• Login
    View Item 
    •   UNTHSC Scholar
    • University Publications
    • Theses and Dissertations
    • School of Biomedical Sciences
    • View Item
    •   UNTHSC Scholar
    • University Publications
    • Theses and Dissertations
    • School of Biomedical Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mechanisms of Right Ventricular Oxygen Supply/Demand Balance in the Concious Dog

    Thumbnail
    View/Open
    Hart_MechanismsOfRightVentricular.pdf (60.53Mb)
    Date
    2000-06-01
    Author
    Hart, Bradley
    Metadata
    Show full item record
    Abstract
    Hart, Bradley Joe. Mechanisms of Right Ventricular Oxygen Supply/Demand Balance in the Conscious Dog Doctor of Philosophy (Biomedical Sciences), August,2000, 119 pp, 4 tables, 13 figures, references, 79 titles. No data exist in the literature describing the myocardial oxygen supply/demand relationship of the right ventricle in a conscious, anaesthetized animal. A novel technique developed in our laboratory enables us to collect right ventricular (RV) venous blood samples from conscious dogs to determine RV myocardial oxygen consumption (MVO2). RV oxygen supply/demand balance was examined in conscious dogs, chronically instrumented to measure right coronary blood flow (RCBF), segmental shortening (%SS) and RV pressure (RVP) during increases and decreases in RV myocardial oxygen demand. Right ventricular MVO2 and O2 extraction (O2E2) were determined; RCBF, RVP, dP/dt, and %SS were recorded concomitantly. Acute increases in RV MVO2 were accomplished by atrial pacing (200 beats/min), increasing RV afterload by 65%, infusion of isoproterenol (0.1 μg/kg/min, i.v.), and by conducting a submaximal exercise routine (70-75% of maximum VO2). An acute decrease in RV MVO2 was created by propranolol administration (1 mg bolus, i.c.). During acute increases in RV MVO2, the extraction reserve is utilized primarily; flow is not affected in the absence of direct vasodilatory effects of the intervention. A decrease in RV oxygen demand is associated with a further increase in the RV extraction reserve. Since RV O2E increases linearly with increases in RV MVO2, these data show that changes in RV venous O2 tension can occur with little or no change in RCBF. LC resistance is very sensitive to alterations in LC venous pO2; therefore, there appear to be significant differences between the left and right ventricles concerning the matching of oxygen supply with myocardial oxygen demand.
    Subject
    Animal Structures
    Biology
    Cardiology
    Cardiovascular System
    Comparative and Laboratory Animal Medicine
    Exercise Science
    Kinesiology
    Life Sciences
    Medicine and Health Sciences
    Other Kinesiology
    Rehabilitation and Therapy
    Small or Companion Animal Medicine
    Veterinary Medicine
    Myocardial oxygen supply
    right ventricular pressure
    conscious animal
    blood sample
    myocardial oxygen consumption
    RV MVO2
    O2
    oxygen demand
    VO2
    submaximal exercise routine
    URI
    https://hdl.handle.net/20.500.12503/28991
    Collections
    • School of Biomedical Sciences
    • Theses and Dissertations

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of UNTHSC ScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV