Biological Characteristics of Lens Epithelial Cells from Grx1 and Grx2 Double Knockout Mice

Date

2022

Authors

Zhang, Jinmin
Yu, Yu
Lal, Kevin
Dang, Terry
Ezugwu, Chimdindu
Tran, Myhoa
Wu, Hongli

ORCID

0000-0001-6424-0642 (Lal, Kevin)

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Purpose: Glutaredoxins are glutathione (GSH) dependent enzymes that play an important role in repairing oxidized proteins, preventing subsequent protein misfolding and disrupting protein aggregation. The Grx system has two major isozymes: glutaredoxin 1 (Grx1) and the recently discovered glutaredoxin 2 (Grx2). To achieve a comprehensive understanding of the Grx system in the lens, our lab recently created a Grx1 and Grx2 double knockout (DKO) mouse model to observe how the double deletion of the enzymes may affect the lens epithelial cell (LEC) survival and lens transparency. Methods: Primary LECs were cultured from wild-type (WT) and DKO mice. Cell proliferation was tested via various assay kits, and cell cycle distribution was evaluated using flow cytometry analysis. Cell apoptotic markers including Bcl-2, Bax, and caspase 3 were detected using Western Blot. The mitochondrial function was evaluated via ATP concentration. Cytoskeletal arrangement and its intercellular connection were also examined by using fluorescent microscopy. Results: Compared to WT cells, DKO cells displayed a much slower growth. The number of DKO cells arrested in the M phase was twofold higher than that of WT cells. The population of DKO cells arrested in the S phase was 50% less than that of WT cells. For the apoptotic pathway, we found DKO cells have higher levels of Bax and cytochrome c with lower ATP production. Furthermore, we also found that DKO cells had higher levels of vimentin expression, which may lead to cytoskeleton reorganization and polarity. Conclusions: In conclusion, our data suggest that Grx function loss may inhibit cell proliferation, disrupt the normal cell cycle, trigger apoptosis pathway, and damage mitochondrial functions.

Description

Keywords

Citation

Rights

License

Collections