Brain Derived Neurotrophic Factor Regulates Müller Cell Survival via MAPK and PI3K Pathways
Date
Authors
ORCID
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Taylor, Sara A., Brain Derived Neurotrophic Factor Regulates Müller Cell Survival via MAPK and PI3K Pathways. Master of Science (Biomedical Sciences), January, 2003, 112 pp., 4 tables, 39 illustrations, bibliography, 68 titles. Purpose: Glutamate has been implicated in many pathologies affecting the Central Nervous System including those in the retina, but the exact nature of the role of glutamate in neuronal degeneration remains unclear. In the retina. Müller cells are resistant to glutamate insults that are normally toxic to other cells of the retina, however the molecular and biochemical mechanisms that control their death or survival are not well understood. We used a series of pharmacological inhibitors and molecular biology agents on cultured Müller cells to dissect two key signaling pathways normally involved in cell survival, the Mitogen Activated Protein Kinase – Extracellularly Regulated Kinase (MAPK(ERK) pathway and the Phosphatidylinositide 3 Kinase (PI3K) pathway. Since preliminary data in our laboratory showed that Müller cells upregulate their secretion of neurotrophins including Brain Derived Growth Factor (BDNF) in response to glutamate treatment, we also examined the effect of BDNF on the activation of these two signaling pathways. Methods: Early passaged Müller cells were treated with various concentrations (5 nM -50 μM) of inhibitions of the MAPK(ERK) pathway (GW5074, U0126, and PD98059) or with various concentrations (1-50 μM) of inhibitors of the PI3K pathway (LY294002 or Akt inhibitor) in the presence and absence of 50 ng/ml of BDNF for 24 hours. These experiments were repeated in Müller cells transfected with either NFκB or Bc12 DNA. Cell cultures were then analyzed for surviving cells with an MTS/PMS assay, a colorametric method for determining the number of viable cells in a proliferation assay. Results: The MAPK (ERK) inhibitors PD98059 and GW5074 both resulted in decrease in Müller cell survival. PD98059 did not decrease Müller cell survival until concentrations were high enough to suppress ERK2 phosphorylation. Müller cells transfected with NFκB or Bc12 DNA were able to resist treatment with concentrations of PD98059 that reduced cell number in untransfected cells. The PI3K inhibitor LY294002 also resulted in significant decreases in Müller cell survival in both untransfected cells and cells transfected with NFκB or Bc12 DNA. Treatment with an inhibitor farther down in the PI3K pathway, Akt inhibitor, did not significantly decrease Müller cell survival. Finally, BDNF was not able to increase cell survival in Müller cells treated with PD98059 or U0126, although it did increase the survival of cells treated wit GW5074. BDNF was also able to reverse the decrease in cell survival caused by LY294002 in both untransfected Müller cells or Müller cells transfected with NFκB or Bc12 DNA. Conclusions: Our data shows that Mitogen Activated Protein Kinase – Extracellularly Regulated Kinase (MAPK(ERK) and Phosphatidylinositide 3 Kinase (PI3K) are both essential for Müller cell survival. There is modulation between the pathways and they may interconnected far upstream at a protein previously associated with only the MAPK(ERK) pathway. These results are consistent with a role for both pathways in Müller cell survival.