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Abstract: Keratoconus (KC) is a common corneal ectatic disease that affects 1:500-1:2000 people
worldwide and is associated with a progressive thinning of the corneal stroma that may lead to
severe astigmatism and visual deficits. Riboflavin-mediated collagen crosslinking currently remains
the only approved treatment to halt progressive corneal thinning associated with KC by improving

the biomechanical properties of the stroma. Treatments designed to increase collagen deposition

f,?,eﬁtf;’s' by resident corneal stromal keratocytes remain elusive. In this study, we evaluated the effects of

arginine supplementation on steady-state levels of arginine and arginine-related metabolites (e.g.,
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in KC-derived constructs. Further studies evaluating safety and efficacy of arginine supplementation
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{ations. Arginine is a conditional essential amino acid important in protein synthesis and
signal transduction in mammalian cells [1]. Like many amino acids, arginine can be
absorbed from the diet or biosynthesized from glutamate depending on the nutritional

status of the organism [2,3]. Metabolism of arginine occurs primarily through the urea

cycle, which involves conversion of arginine to ornithine, citrulline, and ultimately urea.
Arginine plays a fundamental role in the production of many other metabolites, including
the polyamines—spermidine and putrescine—that function in regulating cell proliferation
distributed under the terms and and DNA replication [4]. Arginine is an important metabolite that can also serve as
conditions of the Creative Commons @ precursor to proline and hydroxyproline, which are both highly present in collagen
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and the central nervous system [6,7]. A recent paper has identified a novel arginine sensor
that may play an important role in detecting intracellular nutritional status by activating the
mechanistic target of rapamycin (mTORc1) pathway suggesting that arginine in particular
may play a significant role in defining cellular health and viability [8]. Arginine has also
been reported to play an important role in the maintenance of immune privilege in the
cornea with inhibition of arginase activity associated with graft rejection [9].

Numerous studies have shown that arginine supplementation may increase wound
healing following injury [10-12]. Oral administration of arginine has also been associated
with improved wound healing following epidermal burns of the skin [13,14], as well as
reduced incidence of necrotizing enterocolitis in premature infants following birth [15].
Further kinetic studies have identified increased arginine catabolism in burn victims
suggesting that this amino acid may play a fundamental role in regulating tissue growth
and repair [16-18]. These studies suggest that arginine may be an important metabolite
involved in anabolic processes that are required for tissue regeneration following injury or
diseases that lead to formation of a defective extracellular matrix (ECM). Whether arginine
or nutritional status influence ECM deposition and tissue regeneration by resident cells
remains an open question.

The cornea is an avascular tissue that provides two-thirds of the resolution power
achieved in the human eye and requires nutrients provided from the aqueous humor
and tear film. Collagen types I and V constitute the majority of the stromal ECM in the
well-organized lamellar structure required for maintaining transparency and favorable
biomechanical properties of the cornea that are essential for quality vision [19]. The influ-
ence of extracellular metabolite flux and nutritional status in regulating ECM deposition
within the cornea is not well understood.

Keratoconus (KC) is a common corneal ectasia characterized by thinning of the central
corneal apex which results in protrusion of the frontal region of the eye leading to a signifi-
cant reduction in visual acuity [20]. Defects in ECM deposition by human keratoconus cells
(HKCs) derived from the corneal stroma have been identified as a defining characteristic to
the pathology of KC [21,22]. We have previously reported that HKCs have significantly
downregulated cytosolic arginine compared to normal corneal keratocytes in 2D conven-
tional cultures and deposit less ECM in 3D constructs [22,23]. As an extension of that work,
our current study explored the effects of arginine supplementation on ECM secretion and
metabolic flux in non-KC human corneal fibroblasts (HCFs) and HKCs cultured in a 3D
in vitro stromal model to determine if increasing extracellular arginine levels can promote
collagen secretion. We hypothesized that arginine supplementation would improve ECM
secretion and deposition by HKCs by targeting a metabolic deficit of cytosolic arginine. Our
findings suggest that arginine metabolism is an important pathway involved in collagen
secretion by corneal fibroblasts that may potentially serve as a therapeutic target in the
context of corneal thinning and keratoconus.

2. Materials and Methods
2.1. Isolation of Primary Human Corneal Fibroblasts

All experiments were completed with prior IRB approval from the University of
Oklahoma Health Sciences Center (Protocol # 3450). The research adhered to the tenets
of the Declaration of Helsinki. Primary human corneal fibroblasts were isolated from
corneas derived from non-KC patients (HCFs) and KC patients (HKCs), as previously
described [23-25]. Briefly, HCFs were isolated from human cadaver corneas of individuals
with no prior history of ocular or corneal diseases (National Disease Research Interchange,
Philadelphia, PA, USA). HKCs were isolated post-corneal transplantation from corneas
of individuals with clinically diagnosed KC performed at Dean McGee Eye Institute (Ok-
lahoma City, OK, USA). Upon tissue collection, the corneal epithelium and endothelium
were removed from the stroma by mechanical scrapping with a sterile razor. The stromal
tissue was cut into small pieces (~2 x 2 x 2 mm) and placed into small flasks, incubated
for 10-15 min to allow adhesion of explant to flask followed by addition of Eagle’s Min-
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imum Essential Medium (EMEM) (ATCC, Manassas, VA, USA) with 10% fetal bovine
serum (Atlanta Biologicals, Lawrenceville, GA, USA) and 1 x antibiotic-antimycotic sup-
plement (contains penicillin (100 units/mL), streptomycin (100 pg/mL), and amphotericin
B (250 ng/mL); Gibco, Life Technologies, Grand Island, NY, USA). Following 2—4 weeks of
incubation at 37 °C/5% CO,, corneal fibroblasts migrated out of the tissue explant and were
passaged into a T175 flask and grown to 80% confluence prior to seeding into constructs.

2.2. 3D In Vitro Model

3D constructs were assembled as described previously [22]. Briefly, 10 HCFs or HKCs
were seeded into each well in 6-well transwell plates containing a 0.4 um pore polycarbon-
ate membrane (24 mm transwell with 0.4 um pore polycarbonate membrane insert, product
#3412, Corning Costar, Charlotte, NC, USA). A stable Vitamin C derivative (0.5 mM 2-O-o-
D-glucopyranosyl-L-ascorbic acid, American Custom Chemicals Corporation, San Diego,
CA, USA) in 10% FBS EMEM with 1x antibiotic-antimycotic was used to stimulate ECM
secretion over a 4-week period with the media changed at least three times per week. Media
was collected at week 4 in clean, sterile microcentrifuge tubes and immediately analyzed by
Western blot. Arginine solutions (5, 10, and 15 mM) were prepared by dissolving L-arginine
((S)-2-amino-5-guanidinopentanoic acid, Sigma Aldrich, St. Louis, MO, USA) in complete
EMEM media followed by pH correction and filter-sterilization (0.2 pm filter). The basal
EMEM formulation included 0.6 mM of L-arginine-HCI (ATCC, Manassas, VA, USA).

2.3. Metabolite Extraction

Metabolites were isolated from cells as previously described. Briefly, constructs
were collected, washed 3x with 1x phosphate-buffered solution, and incubated with
ice-cold 80% methanol for 15 min at —80 °C. Cell lysate/methanol solution was then
centrifuged at 14,000 x ¢ for 5 min at 4 °C. Resuspension of cell pellet was repeated 2x and
samples combined and dried by a vacuum centrifuge (Eppendorf Vacufuge Concentrator,
Eppendorf, Hamburg, Germany). Dried pellets were stored at —80 °C until further use.

2.4. Targeted Mass Spectrometry

Metabolite pellets were dissolved in high-performance liquid chromatography (HPLC)-
grade water and analyzed for metabolite quantification using targeted microcapillary liquid
chromatography-tandem mass spectrometry (LC-MS/MS) using a hybrid 5500 QTRAP
triple quadrupole mass spectrometer (AB/SCIEX, Framingham, MA, USA) coupled to a
Prominence UFLC system (Shimadzu, Kyoto, Japan) and analyzed with selected reaction
monitoring (SRM) with positive/negative polarity switching. Label-free quantification
via MultiQuant 2.1 software (AB/SCIEX, Framingham, MA, USA) was used to measure
metabolite flux between samples, as previously described [23,26-28].

2.5. Real-Time Polymerase Chain Reaction (RT-PCR)

Constructs were isolated and total RNA was immediately extracted using TRIzol
according to standard protocols (Ambion TRIzol Plus RNA Purification Kit, Life technolo-
gies, Carlsbad, CA, USA) [29]. cDNA was then synthesized (SuperScript III First-Strand
Synthesis, Invitrogen, Carlsbad, CA, USA) and stored at —80 °C until further analysis.
TagMan probes for the housekeeping gene, glyceraldehyde-3-phosphate (GAPDH), and
arginine-related genes (arginase (ARG1), eNOS (NOS3), iNOS (NOS2), and ornithine D
(OAT)) were incubated with 10 ng of cDNA and addition of the Tagman Fast Advanced
Master Mix (Applied Biosystems, Foster City, CA, USA) in separate reactions followed
by analysis on a RT-PCR thermocycler (StepOnePlus RT-PCR, Applied Biosystems, Foster
City, CA, USA).

2.6. Western Blot

Conditioned media was collected in sterile Eppendorf tubes and stored at —20 °C
until further use. Cell lysates were isolated using 1x radioimmunoprecipitation assay
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(RIPA) buffer with a protease inhibitor cocktail (Sigma Aldrich, St. Louis, MO, USA)
and incubated on ice for 30 min, followed by centrifugation at 12,000 g for 15 min at
4 °C to pellet cell debris. The clear supernatant was isolated and stored at —20 °C until
further use. A bicinchoninic acid (BCA) assay (ThermoScientific, Rockford, IL, USA)
was performed to determine total protein levels followed by Western blot analysis with
at least 90 ug protein loaded into each well. Sodium dodecyl-sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) was performed using Tris-glycine gradient gels (4-20%)
(Novex, Life technologies, Carlsbad, CA, USA) electrophoresed at 130 V for 1.5 h followed
by transfer onto a nitrocellulose membrane (0.45 um) (BioRad, Hercules, CA, USA) at
100 V for 1 h on ice. A Ponceau stain (Figure S3) was performed following transfer to
show equal protein loading by incubating Ponceau S solution (0.1% (w/v) in 5% acetic
acid, Sigma Aldrich, St. Louis, MO, USA) with membrane for 5 min, followed by washing
with distilled water for 2-3 min. Blots were blocked in 5% dry milk or 5% bovine serum
albumin (BSA, BP1605-100, Fisher, Fair Lawn, NJ, USA) for 1 h at room temperature with
shaking. The following primary antibodies were prepared at a 1:1000 dilution in 1-2%
BSA in Tris-buffered saline with 0.1% Tween 20 immediately prior to use: collagen type I
(ab34710), collagen type III (ab7778), collagen type V (ab94673), fibronectin (ab2413), and
GAPDH (ab9485) (Abcam, Cambridge, MA, USA). The fluorescent secondary (Alexa Fluor
568, donkey anti-rabbit, Life Technologies, Eugene, OR, USA) (1:2000) was incubated with
the probed membrane for 1 h at room temperature with rocking followed by washing and
imaging (UVP Gel Imaging System, Upland, CA, USA).

2.7. Statistical Analysis

All data was analyzed using GraphPad Prism (GraphPad Prism version 9.1.1 for Win-
dows, GraphPad Software, San Diego, CA, USA). Statistical significance was determined
using a two-way ANOVA with multiple comparisons. A p-value < 0.05 was considered
statistically significant. All bar graphs are depicted showing mean + standard deviation
with the sample size designated in the figure legend.

3. Results
3.1. Arginine Metabolism in Corneal Fibroblasts

We previously applied a bottom-up tissue engineering approach [30] to construct
3D in vitro stromal constructs generated using non-KC (healthy control) and KC-derived
primary human corneal fibroblasts [22,25,31]. To evaluate the effects of arginine supple-
mentation in the context of KC, we generated control and KC 3D constructs that were
maintained in culture for 4 weeks in the presence or absence of arginine supplementation
(Figure 1 and Figure S1).

+ Arginine
Supplementation
| — \ : —_ = ) —_ Effects on ECM protein

secretion and expression

Cell expansion 3D corneal stromal construcis

Figure 1. General experimental design for studying the effects of arginine supplementation on ECM secretion and

expression by human corneal fibroblasts. The initial step was human corneal tissue collection, corneal fibroblast expansion,

and construction of 3D corneal stromal models followed by arginine supplementation. Comparisons between healthy

(HCF) and KC-derived (HKC) constructs were performed. Pictorials modified from Servier Medical Art under a Creative

Commons Attribution 3.0 Unported License.

Arginine metabolism proceeds through ornithine, which can then be metabolized to
the polyamines, spermidine and putrescine, or proline and hydroxyproline metabolites
(Figure 2a). To determine if KC-derived corneal fibroblasts (HKCs) exhibited differential
arginine metabolism compared to healthy controls (HCFs) when cultured in a 3D microen-
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vironment in vitro, we utilized a LC-MS/MS metabolomics approach to determine the
steady-state levels of arginine and arginine-related metabolites in HCF and HKC constructs
(Figure 2b-g). Arginine levels were significantly lower in HKCs (5.5-fold, p = 0.0017) com-
pared to control constructs with a similar trend in lower ornithine levels (3.5-fold, p = 0.16)
(Figure 2b,c). Though proline levels were similar between HCFs and HKCs, hydroxyproline
levels were notably lower in HCFs compared to HKCs (57-fold, p = 0.02, Figure 2e). The
polyamine, spermidine, was present at higher basal levels in HCFs compared to HKCs
(7.5-fold, p = 0.03) with no significant difference in putrescine levels detected (Figure 2f,g).
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Figure 2. Arginine-related metabolite levels in HCFs and HKCs. (a) General schematic of arginine
metabolism showing conversion of arginine to ornithine leading to either polyamine synthesis
or generation of proline and hydroxyproline. (b—g) Metabolomics analysis of cytosolic levels of
arginine-related metabolites (arginine and ornithine), collagen-related metabolites (proline and hy-
droxyproline), and polyamines (spermidine and putrescine) in 3D constructs of HCFs and HKCs. An
unpaired, nonparametric {-test with Welch'’s corrections was used to determine statistical significance
with * p < 0.05 and ** p < 0.01 based on n = 3. Error bars represent standard deviation.

To determine basal gene expression levels of proteins involved in arginine metabolism
and/or downstream signaling, we isolated healthy (HCF) and HKC constructs and eval-
uated mRNA transcript levels of arginase, endothelial nitric oxide synthase (eNOS), in-
ducible NOS (iNOS), and ornithine D relative to the housekeeping gene (glyceraldehyde
3-phosphate dehydrogenase, GAPDH) (Figure 3). We identified an overall increase in
arginase (10.6-fold, p = 0.0107), eNOS (8-fold, p = 0.0013), iNOS (8.7-fold, p = 0.0004), and
ornithine D (11-fold, p = 0.0008) in HKC constructs compared to their healthy counterparts
(HCFs) (Figure 3). These results suggest that the lower arginine levels detected in HKCs
may at least be partially attributed to differential arginine metabolism that influences
arginine availability and downstream arginine-mediated signaling.
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Figure 3. Gene expression patterns of arginine-related enzymes in HCFs and HKCs. Relative
transcript levels of (a) arginase, (b) eNOS, (c) iNOS, and (d) ornithine D assessed by RT-PCR.
Values shown as normalized to the housekeeping gene (GAPDH) and relative to HCF control levels.
Statistical significance assessed using an unpaired, nonparametric t-test with Welch’s corrections
with * p < 0.05, ** p < 0.01, and *** p < 0.001 based on n = 4. Error bars represent standard deviation.

3.2. Arginine Uptake and Arginine-Related Metabolites

We next evaluated the effects of arginine supplementation on relative changes in
arginine and arginine-related metabolites in healthy and HKC constructs. While basal
cytosolic arginine levels were lower in HKCs than HCFs, supplementation with additional
arginine (+5 mM) led to a large increase in arginine in healthy controls, with only a modest
change in HKCs (Figure 4a). Likewise, a proportional increase in ornithine levels was
observed in HCFs (11-fold, p = 0.027) with no significant change in HKCs (Figure 4b).
While proline levels remained unchanged with arginine supplementation in both controls
and HKCs, hydroxyproline levels remained high in HKCs with arginine supplementation
(81-fold, p < 0.0001) (Figure 4c,d). Spermidine levels increased only in HCFs with arginine
supplementation (1.4-fold, p = 0.034) with no change in putrescine levels in either HCFs or
HKCs (Figure 4e,f).

3.3. Arginine Supplementation and ECM Secretion and Expression

Since KC is associated with thinning of the stromal ECM, we sought to determine
if arginine supplementation was a viable option for promoting favorable ECM deposi-
tion by HKCs. We measured fibronectin, and collagen types I, 1II, and V secretion in
conditioned media analyzed by Western blot following supplementation with increasing
concentration of arginine (5, 10, and 15 mM) (Figure 5a and Figure S4). As fibronectin
and collagen are very distinct in terms of amino acid composition and structure [5,32],
we sought to determine whether arginine supplementation influenced all ECM protein
secretion indiscriminately or exhibited possible specificity for collagen expression. Argi-
nine supplementation did not significantly modulate total secreted protein levels found
in the culture medium of HCFs or HKCs (Figure 5b). Interestingly, high arginine con-
centrations of 15 mM significantly reduced fibronectin secretion (1.5-fold, p = 0.037) in
HKCs with slight reductions in HCFs at 10 mM arginine supplementation (Figure 5c). Argi-
nine supplementation (10 mM) also led to increased collagen type I secretion by 1.94-fold
(p = 0.019) in HKC with no significant modulation in collagen type III or V secretion in
HCFs or HKCs (Figure 5d—f). These results suggest that arginine supplementation favors
collagen type I secretion over the other major isoforms (types III and V) expressed by
human corneal fibroblasts.
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Figure 4. Arginine uptake and change in steady-state levels of arginine-related metabolites in
HCFs and HKCs following arginine supplementation (5 mM). Relative abundance of (a) arginine,
(b) ornithine, (c) proline, (d) hydroxyproline, (e) spermidine, and (f) putrescine in control and
arginine supplemented (5 mM) constructs. Baseline control levels for these metabolites are also
shown in Figure 2. Statistical significance assessed using a two-way ANOVA with Sidak’s multiple
comparisons and * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 based on n = 3. Error bars
represent standard deviation.

To determine if cytosolic levels of collagen type I and III were modulated by excess
arginine, we probed cytoplasmic fractions of HCF and HKC constructs. In agreement
with the effects of arginine supplementation on collagen secretion, cytosolic collagen type
I showed an elevated trend in HKCs following 10 mM arginine supplementation with
no significant differences in collagen type III protein expression in either HCFs or HKCs
(Figure 6 and Figure S5). These results suggest that arginine supplementation may promote
collagen expression by corneal fibroblast in vitro.
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Figure 5. Secretion of matrix components by HCFs and HKCs in 3D constructs with increasing argi-
nine supplementation. (a) Western blot of conditioned media isolated from 3D constructs seeded with
HCFs and HKCs showing secretion of fibronectin (FN), collagen type I (Col I), collagen type III (Col
I1I), and collagen type V (Col V) following supplementation of increasing concentrations of arginine
at week 4. (b) Total secreted protein levels determined using a BCA assay. (¢—f) Quantification of
ECM proteins, FN, Col I, Col I1I, and Col V, found in conditioned media detected by Western blot
with values normalized to the HCF control. Data are shown as box and whisker plots (minimum, first
quartile, median, third quartile, and maximum) (n > 4). A two-way ANOVA with Sidak’s multiple
comparisons was used to determine statistical significance, with * representing p < 0.05.
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Figure 6. Cytosolic collagen protein expression. (a) Representative Western blots and (b,c) quantification of cytosolic
collagen type I (Col I) and collagen type III (Col III) protein expression in HCFs and HKCs. Statistical significance evaluated
based on a two-way ANOVA with Sidak’s multiple comparisons based on n > 3.
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4. Discussion

As a naturally occurring amino acid, arginine supplementation is an attractive thera-
peutic option for increasing wound healing due to its extremely low toxicity, high availabil-
ity, and low cost. A number of studies have shown improved tissue regeneration following
arginine treatment [10,11] suggesting that arginine may regulate ECM deposition either
through metabolic regulation or by promoting proliferation. To the authors’ knowledge, no
studies have tested the effects of arginine in stimulating ECM secretion by corneal stromal
fibroblasts in KC.

In order to distinguish which pathways of arginine metabolism play an important role
in influencing collagen deposition, we utilized a metabolomics approach in this study to
measure steady-state metabolite levels related to arginine and collagen-related metabolites.
It is known that arginine metabolism primarily occurs via the urea cycle with conversion of
arginine to ornithine, then to citrulline, and ultimately arginosuccinate and fumarate. In this
study, we found that 5 mM arginine supplementation promoted elevated steady-state levels
of cytosolic arginine and ornithine in healthy constructs. Interestingly, arginine supplemen-
tation did not appear to increase hydroxyproline levels in either HCFs or HKCs, but rather
increased levels of the polyamine spermidine. With arginine levels increased, amounts of
the spermidine were proportionally increased in HCFs. An alternative approach to increase
endogenous arginine levels in HKCs might include a targeted inhibitor of arginase, the
primary enzyme responsible for its conversion. A number of arginase inhibitors mainly
for targeting endothelial cells and vascular dysfunction have been reported [33]. Further
studies of the effects of L-norvaline and other selective arginase inhibitors on ECM de-
position in fibroblasts might provide insight into whether this pathway can be targeted
therapeutically to improve wound healing. Increasing proline or related precursors might
also influence collagen expression and wound healing responses [34-36] but has remained
relatively unexplored in the context of corneal biology.

The polyamine pathway is known to be important in regulating DNA replication,
proliferation, and cell survival [4,37]. Spermidine and putrescine are polyamines important
in regulating DNA synthesis [38] and are derived from arginine via ornithine catalyzed by
ornithine decarboxylase [39], as well as from conversion of arginine to agmatine [40,41].
However, it is unclear if these metabolites modulate collagen deposition directly or indi-
rectly by favoring downstream pro-survival mechanisms. In addition to the urea cycle,
other metabolites may also be contributing to arginine flux within the cell, such as creatine
and glutamate, which may be influencing the differential cellular responses to excess
arginine observed between HCFs and HKCs in our study. A limitation of our study was
the single concentration of arginine (5 mM) included in our metabolomics study, and thus,
additional studies testing a dose-response of arginine supplementation on steady-state
levels of collagen-related metabolites are warranted.

Previous studies have shown a pH-dependence of arginase II, which is involved in
metabolism of arginine to ornithine [42,43]. Though we did not detect significant increases
in proline or hydroxyproline with arginine supplementation, collagen type I secretion
was significantly increased in HKCs by 10 mM arginine supplementation suggesting that
arginine-mediated ECM secretion may not involve increased conversion of arginine to the
amino acids, proline and hydroxyproline, which comprise ~33% of collagen structure [36].
The slight differences in molecular weight of collagen sub-types assessed in our study
between predicted molecular weights may be attributed to differences in post-translational
modifications, pH of the microenvironment, and effectiveness of the denaturing and reduc-
ing conditions, among other factors, which may influence the observed molecular weight
detected by Western blot. Our study provides evidence to suggest that arginine supple-
mentation may support increased collagen type I secretion by HKCs, but the biochemical
pathway involved in this observed effect is unclear. Moreover, further studies are required
to show that the collagen secreted by HKCs is properly assembled and integrated into col-
lagen fibrils within the stromal ECM and determine whether arginine supplementation can
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overcome the inherent defects present in HKCs that appear to promote stromal thinning in
the KC cornea.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10082076/s1, Figure S1: Brightfield image of primary human corneal fibroblasts cultured
in 2D conventional culture. Scale bar = 200 pum, Figure S2: Preliminary study testing the effects of
arginine supplementation in 2D conventional cultures, Figure S3: Ponceau staining of a western
blot analysis of conditioned media showing relatively equal loading between sample, Figure S4:
Uncropped blots of proteins measured by Western blot shown in Figure 5, Figure S5: Uncropped blots
of proteins measured by Western blot shown in Figure 6. Membranes were cut following blocking
and prior to probing with antibody.
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