Publications -- Gef Farmer

Permanent URI for this collection

This collection is limited to articles published under the terms of a creative commons license or other open access publishing agreement since 2016. It is not intended as a complete list of the author's works.


Recent Submissions

Now showing 1 - 2 of 2
  • Item
    Sniffer cells for the detection of neural Angiotensin II in vitro
    (Springer Nature, 2019-06-19) Farmer, George E.; Amune, Anna; Bachelor, Martha E.; Duong, Phong; Yuan, Joseph P.; Cunningham, J. Thomas
    Neuropeptide release in the brain has traditionally been difficult to observe. Existing methods lack temporal and spatial resolution that is consistent with the function and size of neurons. We use cultured "sniffer cells" to improve the temporal and spatial resolution of observing neuropeptide release. Sniffer cells were created by stably transfecting Chinese Hamster Ovary (CHO) cells with plasmids encoding the rat angiotensin type 1a receptor and a genetically encoded Ca2+ sensor. Isolated, cultured sniffer cells showed dose-dependent increases in fluorescence in response to exogenously applied angiotensin II and III, but not other common neurotransmitters. Sniffer cells placed on the median preoptic nucleus (a presumptive site of angiotensin release) displayed spontaneous activity and evoked responses to either electrical or optogenetic stimulation of the subfornical organ. Stable sniffer cell lines could be a viable method for detecting neuropeptide release in vitro, while still being able to distinguish differences in neuropeptide concentration.
  • Item
    Selectively Inhibiting the Median Preoptic Nucleus Attenuates Angiotensin II and Hyperosmotic-Induced Drinking Behavior and Vasopressin Release in Adult Male Rats
    (Society for Neuroscience, 2019-03-26) Marciante, Alexandria B.; Wang, Lei A.; Farmer, George E.; Cunningham, J. Thomas
    The median preoptic nucleus (MnPO) is a putative integrative region that contributes to body fluid balance. Activation of the MnPO can influence thirst, but it is not clear how these responses are linked to body fluid homeostasis. We used designer receptors exclusively activated by designer drugs (DREADDs) to determine the role of the MnPO in drinking behavior and vasopressin release in response to peripheral angiotensin II (ANG II) or 3% hypertonic saline (3% HTN) in adult male Sprague Dawley rats (250-300 g). Rats were anesthetized with isoflurane and stereotaxically injected with an inhibitory DREADD (rAAV5-CaMKIIa-hM4D(Gi)-mCherry) or control (rAAV5-CaMKIIa-mCherry) virus in the MnPO. After two weeks' recovery, a subset of rats was used for extracellular recordings to verify functional effects of ANG II or hyperosmotic challenges in MnPO slice preparations. Remaining rats were used in drinking behavior studies. Each rat was administered either 10 mg/kg of exogenous clozapine-N-oxide (CNO) to inhibit DREADD-expressing cells or vehicle intraperitoneal followed by a test treatment with either 2-mg/kg ANG II or 3% HTN (1 ml/100-g bw, s.c.), twice per week for two separate treatment weeks. CNO-induced inhibition during either test treatment significantly attenuated drinking responses compared to vehicle treatments and controls. Brain tissue processed for cFos immunohistochemistry showed decreased expression with CNO-induced inhibition during either test treatment in the MnPO and downstream nuclei compared to controls. CNO-mediated inhibition significantly attenuated treatment-induced increases in plasma vasopressin compared to controls. The results indicate inhibition of CaMKIIa-expressing MnPO neurons significantly reduces drinking and vasopressin release in response to ANG II or hyperosmotic challenge.