Publications -- Cameron Millar

Permanent URI for this collectionhttps://hdl.handle.net/20.500.12503/31716

This collection is limited to articles published under the terms of a creative commons license or other open access publishing agreement since 2016. It is not intended as a complete list of the author's works.

Browse

Recent Submissions

Now showing 1 - 14 of 14
  • Item
    Steroid-Induced Ocular Hypertension in Mice Is Differentially Reduced by Selective EP2, EP3, EP4, and IP Prostanoid Receptor Agonists
    (MDPI, 2024-03-28) Sharif, Najam A.; Millar, J. Cameron; Zode, Gulab S.; Ota, Takashi
    We tested five chemically and metabolically stable prostaglandin (PG) receptor agonists in a mouse model of dexamethasone-induced ocular hypertension (OHT). Whilst all compounds significantly (p < 0.05, ANOVA) lowered intraocular pressure (IOP) after twice-daily bilateral topical ocular dosing (5 microg/dose) over three weeks, the time course and magnitude of the responses varied. The onset of action of NS-304 (IP-PG receptor agonist) and rivenprost (EP4-PG receptor agonist) was slower than that of misoprostol (mixed EP2/EP3/EP4-PG receptor agonist), PF-04217329 (EP2-PG receptor agonist), and butaprost (EP2-PG receptor agonist). The rank order of IOP-lowering efficacies aligned with the onset of actions of these compounds. Peak IOP reductions relative to vehicle controls were as follows: misoprostol (74.52%) = PF-04217329 (74.32%) > butaprost (65.2%) > rivenprost (58.4%) > NS-304 (55.3%). A literature survey indicated that few previously evaluated compounds (e.g., latanoprost, timolol, pilocarpine, brimonidine, dorzolamide, cromakalim analog (CKLP1), losartan, tissue plasminogen activator, trans-resveratrol, sodium 4-phenyl acetic acid, etc.) in various animal models of steroid-induced OHT were able to match the effectiveness of misoprostol, PF-04217329 or butaprost. Since a common feature of the latter compounds is their relatively high affinity and potency at the EP2-PG receptor sub-type, which activates the production of intracellular cAMP in target cells, our studies suggest that drugs selective for the EP2-PG receptor may be suited to treat corticosteroid-induced OHT.
  • Item
    Lentiviral mediated delivery of CRISPR/Cas9 reduces intraocular pressure in a mouse model of myocilin glaucoma
    (Springer Nature Limited, 2024-03-24) Patil, Shruti V.; Kaipa, Balasankara R.; Ranshing, Sujata; Sundaresan, Yogapriya; Millar, J. Cameron; Nagarajan, Bhavani; Kiehlbauch, Charles; Zhang, Qihong; Jain, Ankur; Searby, Charles C.; Scheetz, Todd E.; Clark, Abbot F.; Sheffield, Val C.; Zode, Gulab S.
    Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOC(Y437H) mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.
  • Item
    Expression of Mutant Myocilin Induces Abnormal Intracellular Accumulation of Selected Extracellular Matrix Proteins in the Trabecular Meshwork
    (Association for Research in Vision and Ophthalmology, 2016-11-01) Kasetti, Ramesh B.; Phan, Tien N.; Millar, J. Cameron; Zode, Gulab S.
    PURPOSE: Abnormal accumulation of extracellular matrix (ECM) in the trabecular meshwork (TM) is associated with decreased aqueous humor outflow facility and IOP elevation in POAG. Previously, we have developed a transgenic mouse model of POAG (Tg-MYOCY437H) by expressing human mutant myocilin (MYOC), a known genetic cause of POAG. The purpose of this study is to examine whether expression of mutant myocilin leads to reduced outflow facility and abnormal ECM accumulation in Tg-MYOCY437H mice and in cultured human TM cells. METHODS: Conscious IOP was measured at various ages of Tg-MYOCY437H mice using a rebound tonometer. Outflow facility was measured in 10-month-old Tg-MYOCY437H mice. Selected ECM proteins were examined in human TM-3 cells stably expressing mutant myocilin and primary human TM cells (n = 4) as well as in the TM of Tg-MYOCY437H mice by real-time PCR, Western blotting, and immunostaining. Furthermore, TM cells expressing WT or mutant myocilin were treated with 5 mM sodium 4-phenylbutyrate (PBA), and ECM proteins were examined by Western blot and immunostaining. RESULTS: Starting from 3 months of age, Tg-MYOCY437H mice exhibited significant IOP elevation compared with wild-type (WT) littermates. Outflow facility was significantly reduced in Tg-MYOCY437H mice (0.0195 mul/min/mm Hg in Tg-MYOCY437H vs. 0.0332 mul/min/mm Hg in WT littermates). Increased accumulation of fibronectin, elastin, and collagen type IV and I was observed in the TM of Tg-MYOCY437H mice compared with WT littermates. Furthermore, increased ECM proteins were also associated with induction of endoplasmic reticulum (ER) stress markers, GRP78 and CHOP in the TM of Tg-MYOCY437H mice. Human TM-3 cells stably expressing DsRed-tagged Y437H mutant MYOC exhibited inhibition of myocilin secretion and its intracellular accumulation compared with TM cells expressing WT MYOC. Expression of mutant MYOC in TM-3 cells or human primary TM cells induced ER stress and also increased intracellular protein levels of fibronectin, elastin, laminin, and collagen IV and I. In addition, TM-3 cells expressing mutant myocilin exhibited reduced active forms of matrix metalloproteinase (MMP)-2 and MMP-9 in conditioned medium compared with TM-3 cells expressing WT myocilin. Interestingly, both intracellularly accumulated fibronectin and collagen I colocalized with mutant myocilin and also with ER marker KDEL further suggesting intracellular accumulation of these proteins in the ER of TM cells. Furthermore, reduction of ER stress via PBA decreased selected ECM proteins in primary TM cells. CONCLUSIONS: These studies demonstrate that mutant myocilin induces abnormal ECM accumulation in the ER of TM cells, which may be responsible for reduced outflow facility and IOP elevation in myocilin-associated glaucoma.
  • Item
    ATF4 leads to glaucoma by promoting protein synthesis and ER client protein load
    (Springer Nature, 2020-11-05) Kasetti, Ramesh B.; Patel, Pinkal D.; Maddineni, Prabhavathi; Patil, Shruti; Kiehlbauch, Charles; Millar, J. Cameron; Searby, Charles C.; Raghunathan, Vijaykrishna; Sheffield, Val C.; Zode, Gulab S.
    The underlying pathological mechanisms of glaucomatous trabecular meshwork (TM) damage and elevation of intraocular pressure (IOP) are poorly understood. Here, we report that the chronic endoplasmic reticulum (ER) stress-induced ATF4-CHOP-GADD34 pathway is activated in TM of human and mouse glaucoma. Expression of ATF4 in TM promotes aberrant protein synthesis and ER client protein load, leading to TM dysfunction and cell death. These events lead to IOP elevation and glaucomatous neurodegeneration. ATF4 interacts with CHOP and this interaction is essential for IOP elevation. Notably, genetic depletion or pharmacological inhibition of ATF4-CHOP-GADD34 pathway prevents TM cell death and rescues mouse models of glaucoma by reducing protein synthesis and ER client protein load in TM cells. Importantly, glaucomatous TM cells exhibit significantly increased protein synthesis along with induction of ATF4-CHOP-GADD34 pathway. These studies indicate a pathological role of ATF4-CHOP-GADD34 pathway in glaucoma and provide a possible treatment for glaucoma by targeting this pathway.
  • Item
    A Novel Mouse Model of TGFbeta2-Induced Ocular Hypertension Using Lentiviral Gene Delivery
    (MDPI, 2022-06-21) Patil, Shruti V.; Kasetti, Ramesh B.; Millar, J. Cameron; Zode, Gulab S.
    Glaucoma is a multifactorial disease leading to irreversible blindness. Primary open-angle glaucoma (POAG) is the most common form and is associated with the elevation of intraocular pressure (IOP). Reduced aqueous humor (AH) outflow due to trabecular meshwork (TM) dysfunction is responsible for IOP elevation in POAG. Extracellular matrix (ECM) accumulation, actin cytoskeletal reorganization, and stiffening of the TM are associated with increased outflow resistance. Transforming growth factor (TGF) beta2, a profibrotic cytokine, is known to play an important role in the development of ocular hypertension (OHT) in POAG. An appropriate mouse model is critical in understanding the underlying molecular mechanism of TGFbeta2-induced OHT. To achieve this, TM can be targeted with recombinant viral vectors to express a gene of interest. Lentiviruses (LV) are known for their tropism towards TM with stable transgene expression and low immunogenicity. We, therefore, developed a novel mouse model of IOP elevation using LV gene transfer of active human TGFbeta2 in the TM. We developed an LV vector-encoding active hTGFbeta2(C226,228S) under the control of a cytomegalovirus (CMV) promoter. Adult C57BL/6J mice were injected intravitreally with LV expressing null or hTGFbeta2(C226,228S). We observed a significant increase in IOP 3 weeks post-injection compared to control eyes with an average delta change of 3.3 mmHg. IOP stayed elevated up to 7 weeks post-injection, which correlated with a significant drop in the AH outflow facility (40.36%). Increased expression of active TGFbeta2 was observed in both AH and anterior segment samples of injected mice. The morphological assessment of the mouse TM region via hematoxylin and eosin (H&E) staining and direct ophthalmoscopy examination revealed no visible signs of inflammation or other ocular abnormalities in the injected eyes. Furthermore, transduction of primary human TM cells with LV_hTGFbeta2(C226,228S) exhibited alterations in actin cytoskeleton structures, including the formation of F-actin stress fibers and crossed-linked actin networks (CLANs), which are signature arrangements of actin cytoskeleton observed in the stiffer fibrotic-like TM. Our study demonstrated a mouse model of sustained IOP elevation via lentiviral gene delivery of active hTGFbeta2(C226,228S) that induces TM dysfunction and outflow resistance.
  • Item
    Secreted protein acidic and rich in cysteine (SPARC) knockout mice have greater outflow facility
    (PLOS, 2020-11-04) Yu, Ling; Zheng, Yuxi; Liu, Brian J.; Kang, Min Hyung; Millar, J. Cameron; Rhee, Douglas J.
    PURPOSE: Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that regulates intraocular pressure (IOP) by altering extracellular matrix (ECM) homeostasis within the trabecular meshwork (TM). We hypothesized that the lower IOP previously observed in SPARC -/- mice is due to a greater outflow facility. METHODS: Mouse outflow facility (Clive) was determined by multiple flow rate infusion, and episcleral venous pressure (Pe) was estimated by manometry. The animals were then euthanized, eliminating aqueous formation rate (Fin) and Pe. The C value was determined again (Cdead) while Fin was reduced to zero. Additional mice were euthanized for immunohistochemistry to analyze ECM components of the TM. RESULTS: The Clive and Cdead of SPARC -/- mice were 0.014 +/- 0.002 muL/min/mmHg and 0.015 +/- 0.002 muL/min/mmHg, respectively (p = 0.376, N/S). Compared to the Clive = 0.010 +/- 0.002 muL/min/mmHg and Cdead = 0.011 +/- 0.002 muL/min/mmHg in the WT mice (p = 0.548, N/S), the Clive and Cdead values for the SPARC -/- mice were higher. Pe values were estimated to be 8.0 +/- 0.2 mmHg and 8.3 +/- 0.7 mmHg in SPARC -/- and WT mice, respectively (p = 0.304, N/S). Uveoscleral outflow (Fu) was 0.019 +/- 0.007 muL/min and 0.022 +/- 0.006 muL/min for SPARC -/- and WT mice, respectively (p = 0.561, N/S). Fin was 0.114 +/- 0.002 muL/min and 0.120 +/- 0.016 muL/min for SPARC -/- and WT mice (p = 0.591, N/S). Immunohistochemistry demonstrated decreases of collagen types IV and VI, fibronectin, laminin, PAI-1, and tenascin-C within the TM of SPARC -/- mice (p < 0.05). CONCLUSIONS: The lower IOP of SPARC -/- mice is due to greater aqueous humor outflow facility through the conventional pathway. Corresponding changes in several matricellular proteins and ECM structural components were noted in the TM of SPARC -/- mice.
  • Item
    Effect of Cromakalim Prodrug 1 (CKLP1) on Aqueous Humor Dynamics and Feasibility of Combination Therapy With Existing Ocular Hypotensive Agents
    (ARVO Journals, 2017-11-01) Roy Chowdhury, Uttio; Rinkoski, Tommy A.; Bahler, Cindy K.; Millar, J. Cameron; Bertrand, Jacques A.; Holman, Bradley H.; Sherwood, Joseph M.; Overby, Darryl R.; Stoltz, Kristen L.; Dosa, Peter I.; Fautsch, Michael P.
    Purpose: Cromakalim prodrug 1 (CKLP1) is a water-soluble ATP-sensitive potassium channel opener that has shown ocular hypotensive properties in ex vivo and in vivo experimental models. To determine its mechanism of action, we assessed the effect of CKLP1 on aqueous humor dynamics and in combination therapy with existing ocular hypotensive agents. Methods: Outflow facility was assessed in C57BL/6 mice by ex vivo eye perfusions and by in vivo constant flow infusion following CKLP1 treatment. Human anterior segments with no trabecular meshwork were evaluated for effect on pressure following CKLP1 treatment. CKLP1 alone and in combination with latanoprost, timolol, and Rho kinase inhibitor Y27632 were evaluated for effect on intraocular pressure in C57BL/6 mice and Dutch-belted pigmented rabbits. Results: CKLP1 lowered episcleral venous pressure (control: 8.9 +/- 0.1 mm Hg versus treated: 6.2 +/- 0.1 mm Hg, P < 0.0001) but had no detectable effect on outflow facility, aqueous humor flow rate, or uveoscleral outflow. Treatment with CKLP1 in human anterior segments without the trabecular meshwork resulted in a 50% +/- 9% decrease in pressure, suggesting an effect on the distal portion of the conventional outflow pathway. CKLP1 worked additively with latanoprost, timolol, and Y27632 to lower IOP, presumably owing to combined effects on different aspects of aqueous humor dynamics. Conclusions: CKLP1 lowered intraocular pressure by reducing episcleral venous pressure and lowering distal outflow resistance in the conventional outflow pathway. Owing to this unique mechanism of action, CKLP1 works in an additive manner to lower intraocular pressure with latanoprost, timolol, and Rho kinase inhibitor Y27632.
  • Item
    Effect of ATP-sensitive Potassium Channel Openers on Intraocular Pressure in Ocular Hypertensive Animal Models
    (ARVO Journals, 2022-02-01) Roy Chowdhury, Uttio; Millar, J. Cameron; Holman, Bradley H.; Anderson, Kjerston J.; Dosa, Peter I.; Roddy, Gavin W.; Fautsch, Michael P.
    Purpose: To evaluate the effect of ATP-sensitive potassium channel openers cromakalim prodrug 1 (CKLP1) and diazoxide on IOP in three independent mouse models of ocular hypertension. Methods: Baseline IOP was measured in TGFbeta2 overexpression, steroid-induced, and iris dispersion (DBA/2J) ocular hypertension mouse models, followed by once daily eyedrop administration with CKLP1 (5 mM) or diazoxide (5 mM). The IOP was measured in conscious animals with a handheld rebound tonometer. Aqueous humor dynamics were assessed by a constant perfusion method. Effect of treatment on ocular tissues was evaluated by transmission electron microscopy. Results: CKLP1 decreased the IOP by 20% in TGFbeta2 overexpressing mice (n = 6; P < 0.0001), 24% in steroid-induced ocular hypertensive mice (n = 8; P < 0.0001), and 43% in DBA/2J mice (n = 15; P < 0.0001). Diazoxide decreased the IOP by 32% in mice with steroid-induced ocular hypertension (n = 13; P < 0.0001) and by 41% in DBA/2J mice (n = 4; P = 0.005). An analysis of the aqueous humor dynamics revealed that CKLP1 decreased the episcleral venous pressure by 29% in TGFbeta2 overexpressing mice (n = 13; P < 0.0001) and by 72% in DBA/2J mice (n = 4 control, 3 treated; P = 0.0002). Diazoxide lowered episcleral venous pressure by 35% in steroid-induced ocular hypertensive mice (n = 3; P = 0.03). Tissue histology and cell morphology appeared normal when compared with controls. Accumulation of extracellular matrix was reduced in CKLP1- and diazoxide-treated eyes in the steroid-induced ocular hypertension model. Conclusions: ATP-sensitive potassium channel openers CKLP1 and diazoxide effectively decreased the IOP in ocular hypertensive animal models by decreasing the episcleral venous pressure, supporting a potential therapeutic application of these agents in ocular hypertension and glaucoma.
  • Item
    Glucocorticoid Receptor Transactivation Is Required for Glucocorticoid-Induced Ocular Hypertension and Glaucoma
    (ARVO Journals, 2019-05) Patel, Gaurang C.; Millar, J. Cameron; Clark, Abbot F.
    Purpose: Glucocorticoid (GC)-induced ocular hypertension (GC-OHT) is a serious side effect of prolonged GC therapy that can lead to glaucoma and permanent vision loss. GCs cause a plethora of changes in the trabecular meshwork (TM), an ocular tissue that regulates intraocular pressure (IOP). GCs act through the glucocorticoid receptor (GR), and the GR regulates transcription both through transactivation and transrepression. Many of the anti-inflammatory properties of GCs are mediated by GR transrepression, while GR transactivation largely accounts for GC metabolic effects and side effects of GC therapy. There is no evidence showing which of the two mechanisms plays a role in GC-OHT. Methods: GRdim transgenic mice (which have active transrepression and impaired transactivation) and wild-type (WT) C57BL/6J mice received weekly periocular dexamethasone acetate (DEX-Ac) injections. IOP, outflow facilities, and biochemical changes to the TM were determined. Results: GRdim mice did not develop GC-OHT after continued DEX treatment, while WT mice had significantly increased IOP and decreased outflow facilities. Both TM tissue in eyes of DEX-treated GRdim mice and cultured TM cells isolated from GRdim mice had reduced or no change in the expression of fibronectin, myocilin, collagen type I, and alpha-smooth muscle actin (alpha-SMA). GRdim mouse TM (MTM) cells also had a significant reduction in DEX-induced cytoskeletal changes, which was clearly seen in WT MTM cells. Conclusions: We provide the first evidence for the role of GR transactivation in regulating GC-mediated gene expression in the TM and in the development of GC-OHT. This discovery suggests a novel therapeutic approach for treating ocular inflammation without causing GC-OHT and glaucoma.
  • Item
    The Role of Wnt/beta-Catenin Signaling and K-Cadherin in the Regulation of Intraocular Pressure
    (ARVO Journals, 2018-03) Webber, Hannah C.; Bermudez, Jaclyn Y.; Millar, J. Cameron; Mao, Weiming; Clark, Abbot F.
    Purpose: Wnt/beta-catenin signaling in the trabecular meshwork (TM) is required for maintaining normal intraocular pressure (IOP), although the mechanism(s) behind this are unknown. We hypothesize that Wnt/beta-catenin signaling regulates IOP via beta-catenin's effects on cadherin junctions. Methods: Nonglaucomatous primary human TM (NTM) cells were treated with or without 100 ng/ml Wnt3a, 1 mug/ml sFRP1, or both for 4 to 48 hours. Cells were immunostained for beta-catenin, total cadherins, or cadherin isoforms. Membrane proteins or whole-cell lysates were isolated for Western immunoblotting and probed for cadherin isoforms. RNA was extracted for cDNA synthesis and qPCR analysis of cadherin expression. Some NTM cells were cultured on electric plates for cell impedance assays. Ad5.CMV recombinant adenoviruses encoding K-cadherin, and/or sFRP1 were injected into eyes of 4- to 6-month-old female BALB/cJ mice (n = 8-10). Conscious IOPs were assessed for 35 days. Results: Upon Wnt3a treatment, total cadherin expression increased and beta-catenin accumulated at the TM cell membrane and on processes formed between TM cells. qPCR showed that Wnt3a significantly increased K-cadherin expression in NTM cells (P < 0.01, n = 3), and Western immunoblotting showed that Wnt3a increased K-cadherin in NTM cells, which was inhibited by the addition of sFRP1. Cell impedance assays showed that Wnt3a treatment increased transcellular resistance and anti-K-cadherin siRNA decreased transcellular resistance (P < 0.001, n = 4-6). Our in vivo study showed that K-cadherin significantly decreased sFRP1-induced ocular hypertension (P < 0.05, n = 6). Western immunoblotting also showed that K-cadherin alleviated sFRP1-induced beta-catenin decrease in mouse anterior segments. Conclusions: Our results suggest that cadherins play important roles in the regulation of TM homeostasis and IOP via the Wnt/beta-catenin pathway.
  • Item
    ID1 and ID3 are Negative Regulators of TGFbeta2-Induced Ocular Hypertension and Compromised Aqueous Humor Outflow Facility in Mice
    (ARVO Journals, 2021-05-03) Mody, Avani A.; Millar, J. Cameron; Clark, Abbot F.
    Purpose: In POAG, elevated IOP remains the major risk factor in irreversible vision loss. Increased TGFbeta2 expression in POAG aqueous humor and in the trabecular meshwork (TM) amplifies extracellular matrix (ECM) deposition and reduces ECM turnover in the TM, leading to a decreased aqueous humor (AH) outflow facility and increased IOP. Inhibitor of DNA binding proteins (ID1 and ID3) inhibit TGFbeta2-induced fibronectin and PAI-1 production in TM cells. We examined the effects of ID1 and ID3 gene expression on TGFbeta2-induced ocular hypertension and decreased AH outflow facility in living mouse eyes. Methods: IOP and AH outflow facility changes were determined using a mouse model of Ad5-hTGFbeta2C226S/C288S-induced ocular hypertension. The physiological function of ID1 and ID3 genes were evaluated using Ad5 viral vectors to enhance or knockdown ID1/ID3 gene expression in the TM of BALB/cJ mice. IOP was measured in conscious mice using a Tonolab impact tonometer. AH outflow facilities were determined by constant flow infusion in live mice. Results: Over-expressing ID1 and ID3 significantly blocked TGFbeta2-induced ocular hypertension (P < 0.0001). Although AH outflow facility was significantly decreased in TGFbeta2-transduced eyes (P < 0.04), normal outflow facility was preserved in eyes injected concurrently with ID1 or ID3 along with TGFbeta2. Knockdown of ID1 or ID3 expression exacerbated TGFbeta2-induced ocular hypertension. Conclusions: Increased expression of ID1 and ID3 suppressed both TGFbeta2-elevated IOP and decreased AH outflow facility. ID1 and/or ID3 proteins thus may show promise as future candidates as IOP-lowering targets in POAG.
  • Item
    Glucocorticoid receptor GRbeta regulates glucocorticoid-induced ocular hypertension in mice
    (Springer Nature, 2018-01-16) Patel, Gaurang C.; Liu, Yang; Millar, J. Cameron; Clark, Abbot F.
    Prolonged glucocorticoid (GC) therapy can cause GC-induced ocular hypertension (OHT), which if left untreated progresses to iatrogenic glaucoma and permanent vision loss. The alternatively spliced isoform of glucocorticoid receptor GRbeta acts as dominant negative regulator of GR activity, and it has been shown that overexpressing GRbeta in trabecular meshwork (TM) cells inhibits GC-induced glaucomatous damage in TM cells. The purpose of this study was to use viral vectors to selectively overexpress the GRbeta isoform in the TM of mouse eyes treated with GCs, to precisely dissect the role of GRbeta in regulating steroid responsiveness. We show that overexpression of GRbeta inhibits GC effects on MTM cells in vitro and GC-induced OHT in mouse eyes in vivo. Ad5 mediated GRbeta overexpression reduced the GC induction of fibronectin, collagen 1, and myocilin in TM of mouse eyes both in vitro and in vivo. GRbeta also reversed DEX-Ac induced IOP elevation, which correlated with increased conventional aqueous humor outflow facility. Thus, GRbeta overexpression reduces effects caused by GCs and makes cells more resistant to GC treatment. In conclusion, our current work provides the first evidence of the in vivo physiological role of GRbeta in regulating GC-OHT and GC-mediated gene expression in the TM.
  • Item
    BMP and Activin Membrane Bound Inhibitor Regulates the Extracellular Matrix in the Trabecular Meshwork
    (ARVO Journals, 2018-04) Hernandez, Humberto; Millar, J. Cameron; Curry, Stacy M.; Clark, Abbot F.; McDowell, Colleen M.
    Purpose: The trabecular meshwork (TM) has an important role in the regulation of aqueous humor outflow and IOP. Regulation of the extracellular matrix (ECM) by TGFbeta2 has been studied extensively. Bone morphogenetic protein (BMP) and activin membrane-bound inhibitor (BAMBI) has been shown to inhibit or modulate TGFbeta2 signaling. We investigate the role of TGFbeta2 and BAMBI in the regulation of TM ECM and ocular hypertension. Methods: Mouse TM (MTM) cells were isolated from B6;129S1-Bambitm1Jian/J flox mice, characterized for TGFbeta2 and dexamethasone (DEX)-induced expression of fibronectin, collagen-1, collagen-4, laminin, alpha-smooth muscle actin, cross-linked actin networks (CLANs) formation, and DEX-induced myocilin (MYOC) expression. MTM cells were transduced with Ad5.GFP to identify transduction efficiency. MTM cells and mouse eyes were transduced with Ad5.Null, Ad5.Cre, Ad5.TGFbeta2, or Ad5.TGFbeta2 + Ad5.Cre to evaluate the effect on ECM production, IOP, and outflow facility. Results: MTM cells express TM markers and respond to DEX and TGFbeta2. Ad5.GFP at 100 MOI had the highest transduction efficiency. Bambi knockdown by Ad5.Cre and Ad5.TGFbeta2 increased fibronectin, collagen-1, and collagen-4 in TM cells in culture and tissue. Ad5.Cre, Ad5.TGFbeta2, and Ad5.TGFbeta2 + Ad5.Cre each significantly induced ocular hypertension and lowered aqueous humor outflow facility in transduced eyes. Conclusions: We show for the first time to our knowledge that knockdown of Bambi alters ECM expression in cultured cells and mouse TM, reduces outflow facility, and causes ocular hypertension. These data provide a novel insight into the development of glaucomatous TM damage and identify BAMBI as an important regulator of TM ECM and ocular hypertension.
  • Item
    Consensus Recommendation for Mouse Models of Ocular Hypertension to Study Aqueous Humor Outflow and Its Mechanisms
    (ARVO Journals, 2022-02) McDowell, Colleen M.; Kizhatil, Krishnakumar; Elliott, Michael H.; Overby, Darryl R.; van Batenburg-Sherwood, Joseph; Millar, J. Cameron; Kuehn, Markus H.; Zode, Gulab S.; Acott, Ted S.; Anderson, Michael G.; Bhattacharya, Sanjoy K.; Bertrand, Jacques A.; Borras, Terete; Bovenkamp, Diane E.; Cheng, Lin; Danias, John; De Ieso, Michael Lucio; Du, Yiqin; Faralli, Jennifer A.; Fuchshofer, Rudolph; Ganapathy, Preethi S.; Gong, Haiyan; Herberg, Samuel; Hernandez, Humberto; Humphries, Peter; John, Simon W. M.; Kaufman, Paul L.; Keller, Kate E.; Kelley, Mary J.; Kelly, Ruth A.; Krizaj, David; Kumar, Ajay; Leonard, Brian C.; Lieberman, Raquel L.; Liton, Paloma; Liu, Yutao; Liu, Katy C.; Lopez, Navita N.; Mao, Weiming; Mavlyutov, Timur A.; McDonnell, Fiona; McLellan, Gillian J.; Mzyk, Philip; Nartey, Andrews; Pasquale, Louis R.; Patel, Gaurang C.; Pattabiraman, Padmanabhan P.; Peters, Donna M.; Raghunathan, Vijaykrishna; Rao, Ponugoti Vasantha; Rayana, Naga; Raychaudhuri, Urmimala; Reina-Torres, Ester; Ren, Ruiyi; Rhee, Douglas; Chowdhury, Uttio Roy; Samples, John R.; Samples, E. Griffen; Sharif, Najam; Schuman, Joel S.; Sheffield, Val C.; Stevenson, Cooper H.; Soundararajan, Avinash; Subramanian, Preeti; Sugali, Chenna Kesavulu; Sun, Yang; Toris, Carol B.; Torrejon, Karen Y.; Vahabikashi, Amir; Vranka, Janice A.; Wang, Ting; Willoughby, Colin E.; Xin, Chen; Yun, Hongmin; Zhang, Hao F.; Fautsch, Michael P.; Tamm, Ernst R.; Clark, Abbot F.; Ethier, C. Ross; Stamer, W. Daniel
    Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings.