Publications -- Amalendu Ranjan

Permanent URI for this collectionhttps://hdl.handle.net/20.500.12503/31935

This collection is limited to articles published under the terms of a creative commons license or other open access publishing agreement since 2016. It is not intended as a complete list of the author's works.

Browse

Recent Submissions

Now showing 1 - 3 of 3
  • Item
    Cabazitaxel-Loaded Nanoparticles Reduce the Invasiveness in Metastatic Prostate Cancer Cells: Beyond the Classical Taxane Function
    (MDPI, 2023-02-26) Lampe, Jana B.; Desai, Priyanka P.; Tripathi, Amit K.; Sabnis, Nirupama A.; Chen, Zhe; Ranjan, Amalendu P.; Vishwanatha, Jamboor K.
    Bone-metastatic prostate cancer symbolizes the beginning of the later stages of the disease. We designed a cabazitaxel-loaded, poly (lactic-co-glycolic acid) (PLGA) nanoparticle using an emulsion-diffusion-evaporation technique. Bis (sulfosuccinimidyl) suberate (BS3) was non-covalently inserted into the nanoparticle as a linker for the conjugation of a bone-targeting moiety to the outside of the nanoparticle. We hypothesized that the nanoparticles would have the ability to inhibit the epithelial-to-mesenchymal transition (EMT), invasion, and migration in prostate cancer cells. Targeted, cabazitaxel-loaded nanoparticles attenuated the EMT marker, Vimentin, and led to an increased E-cadherin expression. These changes impart epithelial characteristics and inhibit invasive properties in cancer progression. Consequently, progression to distant sites is also mitigated. We observed the reduction of phosphorylated Src at tyrosine 416, along with increased expression of phosphorylated cofilin at serine 3. These changes could affect migration and invasion pathways in cancer cells. Both increased p-120 catenin and inhibition in IL-8 expression were seen in targeted, cabazitaxel-loaded nanoparticles. Overall, our data show that the targeted, cabazitaxel-loaded nanoparticles can act as a promising treatment for metastatic prostate cancer by inhibiting EMT, invasion, and migration, in prostate cancer cells.
  • Item
    Nasal Tumor Vaccination Protects against Lung Tumor Development by Induction of Resident Effector and Memory Anti-Tumor Immune Responses
    (MDPI, 2023-02-26) Donkor, Michael; Choe, Jamie Y.; Reid, Danielle; Quinn, Byron; Pulse, Mark; Ranjan, Amalendu P.; Chaudhary, Pankaj; Jones, Harlan P.
    Lung metastasis is a leading cause of cancer-related deaths. Here, we show that intranasal delivery of our engineered CpG-coated tumor antigen (Tag)-encapsulated nanoparticles (NPs)-nasal nano-vaccine-significantly reduced lung colonization by intravenous challenge of an extra-pulmonary tumor. Protection against tumor-cell lung colonization was linked to the induction of localized mucosal-associated effector and resident memory T cells as well as increased bronchiolar alveolar lavage-fluid IgA and serum IgG antibody responses. The nasal nano-vaccine-induced T-cell-mediated antitumor mucosal immune response was shown to increase tumor-specific production of IFN-gamma and granzyme B by lung-derived CD8(+) T cells. These findings demonstrate that our engineered nasal nano-vaccine has the potential to be used as a prophylactic approach prior to the seeding of tumors in the lungs, and thereby prevent overt lung metastases from existing extra pulmonary tumors.
  • Item
    Nanoparticle Effects on Human Platelets in Vitro: A Comparison between PAMAM and Triazine Dendrimers
    (MDPI, 2016-03-29) Enciso, Alan E.; Neun, Barry; Rodriguez, Jamie; Ranjan, Amalendu P.; Dobrovolskaia, Marina A.; Simanek, Eric E.
    Triazine and PAMAM dendrimers of similar size and number of cationic surface groups were compared for their ability to promote platelet aggregation. Triazine dendrimers (G3, G5 and G7) varied in molecular weight from 8 kDa-130 kDa and in surface groups 16-256. PAMAM dendrimers selected for comparison included G3 (7 kDa, 32 surface groups) and G6 (58 kDa, 256 surface groups). The treatment of human platelet-rich plasma (PRP) with low generation triazine dendrimers (0.01-1 microM) did not show any significant effect in human platelet aggregation in vitro; however, the treatment of PRP with larger generations promotes an effective aggregation. These results are in agreement with studies performed with PAMAM dendrimers, where large generations promote aggregation. Triazine dendrimers promote aggregation less aggressively than PAMAM dendrimers, a factor attributed to differences in cationic charge or the formation of supramolecular assemblies of dendrimers.