• Login
    View Item 
    •   UNTHSC Scholar
    • University Publications
    • Theses and Dissertations
    • School of Biomedical Sciences
    • View Item
    •   UNTHSC Scholar
    • University Publications
    • Theses and Dissertations
    • School of Biomedical Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Role of Adenosine in Acute Hibernation of Guinea-Pig Myocardium

    Thumbnail
    View/Open
    Gao_RoleOfAndeonsinin1.pdf (43.73Mb)
    Date
    1995-08-01
    Author
    Gao, Zhi-Ping
    Metadata
    Show full item record
    Abstract
    Gao, Zhi-Ping, Role of Adenosine in Acute Hibernation of Guinea-Pig Myocardium Doctor of Philosophy (Biomedical Sciences), August, 1995; 111 pp; 3 tables; 15 figures, bibliography, 158 titles. Myocardial hibernation is a state of depressed contractile function and energy demand during chronic ischemia. When coronary flow is restored, depressed contractile function can partially or completely recover to the pre-ischemic level, and ischemic injury of the myocardium in not evident. This project tested the hypothesis that endogenous adenosine mediates hibernation in guinea-pig myocardium. Isolated working guinea-pig hearts, perfused with glucose fortified Krebs-Henseleit buffer, were subjected to global low-flow ischemia. Left ventricular performance and cytosolic energy level were assessed. Lactate and purine nucleotides were measured in venous effluent. Heart were perfused with [U-14C]glucose to investigate the role of adenosine on glucose metabolism in myocardium. Left ventricular function in untreated hearts decreased by 80% and remained stable during ischemia, and completely recovered upon reperfusion. Neither adenosine receptor blockade with 8-p-sulfophenyl theophylline (8-SPT; 20 μM) nor ecto 5’-nucleotidase inhibitor αβ-methylene adenosine 5’-diphosphonate (AOPCP; 50μM) affected left ventricular function either ischemia or during reperfusion. Cytosolic energy level fell by 67% at 10 min ischemia in untreated hearts, but subsequently recovered to the pre-ischemic level despite continued ischemia. Adenosine receptor blockade increased cytosolic energy level at 10 min ischemia relative to untreated hearts, but blunted the subsequent rebound of phosphorylation potential. Moreover, 8-SPT doubled ischemic lactate release. Adenosine receptor blockade also increased glucose uptake during pre-ischemia and hypoperfusion, but did not stimulate glucose oxidation. Crossover plots of glycolytic intermediates revealed that phosphofructokinase, a key rate-controlling step in glycolysis, was activated by adenosine receptor blockade in both pre-ischemic and hibernating myocardium. We conclude that 1) activation of adenosine receptors results in recovery of cytosolic energy level of moderately ischemic working myocardium, but this energetic recover is not solely responsible for post-ischemic contractile recovery; 2) endogenous adenosine attenuates anaerobic glycolysis during myocardial hibernation by blunting phosphofructokinase activity.
    Subject
    Animal Sciences
    Behavior and Behavior Mechanisms
    Biomechanics
    Cardiology
    Cardiovascular System
    Comparative and Laboratory Animal Medicine
    Food Microbiology
    Life Sciences
    Medical Nutrition
    Medical Sciences
    Medicine and Health Sciences
    Motor Control
    Neuroscience and Neurobiology
    Nutrition
    Nutritional and Metabolic Diseases
    Other Kinesiology
    Physiological Processes
    Small or Companion Animal Medicine
    Systems and Integrative Physiology
    Systems Biology
    Veterinary Pathology and Pathobiology
    Veterinary Physiology
    adenosine
    acute hibernation
    guinea pig
    myocardium
    Krebs-Henseleit
    glucose metabolism
    glucose oxidation
    anaerobic glycolysis
    phosphofructokinase activity
    URI
    https://hdl.handle.net/20.500.12503/29258
    Collections
    • School of Biomedical Sciences
    • Theses and Dissertations

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of UNTHSC ScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV