A Study of Some Aspects of the Role of Mast Cells in Experimental Autoimmune Uveitis

Date

1994-06-01

Authors

Lee, Carol Hamberlin

ORCID

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Lee, Carol Hamberlin, A Study of Some Aspects of the Role of Mast Cells in Experimental Autoimmune Uveitis. Doctor of Philosophy (Biomedical Sciences), June 1994, 141 pp., 6 tables, 29 illustrations, bibliography, 115 titles. Choroidal mast cells have been implicated in experimental autoimmune uveitis (EAU), an ocular inflammatory disease induced by S-antigen (Sag). Activation of ocular mast cells in Lewis rats was evaluated by determining changes in numbers of mast cells, levels of histamine, and wet weights of ocular tissues. A decrease in choroidal mast cells was confirmed statistically, and limbal mast cells were found to be activated earlier than choroidal mast cells. The ocular histamine distribution was altered during EAU, decreasing in the anterior eye, and increasing in the posterior eye. Retinal histamine levels increased when EAU symptoms occurred, but decreased while the disease was still intense. Levels of histamine methyltransferase, which degrades histamine, increased significiantly in retinal tissue when histamine levels fell. Signficant weight increases indicated edema, which can result from mast cell mediator action. Leflunomide, an immunomodulating drug that is known to affect mast cells in vitro, prevented induction of EAU. Leflunomide also suppressed changes in the mast cell-related parameters, histamine levels and wet weights. Mechanisms for activation of ocular mast cells in EAU were investigated. Results suggest that mast cell activation does not occur through mast cell surface IgE-antigen crosslinking. The adjuvant used, complete Freund’s adjuvant, is not conducive to IgE production. Histamine releasing factors, HRFs, are produced by various immune system cellular components. Preliminary efforts did not demonstrate HRF activity. Mast cell numbers, histamine levels, and wet weights were also evaluated in a milder form of EAU induced by M-peptide (Mpep), a peptide fragment of Sag. Mpep/EAU produces few disease symptoms in the anterior eye, but destroys the same retinal area as Sag/EAU—photoreceptor cells and their outer segments. Inflammation is less intense, restricted primarily to the target area. Mast cell numbers did not change, but histamine levels and wet weights changed significantly, suggesting that mast cells are also involved in Mpep/EAU. Overall, the results of this study add to evidence that mast cells are involved in pathogenesis of EAU. The results also point to topics of further investigation into the role of mast cells in EAU and in normal function in ocular tissues.

Description

Citation