Endothelin-1-Induced Signaling Involved in Extracellular Matrix Remodeling




He, Shaoqing


Journal Title

Journal ISSN

Volume Title



ET-1-Induced Signaling in ECM Remodeling in Astrocytes. Shaoqing He, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107. ET-1 levels are elevated under pathophysiological conditions, including glaucoma, however, ET-1’s ocular functions are not fully documented. Therefore, ET-1-induced signaling and ECM remodeling in astrocytes and at the optic nerve head were determined in this study. Three signaling pathways, including ERK1/2, PKC, and P13 kinase, were involved in ET-1-medicated cell proliferation of U373MG astrocytoma cells. Blocking one of these pathways completely abolished cell proliferation. It appeared that ERK1/2 activation was involved, but was independent of PKC and P13 kinase activation by ET-1. It was also determined that the ETB receptor was the dominant receptor involved in ERK1/2 phosphorylation and cell proliferation. In addition, ERK1/2 phosphorylation was not transactivated by the EGF receptor by ET-1. The studies also indicated that there was no activation of c/nPKC, although PKC was involved in cell proliferation. In U373MG astrocytoma cells, MAPK-ERK, PKC and P13K pathways appear to exert their roles in parallel without a direct, apparent “cross-talk”. Based on the signaling pathways obtained from U373MG astrocytoma cells, the regulation of MMPs/TIMPs and fibronectin in ET-1-activated human optic nerve head astroctyes (hONAs) was also determined. ET-1 not only induced rapid phosphorylation of ERK1/2 and PKC βI/ βII/δ but also increased the activity of MMP-2 and the expression of TIMP=1 and 2. The activity of MMP-2 was enhanced in the presence of inhibitors of MAPK or PKC in hONAs, whereas the expression of TIMP-1 and 2 was abolished. ET-1 increased the soluble fibronectin (FN) expression as well as FN matrix formation, however, the expression and deposition of FN were MAPK- and PKC-independent, whereas expression and activity of MMps and TIMPs were MAPK- and PKC-dependent. Therefore, ET-1 shifted the balance of MMPs/TIMPs and substrates that altered the ECM composition and subsequently let to ECM remodeling in activated hONA cells. ET-1’s effects on ECM remodeling at the optic nerve head were also examined following intravitreal administration of ET-1 in rats. The increased expression of MMP-9 and collagen VI was detected in both ETB deficient rats and wildtype Wistar rats post ET-1 intravitreal injection for 2 and 14 days, whereas the deposition of FN and collagen IV was unchanged. There was no significant difference in staining of MMP-9 and collagen VI between ETB deficient rats and wildtype Wistar rats. In this study, ECM remodeling was demonstrated in rats injected with ET-1 into the vitreous. Such changes in the ECM seen in the current study provide additional insight into the mechanisms that might explain the glaucomatous changes observed in ET-1-injection or perfusion models. In summary, ET-1 not only activated several signaling pathways in cell proliferation of astrocytes, but also modulated the expression of ECM molecules in vitro and in vivo, indicating that ET-1 plays a regulatory role in ECM remodeling. These effects coupled with observations that ET-1 levels are elevated in glaucoma patients, suggests that ET-1 may be involved in glaucomatous optic neuropathy.