phrases being considered for the analysis, to 

be created before deeming words and phrases as important or unimportant. Because 

generating the full document-term matrix with different lengths of phrases is 
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computationally tedious and the size of the resulting matrix increases exponentially, it 

makes the LASSO method rather impractical without considerable computational 

power. Thus, the computational efficiency of the LASSO is usually limited to 

unigrams or at best, very short phrases. For example, in our study, if we extended the 

application of the LASSO method to all bigrams (two-word phrases), both time and 

required computer memory would dramatically increase because the full document-

term matrix would be over 20 gigabytes (GB). As such, we were not able to consider 

bigrams or above using the LASSO method.  

Moreover, the final text regression model generated from the CCS method was more 

concise and easier to be interpreted than the LASSO method. The number of important 

words and phrases selected from the CCS method was 24 at maximum whereas the 

LASSO method selected more than 100 single words. As the model obtained from the 

CCS method contains not only single words but also multiword phrases, it provides 

richer information to summarize information that are associated with probation 

absconder and successful completer. However, due to the computational limitations of 

using the LASSO method, we were only able to capture single words, making it very 

difficult to generate useful knowledge. Because every single word has numerous 

possibilities to make up different meanings, it is hard to understand what it actually 

implies in the case notes, e.g., “screened” can be followed with “positive” or 

“negative” which would indicate two completely different scenarios. Therefore, 

compared to the LASSO method, our results suggested that the application of the CCS 

method is a much more practical strategy that can be used to discover commonalities in 

the case notes of probation absconders and completers. 

The CCS method selects important words and phrases related to absconding status by 

minimizing a regularized loss function (i.e., a sum of a loss function and a penalty 

function of a vector of parameters),37 

                                                    𝜷̂ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝛽=(𝛽1,…,𝛽𝑝)

ℒ(𝛽),                                                

where 

ℒ(𝜷) = ∑ [(1 − 𝑦𝑖 (𝛽0 + ∑ 𝑥𝑖𝑗

𝑝

𝑗=1

𝛽𝑗)) ∨ 0]

2

+ 𝐶 ∑|𝛽𝑗|

𝑝

𝑗=1

𝑁

𝑖=1

, 

squared hinge loss function L1 norm penalty 
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 𝜷 = (𝛽1, … , 𝛽𝑝) is  the vector of coefficients for all words and phrases, and a ∨ b 

denoting the maximum of a and b; 𝑥𝑖𝑗 =
𝑐𝑖𝑗

√∑ 𝑐𝑖𝑗
2𝑁

𝑖=1

  is used to rescale word j differently 

based on how many times it appears in each document; N is total number of 

documents; 𝐶 is a regularization parameter and 𝐶 ∈ [0, ∞]; p is total number of all 

words and phrases.  

The choice of the regularization parameter 𝐶 plays an important role in finding a 

statistically significant text model. In the CCS method, a statistically significant text 

model means that the words and phrase selected are due to the relationship of the label 

and the text not due to the random chance.37 Therefore, in this study we varied the 𝐶 

from 𝐶1 to the 𝐶𝑜𝑏𝑠 in increments of 25 percentiles, where 𝐶1 = 8.8, 𝐶2= 12.5, 

𝐶3=16.3, and 𝐶4=20.1, to explore different text models and its corresponding results. 

Here 𝐶𝑜𝑏𝑠 is the upper bound of 𝐶 that gave an empty text regression model with no 

selected phrases (all coefficients were zero), given the original labels. 𝐶1 was the 

minimum bound of 𝐶 which indicated that we are 95% confident that the resulting non-

empty text regression was due to the relationship of the outcome and the text, and not 

due to random chance.  

When 𝐶 was equal to the minimum bound 𝐶1 = 8.8, the text model obtained from the 

CCS method provided the longest list of words and phrases compared to the other text 

models with higher 𝐶. It contained 10 and 14 words associated with probation 

absconders and completers, respectively. However, as 𝐶 increases, the resulting text 

model will become shorter with fewer words to be selected. For example, when 𝐶 =

𝐶4=20.1, there were only 2 and 1 phrases that were associated with absconder and 

completer, respectively. For an exploratory study such as this, using a higher value of 

𝐶, we may lose information in terms of commonalities in contents of case notes that 

may be critical to generate knowledge about probationers who tended to be absconding 

and successfully complete. Moreover, because there is no study that has analyzed the 

case notes data to explore words/phrases associated with probation outcomes, we do 

not have much guidance in ruling out words that are practically meaningless. 

Therefore, to provide a more conservative interpretation, we chose the CCS model 

using the smallest 𝐶 = 𝐶1 = 8.8 which produced the longest list of words/phrases. 

In most text analysis, there is somewhat of an art form in interpreting the results. We 
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compared the meanings of words and phrases found in this model between probation 

absconders and completers based on subjective, yet educated, judgement (Table 16), 

because there is no established standard way to interpret key words/phrases found in 

the case notes.  

In probation absconders, words/phrases of “technical violations”, “technical”, 

“technicals” were found to be absconder-related. It suggested that probationers who 

had violated any probation conditions during probation were more likely to be 

absconding from supervision. This finding was consistent with a previous study which 

also found that more than half of probation absconders had violation experiences 

during their supervision.23 Moreover, we also found words/phrases which may indicate 

what specific violations that the probation absconders tended to commit during their 

probation period. For example, “cannabinoids” suggested that absconders were more 

likely to violate substance use. This finding indicates that it is critical to develop and 

provide effective substance abuse/use treatment programs along with the probation 

supervision to probationers to correct such risky behaviors, and thus preventing 

probation absconding behavior. “failed pay”, “due status”, “fee amount” suggested that 

absconders tended to fail to pay the court-ordered fee by the due day. These findings 

suggested that probationers who had not stable economic status to pay court-ordered 

fees and fines were more likely to abscond. One possible explanation was the 

employment status. There was an existing study indicated that an unemployed 

probationer was more likely to abscond.22 This may due to the fact that probationers 

who were unemployed were more likely to have financial issues, and thus more likely 

to fail to pay the fee as scheduled. Because they were afraid of getting additional 

punishment from court due to failure to pay, they chose to flee. To address this issue, 

supervision officers may need to encourage probationers to openly discuss their 

financial situation so that the officers can assist them to meet financial obligations, 

such as providing budgeting classes and special payment plans and asking the court to 

reduce or waive fees which may help reduce the incidences of absconding. Moreover, 

we also found “attempts contact” to be absconder-related. If a probationer failed to 

report as scheduled, the supervision officers would attempt to make contact with the 

probationer immediately by making phone calls, sending warning letters, and doing 

home visits. This finding suggested that the experience of failure to report may be an 

indicator of probation absconding. Therefore, officers may need to pay more attention 
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to those who had experiences of failure to report by increasing face-to-face meetings or 

phone call contacts to prevent absconding. Furthermore, “transfer intake” and 

“reported transfer” were found to be associated with probation absconders. Transfer 

cases refer to the probationers who transfer their probation supervisions from the 

original counties or states where they were sentenced to probation to other places. The 

reasons for a probationer requested for transfer would be varied, such as change 

employers and residency. It is very interesting to find that probationers who were 

transfer cases tended more likely to be absconders. It may be due to the fact that those 

transfer probations lied to the officers that they moved to other places and needed to 

transfer their probation. However, in fact, they did not move to the new county where 

they were transferred to, and just took chances to run away. Further studies are needed 

to investigate what reasons cause those transfer cases to be absconding.  

In probation completers, we found “compliance” as one of the keywords. It was 

contrary to the keyword of “technical violations” found in the absconders. It supports 

our finding that absconders were more likely to fail to comply with the probation 

conditions compare to completers. Moreover, we also found  “paid full”, “current”, 

“current fees”, “paid forwarded”, “fees paid full”, “completed fees”, “paid fees”, 

“payment”, “reported date” and “satisfied fees” as keywords which suggested that 

completers tended to have a stable income to pay the court-order fees and thus they 

were more likely to complete their supervision. This finding supported our conclusion 

that probationers who failed to pay the fee were more likely to be absconding. It 

indicates that the financial status is a critical factor to affect the success of probation. 

Moreover, “everything going well”, and “travel” were found as indicators of probation 

completion. It suggested that completers may have more positive attitudes and 

willingness to share their personal lives and feelings. This finding may contribute to 

informing the probation department that developing programs that promote the 

psychological health of probations is critical to help them to build a healthy and 

positive attitude towards life. Furthermore, it was very interesting that we found 

“alcohol use” as the key phrase associated with completers. It may indicate that 

completers tended to be more honest to report to the officers about their alcohol use 

behavior during probation. This may be another way to reflect the fact that completers 

may trust probation officers more to tell their stories compared to absconders.  
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Table 16. Comparison of words/phrases found in the CCS method with 𝐶 = 𝐶1 = 8.8 

between absconders and completers 

Probation absconders Probation completers 

technical violations, 

technical, 

technical, 

cannabinoids, 

failed pay,  

due status, 

fee amount, 

attempts contact, 

transfer intake, 

reported transfer, 

 

paid full, 

current, 

current fees, 

paid forwarded, 

fees paid full, 

completed fees, 

compliance, 

payment, 

paid fees, 

satisfied fees, 

everything going well, 

travel, 

reported date, 

alcohol use 

 

In this study, our interpretation of the CCS model primarily focused on the sign of the 

coefficient instead of the magnitude. Conventionally, a model-based interpretation for 

the coefficients 𝛽𝑗 in the regression model would be that for a 1 unit change in the 

count of feature 𝑗, the predictive outcome would change by 𝛽𝑗 holding other words and 

phrases constant. However, applying this model-based interpretation to a text 

regression model would be problematic and misleading. Because the case notes data 

has a free-text nature, the frequency of words/phrases used in each document would be 

less likely to be constant across the sample. Therefore, the interpretation of the 

magnitude of coefficient would be meaningless. Moreover, there is no previous 

evidence to suggest that what words/phrases would be important to predict the 

outcomes. Although words/phrases found in the CCS model may have small 

magnitudes of coefficients, it may not necessarily indicate that such words/phrases are 

less important; it may be due to the fact that such words/phrases were less likely to be 

used in the case notes, or vice versa. Therefore, in our case, interpretation of the sign 

instead of the magnitude of coefficients would be more useful. Our interpretation 

would provide general knowledge to probation officers about what words and phrases 

were “red flags”. 

However, Miratrix and Ackerman indicated that blindly interpreting the sign of the 

coefficients could be problematic due to the potential multicollinearity issue in the 
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data. For example, a negative coefficient for a word/phrase would offset the positive 

coefficient for its highly correlated alternate word/phrase, when in fact both 

words/phrases may have a positive association with the outcome.37 In this case, 

interpreting the negative sign would be inappropriate. We applied the proposed 

solution suggested by Miratrix and Ackerman37 to verify those words/phrases we found 

were not affected by the multicollinearity issue by considering only the set of positive 

coefficient. Table 17 showed that a majority of positive words/phrases found in the 

CCS model after forcing negative coefficients to not exist were the same as those 

found in the uncontrolled CCS model (allowing negative words/phrases). It implies 

that those words/phrases we found would be the truly distinct language used in the 

documents. 

Table 17. The CCS models only considering positive words and phrases varied by 

different 𝐶 values. 

Words and phrases 𝑪𝟏= 8.5 𝑪𝟐= 12.4 𝑪𝟑=16.2 𝑪𝟒=20.1 

transfer intake     

technical violations     

due status   NA NA 

reported transfer   NA NA 

attempts contact  NA NA NA 

fee amount  NA NA NA 

technicals  NA NA NA 

arrears supervision fees amount  NA NA NA 

failure pay failure  NA NA NA 
NA indicates this word was not selected. 
* Words and phrases were listed from the highest coefficients to the lowest. 

 

Furthermore, in this study, we did not compare the accuracy of prediction between the 

CCS and the LASSO methods. The accuracy of prediction measures how well a 

predictive model predicts future outcomes. The goal of a predictive model is to use the 

associations between predictors and the outcome to generate good predictions for 

future outcomes. However, the CCS method was developed to summarize the 

important words and phrases were related to the outcome, not for prediction. 

Therefore, it is not surprising that the predictive accuracy is low. Miratrix and 

Ackerman37 have shown that even with substantially large data to estimate the CCS 

model, the predictive accuracy was only about 20%. The CCS model is more like 

explanatory modeling that focuses on identifying variables (e.g., words/phrases) that 

have statistically significant relationships with an outcome (e.g., probation 
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absconding). This type of model is helpful to find out the explanations of why 

absconding behavior happen and inform probation officers what possible actions 

should be carried out to prevent absconding. 

In addition to the above, there are several other limitations to this study. First, we did 

not take the timeline of each case note into account. The timeline could be an 

important factor to tell us how probationers’ behaviors change over time. However, to 

date, there is no exiting text regression method that is developed for longitudinal 

application. In the future, studies are needed to extend the NLP techniques to the 

longitudinal text data. Second, our data was only limited to one county in the U.S. Our 

results may not be generalizable to other counties or states. However, our study 

provides a strategy that probation officers from all over the country can adopt to utilize 

the case notes as data to conduct research of the probation population systematically.  

Despite some of the limitations, this study has the following strengths. First, this is the 

first study in Texas and maybe nationwide, that applied NLP techniques to text data 

generated from chronological case notes to explore contents associated with probation 

absconders and completers. To our knowledge, no study has utilized this type of data 

from the probation system with the application of NLP techniques to investigate 

factors are associated with probation outcomes. Thus, our study discovered 

commonalities in the case notes of absconders and completers to fill these knowledge 

gaps. Second, we applied an innovative text regression method, the CCS, which can 

analyze large-scale text data with extremely high computational efficiency. Previously, 

several attempts have been made to develop an efficient text regression method. 

However, most of them have expensive computation cost and are not flexible to 

analyze multiword phrases, such as the LASSO text method we used in this study.73 

Third, many of our findings were consistent with previous studies that utilized 

numerical data. In addition, our results provided critical hints to officers about 

previously untapped factors that were potentially linked to absconders and completers, 

such as transfer status. Thus, our study provides a possible strategy for the probation 

department to use case notes data systematically. 

In conclusion, this study provided evidence to support the feasibility of applying the 

CCS method as a strategy for exploring risk factors related to probation outcomes. 

Currently, the case notes are kept only for record-keeping purposes. Developing a 
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strategy of utilizing the case notes systematically is critically meaningful to contribute 

to a new surveillance system to prevent the incidence of probation absconding. The 

commonalities found in the case notes of absconders and completers play an important 

role in understanding what makes the probations successful or failing, and thus inform 

priorities to improve supervision practice to achieve the goals of reintegration and 

public safety. In the future, we may focus on exploring contents associated with 

absconders and completers stratified by felony and misdemeanor offenders.  
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Appendix A: Supplemental results for Aim 1 

Table S1a. Results for strategy (1) without restarting the BOCPD algorithm and using uninformative prior by alpha level, p = 0.5, 2007 – 2015 

seasons 

 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

 

 

Informative 

change 

point 

identified 

in each 

season 

2007 - 2008 

wk 43 

(incorrect) 

wk 43 

(incorrect) 

wk 43 

(incorrect) 

wk 43 

(incorrect) 

wk 43 

(incorrect) 

wk 43 

(incorrect) 

wk 43 

(incorrect) 

wk 43 

(incorrect) 

2008 - 2009 

wk 51 

(correct) 

wk 51 

(correct) 

wk 51 

(correct) 

wk 51 

(correct) 

wk 51 

(correct) 

wk 51 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

2010 - 2011 

wk 41 

(incorrect) 

wk 41 

(incorrect) 

wk 41 

(incorrect) 

wk 41 

(incorrect) 

wk 41 

(incorrect) 

wk 41 

(incorrect) 

wk 41 

(incorrect) 

wk 41 

(incorrect) 

2011 - 2012 

wk 42 

(incorrect) 

wk 42 

(incorrect) 

wk 42 

(incorrect) 

wk 42 

(incorrect) 

wk 42 

(incorrect) 

wk 42 

(incorrect) 

wk 42 

(incorrect) 

wk 42 

(incorrect) 

2012 - 2013 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

2013 - 2014 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

None 

2014 - 2015 None None None None None None None None 
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Proportion of correct 

prediction 

0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.29 

          

 

Distance 

between 

correct 

change 

points and 

the official 

date of 

onset 

(weeks) 

2007 - 2008 None None None None None None None None 

2008 - 2009 6 6 6 6 6 6 3 3 

2010 - 2011 None None None None None None None None 

2011 - 2012 None None None None None None None None 

2012 - 2013 7 7 7 7 7 7 7 7 

2013 - 2014 3 3 3 3 3 3 3 None 

2014 - 2015 None None None None None None None None 

          

Average of distance (weeks) 5.3 5.3 5.3 5.3 5.3 5.3 4.3 4.3 

 

 

Table S1b. Results for strategy (1) without restarting the BOCPD algorithm and using uninformative prior by alpha level, p = 0.4, 2007 – 2015 

seasons 

 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 
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Informative 

change 

point 

identified 

in each 

season 

2007 - 2008 None None None None None None None None 

2008 - 2009 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

2010 - 2011 None None None None None None None None 

2011 - 2012 

wk 46 

(incorrect) 

wk 46 

(incorrect) 

wk 46 

(incorrect) 

wk 46 

(incorrect) 

wk 46 

(incorrect) 

wk 46 

(incorrect) 

wk 46 

(incorrect) 

wk 46 

(incorrect) 

2012 - 2013 

wk 43 

(correct) 

wk 43 

(correct) 

wk 43 

(correct) 

wk 43 

(correct) 

wk 43 

(correct) 

wk 43 

(correct) 

None None 

2013 - 2014 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

None 

2014 - 2015 None None None None None None None None 

          

Proportion of correct 

prediction 

0.43 0.43 0.43 0.43 0.43 0.43 0.29 0.14 

          

 

Distance 

between 

correct 

change 

2007 - 2008 None None None None None None None None 

2008 - 2009 3 3 3 3 3 3 3 3 

2010 - 2011 None None None None None None None None 

2011 - 2012 None None None None None None None None 
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points and 

the official 

date of 

onset 

(weeks) 

2012 - 2013 5 5 5 5 5 5 None None 

2013 - 2014 3 3 3 3 3 3 3 None 

2014 - 2015 
None None None None None None None None 

          

Average of distance (weeks) 3.7 3.7 3.7 3.7 3.7 3.7 3 3 

 

 

Table S1c. Results for strategy (1) without restarting the BOCPD algorithm and using uninformative prior by alpha level, p = 0.3, 2007 – 2015 

seasons 

 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

 

 

Informative 

change 

point 

identified 

in each 

season 

2007 - 2008 None None None None None None None None 

2008 - 2009 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

2010 - 2011 None None None None None None None None 

2011 - 2012 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

2012 - 2013 None None None None None None None None 
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2013 - 2014 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

None 

2014 - 2015 None None None None None None None None 

          

Proportion of correct 

prediction 

0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.14 

          

 

Distance 

between 

correct 

change 

points and 

the official 

date of 

onset 

(weeks) 

2007 - 2008 None None None None None None None None 

2008 - 2009 3 3 3 3 3 3 3 3 

2010 - 2011 None None None None None None None None 

2011 - 2012 None None None None None None None None 

2012 - 2013 None None None None None None None None 

2013 - 2014 3 3 3 3 3 3 3 None 

2014 - 2015 None None None None None None None None 

          

Average of distance (weeks) 3 3 3 3 3 3 3 3 
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Table S1d. Results for strategy (1) without restarting the BOCPD algorithm and using uninformative prior by alpha level, p = 0.2, 2007 – 2015 

seasons 

 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

 

 

Informative 

change 

point 

identified 

in each 

season 

2007 - 2008 None None None None None None None None 

2008 - 2009 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

2010 - 2011 None None None None None None None None 

2011 - 2012 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

2012 - 2013 None None None None None None None None 

2013 - 2014 None None None None None None None None 

2014 - 2015 None None None None None None None None 

          

Proportion of correct 

prediction 

0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 

          

 

Distance 

2007 - 2008 None None None None None None None None 

2008 - 2009 3 3 3 3 3 3 3 3 
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between 

correct 

change 

points and 

the official 

date of 

onset 

(weeks) 

2010 - 2011 None None None None None None None None 

2011 - 2012 None None None None None None None None 

2012 - 2013 None None None None None None None None 

2013 - 2014 None None None None None None None None 

2014 - 2015 
None None None None None None None None 

          

Average of distance (weeks) 3 3 3 3 3 3 3 3 

 

 

Table S1e. Results for strategy (1) without restarting the BOCPD algorithm and using uninformative prior by alpha level, p = 0.1, 2007 – 2015 

seasons 

 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

 

 

Informative 

change 

point 

identified 

2007 - 2008 None None None None None None None None 

2008 - 2009 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

2010 - 2011 None None None None None None None None 

2011 - 2012 wk 10 wk 10 wk 10 wk 10 wk 10 wk 10 wk 10 None 
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in each 

season 

(incorrect) (incorrect) (incorrect) (incorrect) (incorrect) (incorrect) (incorrect) 

2012 - 2013 None None None None None None None None 

2013 - 2014 None None None None None None None None 

2014 - 2015 None None None None None None None None 

   

Proportion of correct 

prediction 

0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 

          

 

Distance 

between 

correct 

change 

points and 

the official 

date of 

onset 

(weeks) 

2007 - 2008 None None None None None None None None 

2008 - 2009 3 3 3 3 3 3 3 3 

2010 - 2011 None None None None None None None None 

2011 - 2012 None None None None None None None None 

2012 - 2013 None None None None None None None None 

2013 - 2014 None None None None None None None None 

2014 - 2015 None None None None None None None None 

          

Average of distance 

(weeks) 

3 3 3 3 3 3 3 3 
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Table S2a. Results for strategy (2) restarting the BOCPD algorithm every year and using uninformative prior for the data distribution, p = 0.5, 

2007 – 2015 seasons 

  α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

 

 

Informative 

change 

point 

identified 

in each 

season 

2007 - 

2008 

wk 43 

(incorrect) 

wk 43 

(incorrect) 

wk 43 

(incorrect) 

wk 43 

(incorrect) 

wk 43 

(incorrect) 

wk 43 

(incorrect) 

wk 43 

(incorrect) 

wk 43 

(incorrect) 

2008 - 

2009 

wk 51 

(correct) 

wk 51 

(correct) 

wk 51 

(correct) 

wk 51 

(correct) 

wk 51 

(correct) 

wk 51 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

2010 - 

2011 

None None None None None None None None 

2011 - 

2012 

wk 42 

(incorrect) 

wk 42 

(incorrect) 

wk 42 

(incorrect) 

wk 42 

(incorrect) 

wk 42 

(incorrect) 

wk 42 

(incorrect) 

wk 42 

(incorrect) 

wk 42 

(incorrect) 

2012 - 

2013 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

2013 - 

2014 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

2014 - 

2015 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 
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Proportion of correct 

prediction 

0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 

          

 

Distance 

between 

correct 

change 

points and 

the official 

date of 

onset 

(weeks) 

2007 -

2008 

None None None None None None None None 

2008-

2009 

6 6 6 6 6 6 3 3 

2010-

2011 

None None None None None None None None 

2011-

2012 

None None None None None None None None 

2012-

2013 

7 7 7 7 7 7 7 7 

2013-

2014 

7 7 7 7 7 7 7 7 

2014-

2015 

3 3 3 3 3 3 3 3 

          

Average of distance 

(weeks) 

5.8 5.8 5.8 5.8 5.8 5.8 5 5 
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Table S2b. Results for strategy (2) restarting the BOCPD algorithm every year and using uninformative prior for the data distribution, p = 0.4, 

2007 – 2015 seasons 

  α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

 

 

Informative 

change 

point 

identified 

in each 

season 

2007 - 

2008 

None None None None None None None None 

2008 - 

2009 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

2010 - 

2011 

None None None None None None None None 

2011 - 

2012 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

2012 - 

2013 

wk 43 

(correct) 

wk 43 

(correct) 

wk 43 

(correct) 

wk 43 

(correct) 

wk 43 

(correct) 

wk 43 

(correct) 

wk 43 

(correct) 

wk 43 

(correct) 

2013 - 

2014 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

wk 41 

(correct) 

2014 - 

2015 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 
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Proportion of correct 

prediction 

0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 

          

 

Distance 

between 

correct 

change 

points and 

the official 

date of 

onset 

(weeks) 

2007 -

2008 

None None None None None None None None 

2008-

2009 

3 3 3 3 3 3 3 3 

2010-

2011 

None None None None None None None None 

2011-

2012 

None None None None None None None None 

2012-

2013 

5 5 5 5 5 5 5 5 

2013-

2014 

7 7 7 7 7 7 7 7 

2014-

2015 

3 3 3 3 3 3 3 3 

          

Average of distance 

(weeks) 

4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 
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Table S2c. Results for strategy (2) restarting the BOCPD algorithm every year and using uninformative prior for the data distribution, p = 0.3, 

2007 – 2015 seasons 

  α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

 

 

Informative 

change 

point 

identified 

in each 

season 

2007 - 

2008 

None None None None None None None None 

2008 - 

2009 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

2010 - 

2011 

None None None None None None None None 

2011 - 

2012 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

2012 - 

2013 

None None None None None None None None 

2013 - 

2014 

None None None None None None None None 

2014 - 

2015 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 
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Proportion of correct 

prediction 

0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 

          

 

Distance 

between 

correct 

change 

points and 

the official 

date of 

onset 

(weeks) 

2007 -

2008 

None None None None None None None None 

2008-

2009 

3 3 3 3 3 3 3 3 

2010-

2011 

None None None None None None None None 

2011-

2012 

None None None None None None None None 

2012-

2013 

None None None None None None None None 

2013-

2014 

None None None None None None None None 

2014-

2015 

3 3 3 3 3 3 3 3 

          

Average of distance 

(weeks) 

3 3 3 3 3 3 3 3 
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Table S2d. Results for strategy (2) restarting the BOCPD algorithm every year and using uninformative prior for the data distribution, p = 0.2, 

2007 – 2015 seasons 

  α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

 

 

Informative 

change 

point 

identified 

in each 

season 

2007 - 

2008 

None None None None None None None None 

2008 - 

2009 

wk 1 

(correct) 

wk 1 

(correct) 

2009 week 1 2009 week 1 2009 week 

1 

2009 week 

1 

2009 week 

1 

2009 

week 1 

2010 - 

2011 

None None None None None None None None 

2011 - 

2012 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

wk 51 

(incorrect) 

2012 - 

2013 

None None None None None None None None 

2013 - 

2014 

None None None None None None None None 

2014 - 

2015 

None None None None None None None None 

          

Proportion of correct 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
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prediction 

          

 

Distance 

between 

correct 

change 

points and 

the official 

date of 

onset 

(weeks) 

2007 -

2008 

None None None None None None None None 

2008-

2009 

3 3 3 3 3 3 3 3 

2010-

2011 

None None None None None None None None 

2011-

2012 

None None None None None None None None 

2012-

2013 

None None None None None None None None 

2013-

2014 

None None None None None None None None 

2014-

2015 

None None None None None None None None 

          

Average of distance 

(weeks) 

3 3 3 3 3 3 3 3 
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Table S2e. Results for strategy (2) restarting the BOCPD algorithm every year and using uninformative prior for the data distribution, p = 0.1, 

2007 – 2015 seasons 

  α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

 

 

Informative 

change 

point 

identified 

in each 

season 

2007 - 

2008 

None None None None None None None None 

2008 - 

2009 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

wk 1 

(correct) 

2010 - 

2011 

None None None None None None None None 

2011 - 

2012 

 wk 10 

(incorrect) 

 wk 10 

(incorrect) 

 wk 10 

(incorrect) 

 wk 10 

(incorrect) 

 wk 10 

(incorrect) 

 wk 10 

(incorrect) 

 wk 10 

(incorrect) 

None 

2012 - 

2013 

None None None None None None None None 

2013 - 

2014 

None None None None None None None None 

2014 - 

2015 

None None None None None None None None 

          

Proportion of correct 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 



84 
 

prediction 

          

 

Distance 

between 

correct 

change 

points and 

the official 

date of 

onset 

(weeks) 

2007 -

2008 

None None None None None None None None 

2008-

2009 

3 3 3 3 3 3 3 3 

2010-

2011 

None None None None None None None None 

2011-

2012 

None None None None None None None None 

2012-

2013 

None None None None None None None None 

2013-

2014 

None None None None None None None None 

2014-

2015 

None None None None None None None None 

          

Average of distance 

(weeks) 

3 3 3 3 3 3 3 3 
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Table S3a. Results for strategy (3) without restarting the BOCPD algorithm and using historical CDC ILI data to estimate prior values, p = 0.5, 

2007 – 2015 seasons 

 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

 

 

 

Informative 

change 

point 

identified 

in each 

season 

2007 - 2008 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

None 

2008 - 2009 

wk 48 

(incorrect) 

wk 48 

(incorrect) 

wk 48 

(incorrect) 

wk 48 

(incorrect) 

wk 48 

(incorrect) 

wk 48 

(incorrect) 

wk 48 

(incorrect) 

 wk 53 

(correct) 

2010 - 2011 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

None 

2011 - 2012 

wk 46 

(incorrect) 

wk 46 

(incorrect) 

wk 46 

(incorrect) 

wk 46 

(incorrect) 

wk 46 

(incorrect) 

wk 46 

(incorrect) 

wk 46 

(incorrect) 

 wk 52 

(incorrect) 

2012 - 2013 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

2013 - 2014 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

None 

2014 - 2015 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

None 

   

Proportion of correct 

prediction 

0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.29 



86 
 

          

 

Distance 

between 

correct 

change 

points and 

the official 

date of 

onset 

(weeks) 

2007 - 2008 7 7 7 7 7 7 7 None 

2008 - 2009 None None None None None None None 4 

2010 - 2011 5 5 5 5 5 5 5 None 

2011 - 2012 None None None None None None None None 

2012 - 2013 1 1 1 1 1 1 1 1 

2013 - 2014 2 2 2 2 2 2 2 None 

2014 - 2015 1 1 1 1 1 1 1 None 

          

Average of distance 

(weeks) 

3.2 3.2 3.2 3.2 3.2 3.2 3.2 2.5 

 

 

Table S3b. Results for strategy (3) without restarting the BOCPD algorithm and using historical CDC ILI data to estimate prior values, p = 0.4, 

2007 – 2015 seasons 

 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

 

2007 - 2008 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

None 
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Informative 

change 

point 

identified 

in each 

season 

2008 - 2009 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

2010 - 2011 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

None 

2011 - 2012 

wk 46 

(incorrect) 

wk 46 

(incorrect) 

wk 46 

(incorrect) 

wk 46 

(incorrect) 

wk 46 

(incorrect) 

wk 46 

(incorrect) 

wk 46 

(incorrect) 

wk 52 

(incorrect) 

2012 - 2013 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

2013 - 2014 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

None 

2014 - 2015 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

None 

          

Proportion of correct 

prediction 

0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.29 

          

 

Distance 

between 

correct 

2007 - 2008 7 7 7 7 7 7 7 None 

2008 - 2009 4 4 4 4 4 4 4 4 

2010 - 2011 5 5 5 5 5 5 5 None 



88 
 

change 

points and 

the official 

date of 

onset 

(weeks) 

2011 - 2012 None None None None None None None None 

2012 - 2013 1 1 1 1 1 1 1 1 

2013 - 2014 2 2 2 2 2 2 2 None 

2014 - 2015 1 1 1 1 1 1 1 None 

          

Average of distance (weeks) 3.3 3.3 3.3 3.3 3.3 3.3 3.3 2.5 

 

Table S3c. Results for strategy (3) without restarting the BOCPD algorithm and using historical CDC ILI data to estimate prior values, p = 0.3, 

2007 – 2015 seasons 

 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

 

 

Informative 

change 

point 

identified 

in each 

season 

2007 - 2008 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

None 

2008 - 2009 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct)2008 

week 53 

2010 - 2011 

wk 50 

(correct) 

wk 50 

(correct) 

wk 50 

(correct) 

None None None None None 

2011 - 2012 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 
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2012 - 2013 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

2013 - 2014 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

None 

2014 - 2015 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

None 

          

Proportion of correct 

prediction 

0.86 0.86 0.86 0.71 0.71 0.71 0.71 0.29 

          

 

Distance 

between 

correct 

change 

points and 

the official 

date of 

onset 

(weeks) 

2007 - 2008 7 7 7 7 7 7 7 None 

2008 - 2009 4 4 4 4 4 4 4 4 

2010 - 2011 1 1 1 None None None None None 

2011 - 2012 None None None None None None None None 

2012 - 2013 1 1 1 1 1 1 1 1 

2013 - 2014 2 2 2 2 2 2 2 None 

2014 - 2015 1 1 1 1 1 1 1 None 
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Average of distance 

(weeks) 

2.7 2.7 2.7 3 3 3 3 2.5 

 

 

Table S3d. Results for strategy (3) without restarting the BOCPD algorithm and using historical CDC ILI data to estimate prior values, p = 0.2, 

2007 – 2015 seasons 

 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

 

 

Informative 

change 

point 

identified 

in each 

season 

2007 - 2008 None None None None None None None None 

2008 - 2009 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

2010 - 2011 

wk 50 

(correct) 

wk 50 

(correct) 

wk 50 

(correct) 

None None None None None 

2011 - 2012 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

2012 - 2013 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

2013 - 2014 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

None 

2014 - 2015 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

None 
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Proportion of correct 

prediction 

0.71 0.71 0.71 0.57 0.57 0.57 0.57 0.29 

          

 

Distance 

between 

correct 

change 

points and 

the official 

date of 

onset 

(weeks) 

2007 - 2008 None None None None None None None None 

2008 - 2009 4 4 4 4 4 4 4 4 

2010 - 2011 1 1 1 None None None None None 

2011 - 2012 None None None None None None None None 

2012 - 2013 1 1 1 1 1 1 1 1 

2013 - 2014 2 2 2 2 2 2 2 None 

2014 - 2015 1 1 1 1 1 1 1 None 

          

Average of distance (weeks) 1.8 1.8 1.8 2 2 2 2 2.5 

 

 

Table S3e. Results for strategy (3) without restarting the BOCPD algorithm and using historical CDC ILI data to estimate prior values, p = 0.1, 

2007 – 2015 seasons 

 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 
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Informative 

change 

point 

identified 

in each 

season 

2007 - 2008 None None None None None None None None 

2008 - 2009 None None None None None None None None 

2010 - 2011 None None None None None None None None 

2011 - 2012 None None None None None None None None 

2012 - 2013 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

2013 - 2014 None None None None None None None None 

2014 - 2015 None None None None None None None None 

          

Proportion of correct 

prediction 

0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 

          

 

Distance 

between 

correct 

change 

points and 

the official 

date of 

2007 - 2008 None None None None None None None None 

2008 - 2009 None None None None None None None None 

2010 - 2011 None None None None None None None None 

2011 - 2012 None None None None None None None None 

2012 - 2013 1 1 1 1 1 1 1 1 

2013 - 2014 None None None None None None None None 
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onset 

(weeks) 2014 - 2015 

None None None None None None None None 

          

Average of distance (weeks) 1 1 1 1 1 1 1 1 

 

 

 

Table S4a. Results for strategy (4) restarting the BOCPD algorithm every year and using historical CDC ILI data estimate prior values, p = 0.5, 

2007 – 2015 seasons 

  α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

 

 

Informative 

change 

point 

identified 

in each 

season 

2007 - 

2008 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

None 

2008 - 

2009 

wk 47 

(incorrect) 

wk 47 

(incorrect) 

wk 47 

(incorrect) 

wk 47 

(incorrect) 

wk 47 

(incorrect) 

wk 47 

(incorrect) 

wk 53 

(correct) 

wk 53 

(correct) 

2010 - 

2011 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 

wk 44 

(correct) 

None None 

2011 - 

2012 

wk 45 

(incorrect) 

wk 45 

(incorrect) 

wk 45 

(incorrect) 

wk 45 

(incorrect) 

wk 45 

(incorrect) 

wk 45 

(incorrect) 

wk 45 

(incorrect) 

wk 52 

(incorrect) 

2012 - 
wk 46 wk 46 wk 46 wk 46 wk 46 wk 46 wk 47 None 
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2013 (correct) (correct) (correct) (correct) (correct) (correct) (correct) 

2013 - 

2014 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

None 

2014 - 

2015 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

None 

          

Proportion of correct 

prediction 

0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.14 

          

 

Distance 

between 

correct 

change 

points and 

the official 

date of 

onset 

(weeks) 

2007 -

2008 

7 7 7 7 7 7 7 None 

2008-

2009 

None None None None None None 4 4 

2010-

2011 

7 7 7 7 7 7 None None 

2011-

2012 

None None None None None None None None 

2012-

2013 

2 2 2 2 2 2 1 None 

2013-
3 3 3 3 3 3 3 None 
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2014 

2014-

2015 

2 2 2 2 2 2 2 None 

          

Average of distance 

(weeks) 

4.2 4.2 4.2 4.2 4.2 4.2 3.4 4 

 

 

Table S4b. Results for strategy (4) restarting the BOCPD algorithm every year and using historical CDC ILI data estimate prior values, p = 0.4, 

2007 – 2015 seasons 

  α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

 

 

Informative 

change 

point 

identified 

in each 

season 

2007 - 

2008 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

None 

2008 - 

2009 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

2010 - 

2011 

wk 50 

(correct) 

wk 50 

(correct) 

wk 50 

(correct) 

wk 50 

(correct) 

wk 50 

(correct) 

wk 50 

(correct) 

None None 

2011 - 

2012 

wk 45 

(incorrect) 

wk 45 

(incorrect) 

wk 45 

(incorrect) 

wk 45 

(incorrect) 

wk 45 

(incorrect) 

wk 45 

(incorrect) 

wk 45 

(incorrect) 

wk 52 

(incorrect) 
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2012 - 

2013 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 47 

(correct) 

None 

2013 - 

2014 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

None 

2014 - 

2015 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

None 

          

Proportion of correct 

prediction 

0.86 0.86 0.86 0.86 0.86 0.86 0.71 0.14 

          

 

Distance 

between 

correct 

change 

points and 

the official 

date of 

onset 

(weeks) 

2007 -

2008 

7 7 7 7 7 7 7 None 

2008-

2009 

4 4 4 4 4 4 4 4 

2010-

2011 

1 1 1 1 1 1 None None 

2011-

2012 

None None None None None None None None 

2012-

2013 

2 2 2 2 2 2 1 None 
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2013-

2014 

3 3 3 3 3 3 3 None 

2014-

2015 

2 2 2 2 2 2 2 None 

          

Average of distance 

(weeks) 

3.2 3.2 3.2 3.2 3.2 3.2 3.4 4 

 

 

Table S4c. Results for strategy (4) restarting the BOCPD algorithm every year and using historical CDC ILI data estimate prior values, p = 0.3, 

2007 – 2015 seasons 

  α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

 

 

Informative 

change 

point 

identified 

in each 

season 

2007 - 

2008 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

None 

2008 - 

2009 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

2010 - 

2011 

wk 50 

(correct) 

wk 50 

(correct) 

wk 50 

(correct) 

wk 50 

(correct) 

wk 50 

(correct) 

wk 50 

(correct) 

None None 

2011 - 

2012 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 
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2012 - 

2013 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 47 

(correct) 

None 

2013 - 

2014 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

None 

2014 - 

2015 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

None 

          

Proportion of correct 

prediction 

0.86 0.86 0.86 0.86 0.86 0.86 0.71 0.14 

          

 

Distance 

between 

correct 

change 

points and 

the official 

date of 

onset 

(weeks) 

2007 -

2008 

7 7 7 7 7 7 7 None 

2008-

2009 

4 4 4 4 4 4 4 4 

2010-

2011 

1 1 1 1 1 1 None None 

2011-

2012 

None None None None None None None None 

2012-

2013 

2 2 2 2 2 2 1 None 
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2013-

2014 

3 3 3 3 3 3 3 None 

2014-

2015 

2 2 2 2 2 2 2 None 

          

Average of distance 

(weeks) 

3.2 3.2 3.2 3.2 3.2 3.2 3.4 4 

 

 

Table S4d. Results for strategy (4) restarting the BOCPD algorithm every year and using historical CDC ILI data estimate prior values, p = 0.2, 

2007 – 2015 seasons 

  α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 

 

 

Informative 

change 

point 

identified 

in each 

season 

2007 - 

2008 

None None None None None None None None 

2008 - 

2009 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

wk 53 

(correct) 

2010 - 

2011 

wk 50 

(correct) 

wk 50 

(correct) 

wk 50 

(correct) 

wk 50 

(correct) 

wk 50 

(correct) 

wk 50 

(correct) 

None None 

2011 - 

2012 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 

wk 52 

(incorrect) 
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2012 - 

2013 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 46 

(correct) 

wk 47 

(correct) 

None 

2013 - 

2014 

None None None None None None None None 

2014 - 

2015 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

wk 45 

(correct) 

None 

          

Proportion of correct 

prediction 

0.57 0.57 0.57 0.57 0.57 0.57 0.29 0.14 

          

 

Distance 

between 

correct 

change 

points and 

the official 

date of 

onset 

(weeks) 

2007 -

2008 

None None None None None None None None 

2008-

2009 

4 4 4 4 4 4 4 4 

2010-

2011 

1 1 1 1 1 1 None None 

2011-

2012 

None None None None None None None None 

2012-

2013 

2 2 2 2 2 2 1 None 
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2013-

2014 

None None None None None None None None 

2014-

2015 

2 2 2 2 2 2 2 None 

          

Average of distance 

(weeks) 

2.3 2.3 2.3 2.3 2.3 2.3 2.3 4 

 

 

Table S4e. Results for strategy (4) restarting the BOCPD algorithm every year and using historical CDC ILI data estimate prior values, p = 0.1, 

2007 – 2015 seasons 

  α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 

0.8 

 

 

Informative 

change 

point 

identified 

in each 

2007 - 

2008 

None None None None None None None None 

2008 - 

2009 

None None None None None None None None 

2010 - 

2011 

None None None None None None None None 

2011 - 
None None None None None None None None 
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season 2012 

2012 - 

2013 

 wk 47 

(correct) 

 wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

wk 47 

(correct) 

None 

2013 - 

2014 

None None None None None None None None 

2014 - 

2015 

None None None None None None None None 

          

Proportion of correct 

prediction 

0.14 0.14 0.14 0.14 0.14 0.14 0.14 None 

          

 

Distance 

between 

correct 

change 

points and 

the official 

date of 

onset 

(weeks) 

2007 -2008 None None None None None None None None 

2008-2009 None None None None None None None None 

2010-2011 None None None None None None None None 

2011-2012 None None None None None None None None 

2012-2013 1 1 1 1 1 1 1 None 

2013-2014 None None None None None None None None 

2014-2015 None None None None None None None None 
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Average of distance 

(weeks) 

1 1 1 1 1 1 1 None 
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