Steroid-Induced Ocular Hypertension in Mice Is Differentially Reduced by Selective EP2, EP3, EP4, and IP Prostanoid Receptor Agonists
Date
ORCID
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We tested five chemically and metabolically stable prostaglandin (PG) receptor agonists in a mouse model of dexamethasone-induced ocular hypertension (OHT). Whilst all compounds significantly (p < 0.05, ANOVA) lowered intraocular pressure (IOP) after twice-daily bilateral topical ocular dosing (5 microg/dose) over three weeks, the time course and magnitude of the responses varied. The onset of action of NS-304 (IP-PG receptor agonist) and rivenprost (EP4-PG receptor agonist) was slower than that of misoprostol (mixed EP2/EP3/EP4-PG receptor agonist), PF-04217329 (EP2-PG receptor agonist), and butaprost (EP2-PG receptor agonist). The rank order of IOP-lowering efficacies aligned with the onset of actions of these compounds. Peak IOP reductions relative to vehicle controls were as follows: misoprostol (74.52%) = PF-04217329 (74.32%) > butaprost (65.2%) > rivenprost (58.4%) > NS-304 (55.3%). A literature survey indicated that few previously evaluated compounds (e.g., latanoprost, timolol, pilocarpine, brimonidine, dorzolamide, cromakalim analog (CKLP1), losartan, tissue plasminogen activator, trans-resveratrol, sodium 4-phenyl acetic acid, etc.) in various animal models of steroid-induced OHT were able to match the effectiveness of misoprostol, PF-04217329 or butaprost. Since a common feature of the latter compounds is their relatively high affinity and potency at the EP2-PG receptor sub-type, which activates the production of intracellular cAMP in target cells, our studies suggest that drugs selective for the EP2-PG receptor may be suited to treat corticosteroid-induced OHT.