Publications -- Rita M. Patterson

Permanent URI for this collectionhttps://hdl.handle.net/20.500.12503/31244

This collection is limited to articles published under the terms of a creative commons license or other open access publishing agreement since 2016. It is not intended as a complete list of the author's works.

Browse

Recent Submissions

Now showing 1 - 4 of 4
  • Item
    A pilot case series for concurrent validation of inertial measurement units to motion capture in individuals who use unilateral lower-limb prostheses
    (Sage Publications, 2023-07-13) Finco, M. G.; Patterson, Rita M.; Moudy, Sarah C.
    INTRODUCTION: Inertial measurement units (IMUs) may be viable options to collect gait data in clinics. This study compared IMU to motion capture data in individuals who use unilateral lower-limb prostheses. METHODS: Participants walked with lower-body IMUs and reflective markers in a motion analysis space. Sagittal plane hip, knee, and ankle waveforms were extracted for the entire gait cycle. Discrete points of peak flexion, peak extension, and range of motion were extracted from the waveforms. Stance times were also extracted to assess the IMU software's accuracy at detecting gait events. IMU and motion capture-derived data were compared using absolute differences and root mean square error (RMSE). RESULTS: Five individuals (n = 3 transtibial; n = 2 transfemoral) participated. IMU prosthetic limb data was similar to motion capture (RMSE: waveform
  • Item
    Concurrent surface electromyography and force myography classification during times of prosthetic socket shift and user fatigue
    (Sage Publications, 2017-08-01) Sanford, Joe; Patterson, Rita M.; Popa, Dan O.
    Objective: Surface electromyography has been a long-standing source of signals for control of powered prosthetic devices. By contrast, force myography is a more recent alternative to surface electromyography that has the potential to enhance reliability and avoid operational challenges of surface electromyography during use. In this paper, we report on experiments conducted to assess improvements in classification of surface electromyography signals through the addition of collocated force myography consisting of piezo-resistive sensors. Methods: Force sensors detect intrasocket pressure changes upon muscle activation due to changes in muscle volume during activities of daily living. A heterogeneous sensor configuration with four surface electromyography-force myography pairs was investigated as a control input for a powered upper limb prosthetic. Training of two different multilevel neural perceptron networks was employed during classification and trained on data gathered during experiments simulating socket shift and muscle fatigue. Results: Results indicate that intrasocket pressure data used in conjunction with surface EMG data can improve classification of human intent and control of a powered prosthetic device compared to traditional, surface electromyography only systems. Significance: Additional sensors lead to significantly better signal classification during times of user fatigue, poor socket fit, as well as radial and ulnar wrist deviation. Results from experimentally obtained training data sets are presented.
  • Item
    Soft robotic devices for hand rehabilitation and assistance: a narrative review
    (BioMed Central Ltd., 2018-02-17) Chu, Chia-Ye; Patterson, Rita M.
    Introduction: The debilitating effects on hand function from a number of a neurologic disorders has given rise to the development of rehabilitative robotic devices aimed at restoring hand function in these patients. To combat the shortcomings of previous traditional robotics, soft robotics are rapidly emerging as an alternative due to their inherent safety, less complex designs, and increased potential for portability and efficacy. While several groups have begun designing devices, there are few devices that have progressed enough to provide clinical evidence of their design's therapeutic abilities. Therefore, a global review of devices that have been previously attempted could facilitate the development of new and improved devices in the next step towards obtaining clinical proof of the rehabilitative effects of soft robotics in hand dysfunction. Methods: A literature search was performed in SportDiscus, Pubmed, Scopus, and Web of Science for articles related to the design of soft robotic devices for hand rehabilitation. A framework of the key design elements of the devices was developed to ease the comparison of the various approaches to building them. This framework includes an analysis of the trends in portability, safety features, user intent detection methods, actuation systems, total DOF, number of independent actuators, device weight, evaluation metrics, and modes of rehabilitation. Results: In this study, a total of 62 articles representing 44 unique devices were identified and summarized according to the framework we developed to compare different design aspects. By far, the most common type of device was that which used a pneumatic actuator to guide finger flexion/extension. However, the remainder of our framework elements yielded more heterogeneous results. Consequently, those results are summarized and the advantages and disadvantages of many design choices as well as their rationales were highlighted. Conclusion: The past 3 years has seen a rapid increase in the development of soft robotic devices for hand rehabilitative applications. These mostly preclinical research prototypes display a wide range of technical solutions which have been highlighted in the framework developed in this analysis. More work needs to be done in actuator design, safety, and implementation in order for these devices to progress to clinical trials. It is our goal that this review will guide future developers through the various design considerations in order to develop better devices for patients with hand impairments.
  • Item
    Hearing Loss Contributes to Balance Difficulties in both Younger and Older Adults
    (iMedPub LTD, 2018-04-09) Kowalewski, Victoria; Patterson, Rita M.; Hartos, Jessica; Bugnariu, Nicoleta
    Objective: The number of steps required to regain balance is an easily obtainable clinical outcome measure. This study assessed whether number of steps during loss of balance could identify older adults with hearing loss who have balance deficits. We aimed to answer two questions: 1) Does hearing loss negatively affect the ability to regain balance, as reflected by an increased number of steps needed to respond to a perturbation while simultaneously attending to speech-in-noise; and 2) Do hearing aids improve balance control, reflected by a decrease in number of steps needed to regain balance? Methods: 20 young adults and 20 older adults with normal hearing, and 19 older adults with hearing loss performed an auditory-balance dual-task. Participants were asked to listen and repeat back sentences from a standardized audiology test, while simultaneously responding to backward surface translations. Outcome measures were performed on the auditory test and number of steps needed to regain balance. Repeated measures ANCOVA models were run in using group, time, hearing levels, and perturbation levels as predictors. Results: Auditory scores confirmed difficulty hearing speech-in-noise in older adults with hearing loss and no hearing aids, and in young and older adults with normal hearing and simulated hearing loss. Results showed that group, auditory and balance conditions are significantly related to both outcomes measures and time is not significant for steps. Older adults with hearing loss had a significant increase in number of steps needed to regain balance compared to young adults and older adults with normal hearing. Conclusion: Number of steps may be an appropriate clinical assessment tool for identifying fall risk in older adults with hearing loss. Further research needs to be performed to identify proper assessments and treatment interventions for older adults with hearing loss who have balance deficits.