Blood Inflammatory Exosomes with Age Prime Microglia through Complement Signaling for Negative Stroke Outcomes

Date

2020-05

Authors

Zhang, Hongxia

ORCID

0000-0003-1594-6707 (Zhang, Hongxia)

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The systemic inflammatory milieu plays an important role in the age-related decline of functional integrity, but its contribution to age-related disease (e.g., stroke) remains largely unknown. Here, we found that activated complement molecules (C1q, C3a, C3b) in serum exosomes increased with age, whereas CD46, a C3b/C4b-inactivating factor, was higher in serum exosomes from young rats. These serum inflammatory exosomes passed the blood-brain barrier and primed the microglial response that led to exacerbation of synaptic loss and motor deficits after ischemic stroke via microglial C3a receptor (C3aR). When aged rats were exposed to serum exosomes from young rats, microglia-mediated synaptic loss was reduced and motor deficits after stroke were improved. Administration of C3aR inhibitor or microglial depletion attenuated synaptic loss associated with the treatment of serum exosome from aged rats, in parallel with improved post-stroke outcome. Our data suggest that peripheral circulating old exosomes act as inflammatory mediators and influence ischemic stroke outcome through a complement-microglia axis.

Description

Citation