Publications -- Gulab Zode

Permanent URI for this collectionhttps://hdl.handle.net/20.500.12503/31718

This collection is limited to articles published under the terms of a creative commons license or other open access publishing agreement since 2016. It is not intended as a complete list of the author's works.

Browse

Recent Submissions

Now showing 1 - 7 of 7
  • Item
    Modulation of Mitochondrial Metabolic Parameters and Antioxidant Enzymes in Healthy and Glaucomatous Trabecular Meshwork Cells with Hybrid Small Molecule SA-2
    (MDPI, 2023-07-29) Amankwa, Charles E.; Young, Olivia; DebNath, Biddut; Gondi, Sudershan R.; Rangan, Rajiv; Ellis, Dorette Z.; Zode, Gulab S.; Stankowska, Dorota L.; Acharya, Suchismita
    Oxidative stress (OS)-induced mitochondrial damage is a risk factor for primary open-angle glaucoma (POAG). Mitochondria-targeted novel antioxidant therapies could unearth promising drug candidates for the management of POAG. Previously, our dual-acting hybrid molecule SA-2 with nitric oxide-donating and antioxidant activity reduced intraocular pressure and improved aqueous humor outflow in rodent eyes. Here, we examined the mechanistic role of SA-2 in trabecular meshwork (TM) cells in vitro and measured the activity of intracellular antioxidant enzymes during OS. Primary human TM cells isolated from normal (hNTM) or glaucomatous (hGTM) post-mortem donors and transformed glaucomatous TM cells (GTM-3) were used for in vitro assays. We examined the effect of SA-2 on oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in vitro using Seahorse Analyzer with or without the oxidant, tert-butyl hydroperoxide (TBHP) treatment. Concentrations of total antioxidant enzymes, catalase (CAT), malondialdehyde (MDA), and glutathione peroxidase (GPx) were measured. We observed significant protection of both hNTM and hGTM cells from TBHP-induced cell death by SA-2. Antioxidant enzymes were elevated in SA-2-treated cells compared to TBHP-treated cells. In addition, SA-2 demonstrated an increase in mitochondrial metabolic parameters. Altogether, SA-2 protected both normal and glaucomatous TM cells from OS via increasing mitochondrial energy parameters and the activity of antioxidant enzymes.
  • Item
    Expression of Mutant Myocilin Induces Abnormal Intracellular Accumulation of Selected Extracellular Matrix Proteins in the Trabecular Meshwork
    (Association for Research in Vision and Ophthalmology, 2016-11-01) Kasetti, Ramesh B.; Phan, Tien N.; Millar, J. Cameron; Zode, Gulab S.
    PURPOSE: Abnormal accumulation of extracellular matrix (ECM) in the trabecular meshwork (TM) is associated with decreased aqueous humor outflow facility and IOP elevation in POAG. Previously, we have developed a transgenic mouse model of POAG (Tg-MYOCY437H) by expressing human mutant myocilin (MYOC), a known genetic cause of POAG. The purpose of this study is to examine whether expression of mutant myocilin leads to reduced outflow facility and abnormal ECM accumulation in Tg-MYOCY437H mice and in cultured human TM cells. METHODS: Conscious IOP was measured at various ages of Tg-MYOCY437H mice using a rebound tonometer. Outflow facility was measured in 10-month-old Tg-MYOCY437H mice. Selected ECM proteins were examined in human TM-3 cells stably expressing mutant myocilin and primary human TM cells (n = 4) as well as in the TM of Tg-MYOCY437H mice by real-time PCR, Western blotting, and immunostaining. Furthermore, TM cells expressing WT or mutant myocilin were treated with 5 mM sodium 4-phenylbutyrate (PBA), and ECM proteins were examined by Western blot and immunostaining. RESULTS: Starting from 3 months of age, Tg-MYOCY437H mice exhibited significant IOP elevation compared with wild-type (WT) littermates. Outflow facility was significantly reduced in Tg-MYOCY437H mice (0.0195 mul/min/mm Hg in Tg-MYOCY437H vs. 0.0332 mul/min/mm Hg in WT littermates). Increased accumulation of fibronectin, elastin, and collagen type IV and I was observed in the TM of Tg-MYOCY437H mice compared with WT littermates. Furthermore, increased ECM proteins were also associated with induction of endoplasmic reticulum (ER) stress markers, GRP78 and CHOP in the TM of Tg-MYOCY437H mice. Human TM-3 cells stably expressing DsRed-tagged Y437H mutant MYOC exhibited inhibition of myocilin secretion and its intracellular accumulation compared with TM cells expressing WT MYOC. Expression of mutant MYOC in TM-3 cells or human primary TM cells induced ER stress and also increased intracellular protein levels of fibronectin, elastin, laminin, and collagen IV and I. In addition, TM-3 cells expressing mutant myocilin exhibited reduced active forms of matrix metalloproteinase (MMP)-2 and MMP-9 in conditioned medium compared with TM-3 cells expressing WT myocilin. Interestingly, both intracellularly accumulated fibronectin and collagen I colocalized with mutant myocilin and also with ER marker KDEL further suggesting intracellular accumulation of these proteins in the ER of TM cells. Furthermore, reduction of ER stress via PBA decreased selected ECM proteins in primary TM cells. CONCLUSIONS: These studies demonstrate that mutant myocilin induces abnormal ECM accumulation in the ER of TM cells, which may be responsible for reduced outflow facility and IOP elevation in myocilin-associated glaucoma.
  • Item
    ATF4 leads to glaucoma by promoting protein synthesis and ER client protein load
    (Springer Nature, 2020-11-05) Kasetti, Ramesh B.; Patel, Pinkal D.; Maddineni, Prabhavathi; Patil, Shruti; Kiehlbauch, Charles; Millar, J. Cameron; Searby, Charles C.; Raghunathan, Vijaykrishna; Sheffield, Val C.; Zode, Gulab S.
    The underlying pathological mechanisms of glaucomatous trabecular meshwork (TM) damage and elevation of intraocular pressure (IOP) are poorly understood. Here, we report that the chronic endoplasmic reticulum (ER) stress-induced ATF4-CHOP-GADD34 pathway is activated in TM of human and mouse glaucoma. Expression of ATF4 in TM promotes aberrant protein synthesis and ER client protein load, leading to TM dysfunction and cell death. These events lead to IOP elevation and glaucomatous neurodegeneration. ATF4 interacts with CHOP and this interaction is essential for IOP elevation. Notably, genetic depletion or pharmacological inhibition of ATF4-CHOP-GADD34 pathway prevents TM cell death and rescues mouse models of glaucoma by reducing protein synthesis and ER client protein load in TM cells. Importantly, glaucomatous TM cells exhibit significantly increased protein synthesis along with induction of ATF4-CHOP-GADD34 pathway. These studies indicate a pathological role of ATF4-CHOP-GADD34 pathway in glaucoma and provide a possible treatment for glaucoma by targeting this pathway.
  • Item
    CNS axonal degeneration and transport deficits at the optic nerve head precede structural and functional loss of retinal ganglion cells in a mouse model of glaucoma
    (BioMed Central Ltd., 2020-08-27) Maddineni, Prabhavathi; Kasetti, Ramesh B.; Patel, Pinkal D.; Millar, J. Cameron; Kiehlbauch, Charles; Clark, Abbot F.; Zode, Gulab S.
    BACKGROUND: Glaucoma is a leading neurodegenerative disease affecting over 70 million individuals worldwide. Early pathological events of axonal degeneration and retinopathy in response to elevated intraocular pressure (IOP) are limited and not well-defined due to the lack of appropriate animal models that faithfully replicate all the phenotypes of primary open angle glaucoma (POAG), the most common form of glaucoma. Glucocorticoid (GC)-induced ocular hypertension (OHT) and its associated iatrogenic open-angle glaucoma share many features with POAG. Here, we characterized a novel mouse model of GC-induced OHT for glaucomatous neurodegeneration and further explored early pathological events of axonal degeneration in response to elevated IOP. METHODS: C57BL/6 J mice were periocularly injected with either vehicle or the potent GC, dexamethasone 21-acetate (Dex) once a week for 10 weeks. Glaucoma phenotypes including IOP, outflow facility, structural and functional loss of retinal ganglion cells (RGCs), optic nerve (ON) degeneration, gliosis, and anterograde axonal transport deficits were examined at various stages of OHT. RESULTS: Prolonged treatment with Dex leads to glaucoma in mice similar to POAG patients including IOP elevation due to reduced outflow facility and dysfunction of trabecular meshwork, progressive ON degeneration and structural and functional loss of RGCs. Lowering of IOP rescued Dex-induced ON degeneration and RGC loss, suggesting that glaucomatous neurodegeneration is IOP dependent. Also, Dex-induced neurodegeneration was associated with activation of astrocytes, axonal transport deficits, ON demyelination, mitochondrial accumulation and immune cell infiltration in the optic nerve head (ONH) region. Our studies further show that ON degeneration precedes structural and functional loss of RGCs in Dex-treated mice. Axonal damage and transport deficits initiate at the ONH and progress toward the distal end of ON and target regions in the brain (i.e. superior colliculus). Most of anterograde transport was preserved during initial stages of axonal degeneration (30% loss) and complete transport deficits were only observed at the ONH during later stages of severe axonal degeneration (50% loss). CONCLUSIONS: These findings indicate that ON degeneration and transport deficits at the ONH precede RGC structural and functional loss and provide a new potential therapeutic window for rescuing neuronal loss and restoring health of damaged axons in glaucoma.
  • Item
    Increased synthesis and deposition of extracellular matrix proteins leads to endoplasmic reticulum stress in the trabecular meshwork
    (Springer Nature, 2017-11-02) Kasetti, Ramesh B.; Maddineni, Prabhavathi; Millar, J. Cameron; Clark, Abbot F.; Zode, Gulab S.
    Increased synthesis and deposition of extracellular matrix (ECM) proteins in the trabecular meshwork (TM) is associated with TM dysfunction and intraocular pressure (IOP) elevation in glaucoma. However, it is not understood how ECM accumulation leads to TM dysfunction and IOP elevation. Using a mouse model of glucocorticoid (GC)-induced glaucoma, primary human TM cells and human post-mortem TM tissues, we show that increased ECM accumulation leads to endoplasmic reticulum (ER) stress in the TM. The potent GC, dexamethasone (Dex) increased the secretory protein load of ECM proteins in the ER of TM cells, inducing ER stress. Reduction of fibronectin, a major regulator of ECM structure, prevented ER stress in Dex-treated TM cells. Overexpression of fibronectin via treatment with cellular fibronectin also induced chronic ER stress in primary human TM cells. Primary human TM cells grown on ECM derived from Dex-treated TM cells induced ER stress markers. TM cells were more prone to ER stress from ECM accumulation compared to other ocular cell types. Moreover, increased co-localization of ECM proteins with ER stress markers was observed in human post-mortem glaucomatous TM tissues. These data indicate that ER stress is associated with increased ECM accumulation in mouse and human glaucomatous TM tissues.
  • Item
    A Novel Mouse Model of TGFbeta2-Induced Ocular Hypertension Using Lentiviral Gene Delivery
    (MDPI, 2022-06-21) Patil, Shruti V.; Kasetti, Ramesh B.; Millar, J. Cameron; Zode, Gulab S.
    Glaucoma is a multifactorial disease leading to irreversible blindness. Primary open-angle glaucoma (POAG) is the most common form and is associated with the elevation of intraocular pressure (IOP). Reduced aqueous humor (AH) outflow due to trabecular meshwork (TM) dysfunction is responsible for IOP elevation in POAG. Extracellular matrix (ECM) accumulation, actin cytoskeletal reorganization, and stiffening of the TM are associated with increased outflow resistance. Transforming growth factor (TGF) beta2, a profibrotic cytokine, is known to play an important role in the development of ocular hypertension (OHT) in POAG. An appropriate mouse model is critical in understanding the underlying molecular mechanism of TGFbeta2-induced OHT. To achieve this, TM can be targeted with recombinant viral vectors to express a gene of interest. Lentiviruses (LV) are known for their tropism towards TM with stable transgene expression and low immunogenicity. We, therefore, developed a novel mouse model of IOP elevation using LV gene transfer of active human TGFbeta2 in the TM. We developed an LV vector-encoding active hTGFbeta2(C226,228S) under the control of a cytomegalovirus (CMV) promoter. Adult C57BL/6J mice were injected intravitreally with LV expressing null or hTGFbeta2(C226,228S). We observed a significant increase in IOP 3 weeks post-injection compared to control eyes with an average delta change of 3.3 mmHg. IOP stayed elevated up to 7 weeks post-injection, which correlated with a significant drop in the AH outflow facility (40.36%). Increased expression of active TGFbeta2 was observed in both AH and anterior segment samples of injected mice. The morphological assessment of the mouse TM region via hematoxylin and eosin (H&E) staining and direct ophthalmoscopy examination revealed no visible signs of inflammation or other ocular abnormalities in the injected eyes. Furthermore, transduction of primary human TM cells with LV_hTGFbeta2(C226,228S) exhibited alterations in actin cytoskeleton structures, including the formation of F-actin stress fibers and crossed-linked actin networks (CLANs), which are signature arrangements of actin cytoskeleton observed in the stiffer fibrotic-like TM. Our study demonstrated a mouse model of sustained IOP elevation via lentiviral gene delivery of active hTGFbeta2(C226,228S) that induces TM dysfunction and outflow resistance.
  • Item
    Consensus Recommendation for Mouse Models of Ocular Hypertension to Study Aqueous Humor Outflow and Its Mechanisms
    (ARVO Journals, 2022-02) McDowell, Colleen M.; Kizhatil, Krishnakumar; Elliott, Michael H.; Overby, Darryl R.; van Batenburg-Sherwood, Joseph; Millar, J. Cameron; Kuehn, Markus H.; Zode, Gulab S.; Acott, Ted S.; Anderson, Michael G.; Bhattacharya, Sanjoy K.; Bertrand, Jacques A.; Borras, Terete; Bovenkamp, Diane E.; Cheng, Lin; Danias, John; De Ieso, Michael Lucio; Du, Yiqin; Faralli, Jennifer A.; Fuchshofer, Rudolph; Ganapathy, Preethi S.; Gong, Haiyan; Herberg, Samuel; Hernandez, Humberto; Humphries, Peter; John, Simon W. M.; Kaufman, Paul L.; Keller, Kate E.; Kelley, Mary J.; Kelly, Ruth A.; Krizaj, David; Kumar, Ajay; Leonard, Brian C.; Lieberman, Raquel L.; Liton, Paloma; Liu, Yutao; Liu, Katy C.; Lopez, Navita N.; Mao, Weiming; Mavlyutov, Timur A.; McDonnell, Fiona; McLellan, Gillian J.; Mzyk, Philip; Nartey, Andrews; Pasquale, Louis R.; Patel, Gaurang C.; Pattabiraman, Padmanabhan P.; Peters, Donna M.; Raghunathan, Vijaykrishna; Rao, Ponugoti Vasantha; Rayana, Naga; Raychaudhuri, Urmimala; Reina-Torres, Ester; Ren, Ruiyi; Rhee, Douglas; Chowdhury, Uttio Roy; Samples, John R.; Samples, E. Griffen; Sharif, Najam; Schuman, Joel S.; Sheffield, Val C.; Stevenson, Cooper H.; Soundararajan, Avinash; Subramanian, Preeti; Sugali, Chenna Kesavulu; Sun, Yang; Toris, Carol B.; Torrejon, Karen Y.; Vahabikashi, Amir; Vranka, Janice A.; Wang, Ting; Willoughby, Colin E.; Xin, Chen; Yun, Hongmin; Zhang, Hao F.; Fautsch, Michael P.; Tamm, Ernst R.; Clark, Abbot F.; Ethier, C. Ross; Stamer, W. Daniel
    Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings.