Publications -- Michael Salvatore

Permanent URI for this collectionhttps://hdl.handle.net/20.500.12503/31848

This collection is limited to articles published under the terms of a creative commons license or other open access publishing agreement since 2016. It is not intended as a complete list of the author's works.

Browse

Recent Submissions

Now showing 1 - 5 of 5
  • Item
    Dopamine Signaling in Substantia Nigra and Its Impact on Locomotor Function-Not a New Concept, but Neglected Reality
    (MDPI, 2024-01-23) Salvatore, Michael F.
    The mechanistic influences of dopamine (DA) signaling and impact on motor function are nearly always interpreted from changes in nigrostriatal neuron terminals in striatum. This is a standard practice in studies of human Parkinson's disease (PD) and aging and related animal models of PD and aging-related parkinsonism. However, despite dozens of studies indicating an ambiguous relationship between changes in striatal DA signaling and motor phenotype, this perseverating focus on striatum continues. Although DA release in substantia nigra (SN) was first reported almost 50 years ago, assessment of nigral DA signaling changes in relation to motor function is rarely considered. Whereas DA signaling has been well-characterized in striatum at all five steps of neurotransmission (biosynthesis and turnover, storage, release, reuptake, and post-synaptic binding) in the nigrostriatal pathway, the depth of such interrogations in the SN, outside of cell counts, is sparse. However, there is sufficient evidence that these steps in DA neurotransmission in the SN are operational and regulated autonomously from striatum and are present in human PD and aging and related animal models. To complete our understanding of how nigrostriatal DA signaling affects motor function, it is past time to include interrogation of nigral DA signaling. This brief review highlights evidence that changes in nigral DA signaling at each step in DA neurotransmission are autonomous from those in striatum and changes in the SN alone can influence locomotor function. Accordingly, for full characterization of how nigrostriatal DA signaling affects locomotor activity, interrogation of DA signaling in SN is essential.
  • Item
    Establishing Equivalent Aerobic Exercise Parameters Between Early-Stage Parkinson's Disease and Pink1 Knockout Rats
    (IOS Press, 2022-06-28) Salvatore, Michael F.; Soto, Isabel; Kasanga, Ella A.; James, Rachael; Shifflet, Marla K.; Doshier, Kirby; Little, Joel T.; John, Joshia; Alphonso, Helene M.; Cunningham, J. Thomas; Nejtek, Vicki A.
    BACKGROUND: Rodent Parkinson's disease (PD) models are valuable to interrogate neurobiological mechanisms of exercise that mitigate motor impairment. Translating these mechanisms to human PD must account for physical capabilities of the patient. OBJECTIVE: To establish cardiovascular parameters as a common metric for cross-species translation of aerobic exercise impact. METHOD: We evaluated aerobic exercise impact on heart rate (HR) in 21 early-stage PD subjects (Hoehn Yahr /=3 months, >/=3x/week. In 4-month-old Pink1 knockout (KO) rats exercising in a progressively-increased treadmill speed regimen, we determined a specific treadmill speed that increased HR to an extent similar in human subjects. RESULTS: After completing aerobic exercise for approximately 30 min, PD subjects had increased HR approximately 35% above baseline ( approximately 63% maximum HR). Motor and cognitive test results indicated the exercising subjects completed the timed up and go (TUG) and trail-making test (TMT-A) in significantly less time versus exercise-naive PD subjects. In KO and age-matched wild-type (WT) rats, treadmill speeds of 8-10 m/min increased HR up to 25% above baseline ( approximately 67% maximum HR), with no further increases up to 16 m/min. Exercised KO, but not WT, rats showed increased locomotor activity compared to an age-matched exercise-naive cohort at 5 months old. CONCLUSION: These proof-of-concept results indicate HR is a cross-species translation parameter to evaluate aerobic exercise impact on specific motor or cognitive functions in human subjects and rat PD models. Moreover, a moderate intensity exercise regimen is within the physical abilities of early-stage PD patients and is therefore applicable for interrogating neurobiological mechanisms in rat PD models.
  • Item
    Cardiovascular Metrics Associated With Prevention of Aging-Related Parkinsonian Signs Following Exercise Intervention in Sedentary Older Rats
    (Frontiers Media S.A., 2021-12-15) Kasanga, Ella A.; Little, Joel; McInnis, Tamara R.; Bugnariu, Nicoleta; Cunningham, J. Thomas; Salvatore, Michael F.
    Preservation of motor capabilities is vital to maintaining independent daily living throughout a person's lifespan and may mitigate aging-related parkinsonism, a progressive and prevalent motor impairment. Physically active lifestyles can mitigate aging-related motor impairment. However, the metrics of physical activity necessary for mitigating parkinsonian signs are not established. Consistent moderate intensity (~10 m/min) treadmill exercise can reverse aging-related parkinsonian signs by 20 weeks in a 2-week on, 2-week off, regimen in previously sedentary advanced middle-aged rats. In this study, we initiated treadmill exercise in sedentary 18-month-old male rats to address two questions: (1) if a rest period not longer than 1-week off exercise, with 15 exercise sessions per month, could attenuate parkinsonian signs within 2 months after exercise initiation, and the associated impact on heart rate (HR) and mean arterial pressure (MAP) and (2) if continuation of this regimen, up to 20 weeks, will be associated with continual prevention of parkinsonian signs. The intensity and frequency of treadmill exercise attenuated aging-related parkinsonian signs by 8 weeks and were maintained till 23 months old. The exercise regimen increased HR by 25% above baseline and gradually reduced pre-intervention MAP. Together, these studies indicate that a practicable frequency and intensity of exercise reduces parkinsonian sign severity commensurate with a modest increase in HR after exercise. These cardiovascular changes provide a baseline of metrics, easily measured in humans, for predictive validity that practicable exercise intensity and schedule can be initiated in previously sedentary older adults to delay the onset of aging-related parkinsonian signs.
  • Item
    Aging-related limit of exercise efficacy on motor decline
    (PLOS, 2017-11-27) Arnold, Jennifer C.; Cantu, Mark A.; Kasanga, Ella A.; Nejtek, Vicki A.; Papa, Evan V.; Bugnariu, Nicoleta; Salvatore, Michael F.
    Identifying lifestyle strategies and allied neurobiological mechanisms that reduce aging-related motor impairment is imperative, given the accelerating number of retirees and increased life expectancy. A physically active lifestyle prior to old age can reduce risk of debilitating motor decline. However, if exercise is initiated after motor decline has begun in the lifespan, it is unknown if aging itself may impose a limit on exercise efficacy to decelerate further aging-related motor decline. In Brown-Norway/Fischer 344 F1 hybrid (BNF) rats, locomotor activity begins to decrease in middle age (12-18 months). One mechanism of aging-related motor decline may be decreased expression of GDNF family receptor, GFRalpha-1, which is decreased in substantia nigra (SN) between 12 and 30 months old. Moderate exercise, beginning at 18 months old, increases nigral GFRalpha-1 and tyrosine hydroxylase (TH) expression within 2 months. In aged rats, replenishing aging-related loss of GFRalpha-1 in SN increases TH in SN alone and locomotor activity. A moderate exercise regimen was initiated in sedentary male BNF rats in a longitudinal study to evaluate if exercise could attenuate aging-related motor decline when initiated at two different ages in the latter half of the lifespan (18 or 24 months old). Motor decline was reversed in the 18-, but not 24-month-old, cohort. However, exercise efficacy in the 18-month-old group was reduced as the rats reached 27 months old. GFRalpha-1 expression was not increased in either cohort. These studies suggest exercise can decelerate motor decline when begun in the latter half of the lifespan, but its efficacy may be limited by age of initiation. Decreased plasticity of GFRalpha-1 expression following exercise may limit its efficacy to reverse motor decline.
  • Item
    Is there a Neurobiological Rationale for the Utility of the Iowa Gambling Task in Parkinson's Disease?
    (IOS Press, 2021-04-13) Salvatore, Michael F.; Soto, Isabel; Alphonso, Helene M.; Cunningham, Rebecca L.; James, Rachael; Nejtek, Vicki A.
    Up to 23% of newly diagnosed, non-demented, Parkinson's disease (PD) patients experience deficits in executive functioning (EF). In fact, EF deficits may occur up to 39-months prior to the onset of motor decline. Optimal EF requires working memory, attention, cognitive flexibility, and response inhibition underlying appropriate decision-making. The capacity for making strategic decisions requires inhibiting imprudent decisions and are associated with noradrenergic and dopaminergic signaling in prefrontal and orbitofrontal cortex. Catecholaminergic dysfunction and the loss of noradrenergic and dopaminergic cell bodies early in PD progression in the aforementioned cortical areas likely contribute to EF deficits resulting in non-strategic decision-making. Thus, detecting these deficits early in the disease process could help identify a significant portion of individuals with PD pathology (14-60%) before frank motor impairment. A task to evaluate EF in the domain of non-strategic decision-making might be useful to indicate the moderate loss of catecholamines that occurs early in PD pathology prior to motor decline and cognitive impairment. In this review, we focus on the potential utility of the Iowa Gambling Task (IGT) for this purpose, given significant overlap between in loss of dopaminergic and noradrenergic cells bodies in early PD and the deficits in catecholamine function associated with decreased EF. As such, given the loss of catecholamines already well-underway after PD diagnosis, we evaluate the potential utility of the IGT to identify the risk of therapeutic non-compliance and a potential companion approach to detect PD in premotor stages.