Publications -- Thomas Cunningham

Permanent URI for this collectionhttps://hdl.handle.net/20.500.12503/31628

This collection is limited to articles published under the terms of a creative commons license or other open access publishing agreement since 2016. It is not intended as a complete list of the author's works.

Browse

Recent Submissions

Now showing 1 - 7 of 7
  • Item
    Chronic intermittent hypoxia-induced hypertension: the impact of sex hormones
    (American Physiological Society, 2024-02-26) Appiah, Cephas B.; Gardner, Jennifer J.; Farmer, George E.; Cunningham, Rebecca L.; Cunningham, J. Thomas
    Obstructive sleep apnea, a common form of sleep-disordered breathing, is characterized by intermittent cessations of breathing that reduce blood oxygen levels and contribute to the development of hypertension. Hypertension is a major complication of obstructive sleep apnea that elevates the risk of end-organ damage. Premenopausal women have a lower prevalence of obstructive sleep apnea and cardiovascular disease than men and postmenopausal women, suggesting that sex hormones play a role in the pathophysiology of sleep apnea-related hypertension. The lack of protection in men and postmenopausal women implicates estrogen and progesterone as protective agents but testosterone as a permissive agent in sleep apnea-induced hypertension. A better understanding of how sex hormones contribute to the pathophysiology of sleep apnea-induced hypertension is important for future research and possible hormone-based interventions. The effect of sex on the pathophysiology of sleep apnea and associated intermittent hypoxia-induced hypertension is of important consideration in the screening, diagnosis, and treatment of the disease and its cardiovascular complications. This review summarizes our current understanding of the impact of sex hormones on blood pressure regulation in sleep apnea with a focus on sex differences.
  • Item
    Spatial transcriptomics reveal basal sex differences in supraoptic nucleus gene expression of adult rats related to cell signaling and ribosomal pathways
    (BioMed Central Ltd., 2023-10-19) Nguyen, Dianna H.; Duque, Victor; Phillips, Nicole; Mecawi, Andre S.; Cunningham, J. Thomas
    BACKGROUND: The supraoptic nucleus (SON) of the hypothalamus contains magnocellular neurosecretory cells that secrete the hormones vasopressin and oxytocin. Sex differences in SON gene expression have been relatively unexplored. Our study used spatially resolved transcriptomics to visualize gene expression profiles in the SON of adult male (n = 4) and female (n = 4) Sprague-Dawley rats using Visium Spatial Gene Expression (10x Genomics). METHODS: Briefly, 10-mum coronal sections (~ 4 x 4 mm) containing the SON were collected from each rat and processed using Visium slides and recommended protocols. Data were analyzed using 10x Genomics' Space Ranger and Loupe Browser applications and other bioinformatic tools. Two unique differential expression (DE) analysis methods, Loupe Browser and DESeq2, were used. RESULTS: Loupe Browser DE analysis of the SON identified 116 significant differentially expressed genes (DEGs) common to both sexes (e.g., Avp and Oxt), 31 significant DEGs unique to the males, and 73 significant DEGs unique to the females. DESeq2 analysis revealed 183 significant DEGs between the two groups. Gene Ontology (GO) enrichment and pathway analyses using significant genes identified via Loupe Browser revealed GO terms and pathways related to (1) neurohypophyseal hormone activity, regulation of peptide hormone secretion, and regulation of ion transport for the significant genes common to both males and females, (2) G(i) signaling/G-protein mediated events for the significant genes unique to males, and (3) potassium ion transport/voltage-gated potassium channels for the significant genes unique to females, as some examples. GO/pathway analyses using significant genes identified via DESeq2 comparing female vs. male groups revealed GO terms/pathways related to ribosomal structure/function. Ingenuity Pathway Analysis (IPA) identified additional sex differences in canonical pathways (e.g., 'Mitochondrial Dysfunction', 'Oxidative Phosphorylation') and upstream regulators (e.g., CSF3, NFKB complex, TNF, GRIN3A). CONCLUSION: There was little overlap in the IPA results for the two different DE methods. These results suggest sex differences in SON gene expression that are associated with cell signaling and ribosomal pathways. The brain releases the hormones oxytocin and vasopressin from the supraoptic nucleus. Oxytocin is involved in maternal behaviors, lactation, and childbirth. Vasopressin is involved in sex-based differences in social behavior and body fluid regulation. However, how the brain contributes to sex-based differences in vasopressin and oxytocin release is poorly understood. This study aimed to address this knowledge gap using spatial transcriptomics to test for sex-based differences in gene expression in the supraoptic nucleus. Spatial transcriptomics combines anatomy with gene sequencing technology, allowing us to identify groups of genes that are expressed in specific locations in the brain. We applied this approach to brain sections containing the supraoptic nucleus from four adult male and four adult female rats. Using a data analysis workflow specifically for spatial transcriptomics, we identified genes that are significantly expressed in the supraoptic nuclei of both males and females (116 genes), primarily males (31 genes), and primarily females (73 genes). Genes enriched in the supraoptic nucleus of both males and females are related to the synthesis and release of peptides like vasopressin and oxytocin. Genes specific to the male supraoptic nucleus are broadly related to cell signaling, while the female-specific genes are related to ion transporters/channels. Results from a more traditional data analysis workflow identified sex-based differences in the expression of genes related to cell metabolism and protein synthesis. Together these results may provide a mechanistic foundation that can be used to better understand how differences in gene expression related to biological sex influence brain function.
  • Item
    Effects of bile duct ligation on the inhibitory control of supraoptic vasopressin neurons
    (John Wiley & Sons, Inc., 2023-06-20) Aikins, Ato O.; Farmer, George E.; Little, Joel T.; Cunningham, J. Thomas
    Dilutional hyponatremia due to increased plasma arginine vasopressin (AVP) is associated with liver cirrhosis. However, plasma AVP remains elevated despite progressive hypoosmolality. This study investigated changes to inhibitory control of supraoptic nucleus (SON) AVP neurons during liver cirrhosis. Experiments were conducted with adult male Sprague-Dawley rats. Bile duct ligation was used as a model of chronic liver cirrhosis. An adeno-associated virus containing a construct with an AVP promoter and either green fluorescent protein (GFP) or a ratiometric chloride indicator, ClopHensorN, was bilaterally injected into the SON of rats. After 2 weeks, rats received either BDL or sham surgery, and liver cirrhosis was allowed to develop for 4 weeks. In vitro, loose patch recordings of action potentials were obtained from GFP-labeled and unlabeled SON neurons in response to a brief focal application of the GABA(A) agonist muscimol (100 muM). Changes to intracellular chloride ([Cl]i) following muscimol application were determined by changes to the fluorescence ratio of ClopHensorN. The contribution of cation chloride cotransporters NKCC1 and KCC2 to changes in intracellular chloride was investigated using their respective antagonists, bumetanide (BU, 10 muM) and VU0240551 (10 muM). Plasma osmolality and hematocrit were measured as a marker of dilutional hyponatremia. The results showed reduced or absent GABA(A) -mediated inhibition in a greater proportion of AVP neurons from BDL rats as compared to sham rats (100% inhibition in sham vs. 47% in BDL, p = .001). Muscimol application was associated with increased [Cl]i in most cells from BDL as compared to cells from sham rats (chi(2) = 30.24, p < .001). NKCC1 contributed to the impaired inhibition observed in BDL rats (p < .001 BDL - BU vs. BDL + BU). The results show that impaired inhibition of SON AVP neurons and increased intracellular chloride contribute to the sustained dilutional hyponatremia in liver cirrhosis.
  • Item
    Establishing Equivalent Aerobic Exercise Parameters Between Early-Stage Parkinson's Disease and Pink1 Knockout Rats
    (IOS Press, 2022-06-28) Salvatore, Michael F.; Soto, Isabel; Kasanga, Ella A.; James, Rachael; Shifflet, Marla K.; Doshier, Kirby; Little, Joel T.; John, Joshia; Alphonso, Helene M.; Cunningham, J. Thomas; Nejtek, Vicki A.
    BACKGROUND: Rodent Parkinson's disease (PD) models are valuable to interrogate neurobiological mechanisms of exercise that mitigate motor impairment. Translating these mechanisms to human PD must account for physical capabilities of the patient. OBJECTIVE: To establish cardiovascular parameters as a common metric for cross-species translation of aerobic exercise impact. METHOD: We evaluated aerobic exercise impact on heart rate (HR) in 21 early-stage PD subjects (Hoehn Yahr /=3 months, >/=3x/week. In 4-month-old Pink1 knockout (KO) rats exercising in a progressively-increased treadmill speed regimen, we determined a specific treadmill speed that increased HR to an extent similar in human subjects. RESULTS: After completing aerobic exercise for approximately 30 min, PD subjects had increased HR approximately 35% above baseline ( approximately 63% maximum HR). Motor and cognitive test results indicated the exercising subjects completed the timed up and go (TUG) and trail-making test (TMT-A) in significantly less time versus exercise-naive PD subjects. In KO and age-matched wild-type (WT) rats, treadmill speeds of 8-10 m/min increased HR up to 25% above baseline ( approximately 67% maximum HR), with no further increases up to 16 m/min. Exercised KO, but not WT, rats showed increased locomotor activity compared to an age-matched exercise-naive cohort at 5 months old. CONCLUSION: These proof-of-concept results indicate HR is a cross-species translation parameter to evaluate aerobic exercise impact on specific motor or cognitive functions in human subjects and rat PD models. Moreover, a moderate intensity exercise regimen is within the physical abilities of early-stage PD patients and is therefore applicable for interrogating neurobiological mechanisms in rat PD models.
  • Item
    Cardiovascular Metrics Associated With Prevention of Aging-Related Parkinsonian Signs Following Exercise Intervention in Sedentary Older Rats
    (Frontiers Media S.A., 2021-12-15) Kasanga, Ella A.; Little, Joel; McInnis, Tamara R.; Bugnariu, Nicoleta; Cunningham, J. Thomas; Salvatore, Michael F.
    Preservation of motor capabilities is vital to maintaining independent daily living throughout a person's lifespan and may mitigate aging-related parkinsonism, a progressive and prevalent motor impairment. Physically active lifestyles can mitigate aging-related motor impairment. However, the metrics of physical activity necessary for mitigating parkinsonian signs are not established. Consistent moderate intensity (~10 m/min) treadmill exercise can reverse aging-related parkinsonian signs by 20 weeks in a 2-week on, 2-week off, regimen in previously sedentary advanced middle-aged rats. In this study, we initiated treadmill exercise in sedentary 18-month-old male rats to address two questions: (1) if a rest period not longer than 1-week off exercise, with 15 exercise sessions per month, could attenuate parkinsonian signs within 2 months after exercise initiation, and the associated impact on heart rate (HR) and mean arterial pressure (MAP) and (2) if continuation of this regimen, up to 20 weeks, will be associated with continual prevention of parkinsonian signs. The intensity and frequency of treadmill exercise attenuated aging-related parkinsonian signs by 8 weeks and were maintained till 23 months old. The exercise regimen increased HR by 25% above baseline and gradually reduced pre-intervention MAP. Together, these studies indicate that a practicable frequency and intensity of exercise reduces parkinsonian sign severity commensurate with a modest increase in HR after exercise. These cardiovascular changes provide a baseline of metrics, easily measured in humans, for predictive validity that practicable exercise intensity and schedule can be initiated in previously sedentary older adults to delay the onset of aging-related parkinsonian signs.
  • Item
    Sniffer cells for the detection of neural Angiotensin II in vitro
    (Springer Nature, 2019-06-19) Farmer, George E.; Amune, Anna; Bachelor, Martha E.; Duong, Phong; Yuan, Joseph P.; Cunningham, J. Thomas
    Neuropeptide release in the brain has traditionally been difficult to observe. Existing methods lack temporal and spatial resolution that is consistent with the function and size of neurons. We use cultured "sniffer cells" to improve the temporal and spatial resolution of observing neuropeptide release. Sniffer cells were created by stably transfecting Chinese Hamster Ovary (CHO) cells with plasmids encoding the rat angiotensin type 1a receptor and a genetically encoded Ca2+ sensor. Isolated, cultured sniffer cells showed dose-dependent increases in fluorescence in response to exogenously applied angiotensin II and III, but not other common neurotransmitters. Sniffer cells placed on the median preoptic nucleus (a presumptive site of angiotensin release) displayed spontaneous activity and evoked responses to either electrical or optogenetic stimulation of the subfornical organ. Stable sniffer cell lines could be a viable method for detecting neuropeptide release in vitro, while still being able to distinguish differences in neuropeptide concentration.
  • Item
    Selectively Inhibiting the Median Preoptic Nucleus Attenuates Angiotensin II and Hyperosmotic-Induced Drinking Behavior and Vasopressin Release in Adult Male Rats
    (Society for Neuroscience, 2019-03-26) Marciante, Alexandria B.; Wang, Lei A.; Farmer, George E.; Cunningham, J. Thomas
    The median preoptic nucleus (MnPO) is a putative integrative region that contributes to body fluid balance. Activation of the MnPO can influence thirst, but it is not clear how these responses are linked to body fluid homeostasis. We used designer receptors exclusively activated by designer drugs (DREADDs) to determine the role of the MnPO in drinking behavior and vasopressin release in response to peripheral angiotensin II (ANG II) or 3% hypertonic saline (3% HTN) in adult male Sprague Dawley rats (250-300 g). Rats were anesthetized with isoflurane and stereotaxically injected with an inhibitory DREADD (rAAV5-CaMKIIa-hM4D(Gi)-mCherry) or control (rAAV5-CaMKIIa-mCherry) virus in the MnPO. After two weeks' recovery, a subset of rats was used for extracellular recordings to verify functional effects of ANG II or hyperosmotic challenges in MnPO slice preparations. Remaining rats were used in drinking behavior studies. Each rat was administered either 10 mg/kg of exogenous clozapine-N-oxide (CNO) to inhibit DREADD-expressing cells or vehicle intraperitoneal followed by a test treatment with either 2-mg/kg ANG II or 3% HTN (1 ml/100-g bw, s.c.), twice per week for two separate treatment weeks. CNO-induced inhibition during either test treatment significantly attenuated drinking responses compared to vehicle treatments and controls. Brain tissue processed for cFos immunohistochemistry showed decreased expression with CNO-induced inhibition during either test treatment in the MnPO and downstream nuclei compared to controls. CNO-mediated inhibition significantly attenuated treatment-induced increases in plasma vasopressin compared to controls. The results indicate inhibition of CaMKIIa-expressing MnPO neurons significantly reduces drinking and vasopressin release in response to ANG II or hyperosmotic challenge.