AT1R sniffer cells detects spontaneous and evoke release of AngII in the AP-NTS pathway




Paundralingga, Obed
Gusson Shimoura Almeida Lima, Caroline
Farmer, George
Cunningham, J. Thomas


Journal Title

Journal ISSN

Volume Title



Although angiontesin II (AngII) has multiple actions in the brain, the existence of a brain RAS is still controversial. Our previous studies have used angiotensin sensitive sniffer cells to test whether angiotensin peptides are released from subfornical organ projections to the median preoptic nucleus. In these studies, we examined another pathway involving the area postrema (AP) and nucleus of tractus solitarius (NTS). The AP is angiotensin sensitive and projects to the NTS, so the purpose of this study was to test for the release of angiotensin peptides in the NTS after stimulation of AP. Sniffer cells were produced by transfecting Chinese Hamster Ovary cells with commercially available plasmids for the angiotensin 1a receptor (Origene Tech.) and R-GECO (Addgene #32462). These sniffer cells are sensitive to AngII and III but not angiotensin 1-7, bradykinin, or neurotransmitters such as glutamate or acetylcholine. Sniffer cells were placed on coronal brainstem slices containing both AP and NTS from adult male Sprague and Dawley rats. Changes in fluorescent intensity of sniffer cells in the NTS was determined following electric stimulation of the AP (100Hz, 10ms, 1mA). Electrical stimulation increased fluorescence intensity 134 ± 11%, n=13 of sniffer cells on the NTS with a mean response latency of 4 ± 0.7sec, n=13. Some cells demonstrated spontaneous changes in fluorescence intensity 2±0.1, n=28 that were not observed in cells located outside of the NTS. The results indicate that sniffer cells placed on the NTS demonstrated evidence of spontaneous and evoked release of angiotensin peptides.