Leucine-Enkephalin and Sympathetic Control of Heart Rate




Stanfill, Amber


Journal Title

Journal ISSN

Volume Title



Stanfill, Amber A., Leucine-enkephalin and Sympathetic Control of Heart Rate. Master of Science (Biomedical Sciences), December, 2001, 51 pp., 1 table, 4 figures, references, 48 titles. The following study examined the role of leucine-enkephalin in the sympathetic regulation of the cardiac pacemaker. Leucine-enkephalin (0.3 mM) was administered, by microdialysis into the interstitium of the sinoatrial node in 10 mongrel dogs in conjunction with either sympathetic nerve stimulation or infused norepinephrine. In study one, the right cardiac sympathetic nerves were isolated as they exit the stellate ganglion and stimulated to produce graded (low, 20-30; high 40-50 bpm) increases in heart rate. Once stimulation frequencies were determined, leucine-enkephalin (0.3mM) was added to the dialysis inflow and perfused at 5: 1/min thereafter. The sympathetic stimulations were repeated after 5 and 20 min exposure to leucine-enkephalin. The resulting increases in heart rate during sympathetic stimulation were attenuated at both low (18.2 ±1.3 to 11.4 ±1.4 bpm) and high (45 ±1.5 to 22.8 ±1.5 bpm) frequency stimulation. The degree of inhibition was nearly identical after 20 minutes exposure providing no evidence for a progressively evolving response and for desensitization. Vagal function was also evaluated at 5 and 20 min by stimulating the right cervical vagus at 1 and 3 Hz. Leucine-enkephalin reduced the vagal bradycardia approximately 50% at both time intervals. The administration of the delta-selective opioid antagonist, naltrindole, restored only one third of the sympathetically medicated tachycardia. The same dose of naltrindole completely reversed the coincident vagolytic of leucine-enkephalin. These observations suggested that the sympatholytic effect was either non-opioid or mediated by a different opioid receptor subtype. Study two was conducted to determine if the sympatholytic effect was prejunctional and post-junctional in character. Norepinephrine was added to the dialysis inflow into the SA node in a concentration (6-9 μM) sufficient to produce an intermediate increase in heart rate. The average increase in heart rate was 35.2 ±1.8 bpm. Leucine-enkephalin was then combined with norepinephrine and sympathetic and parasympathetic responses were recorded at 5-min intervals for 20 minutes. The tachycardia mediated by added norepinephrine was unaltered by leucine-enkephalin or the subsequent addition of naltrindole. At the same time intervals, vagal control of heart rate was reduced by more than 50% and then completely restored by naltrindole. When combined with observations in study one, the data support the conclusion that the local nodal sympatholytic effect of leucine-enkephalin was the result of a reduction in the effective interstitial concentration of norepinephrine and not the result of a post-junctional interaction between leucine-enkephalin and norepinephrine.