• Login
    View Item 
    •   UNTHSC Scholar
    • University Publications
    • Theses and Dissertations
    • School of Biomedical Sciences
    • View Item
    •   UNTHSC Scholar
    • University Publications
    • Theses and Dissertations
    • School of Biomedical Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigating the Use of Resistance Breathing for the Detection of Acute Hypovolemia

    Thumbnail
    View/Open
    2021_05_gsbs_Rusy_Ryan_practicum.pdf (1.467Mb)
    Date
    2021-05
    Author
    Rusy, Ryan
    Metadata
    Show full item record
    Abstract
    Introduction: Standard vital signs (e.g., heart rate and blood pressure) lack sensitivity and specificity to detect blood volume status following hemorrhage. Inspiratory resistance breathing has therapeutic potential to increase blood pressure and cardiac output following blood loss. We investigated the potential utility of resistance breathing as a novel method to detect volume loss. We hypothesized that resistance breathing would elicit greater increases in absolute and breath-to-breath amplitude of stroke volume and arterial pressure under hypovolemic vs. normovolemic conditions. Methods: Data were retrospectively analyzed from 23 healthy human subjects aged 23-40 years. Subjects underwent lower body negative pressure (LBNP) protocols to simulate hemorrhage with and without resistance breathing (via an impedance threshold device, ITD). Continuous arterial pressure and stroke volume were measured via finger photoplethysmography. Comparisons of absolute and changes in the breath-to-breath amplitude of arterial pressure and stroke volume were made under 4 conditions: 1) normovolemia; 2) normovolemia + resistance breathing; 3) hypovolemia, and; 4) hypovolemia + resistance breathing. The sensitivity and specificity of breath-to-breath arterial pressure and stroke volume amplitude responses in distinguishing between normovolemia and hypovolemia were assessed via area under the curve (AUC) of receiver operating characteristic (ROC) curves. Results: With resistance breathing the amplitude of systolic arterial pressure (P=0.007), diastolic arterial pressure (P<0.001), and mean arterial pressure (P<0.001) increased during hypovolemia vs. normovolemia, and the amplitude of stroke volume decreased (P=0.002). In distinguishing between normovolemia and hypovolemia, the ROC AUC were >0.86 for breath-by-breath mean, maximum and minimum stroke volume responses, and 0.77 for the amplitude response. The ROC AUC for mean arterial pressure amplitude was 0.88, and 0.64, 0.54, and 0.72 for the mean, maximum and minimum responses. Conclusions: The dynamic responses of arterial pressure and stroke volume with resistance breathing during hypovolemia show promise as a diagnostic tool for detection of hypovolemia in humans.
    Subject
    resistance breathing
    detection
    Blood Pressure
    Respiration
    Blood Volume
    Hypovolemia
    URI
    https://hdl.handle.net/20.500.12503/31158
    Collections
    • School of Biomedical Sciences
    • Theses and Dissertations

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of UNTHSC ScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV