Publications -- Bruce Bunnell

Permanent URI for this collection

This collection is limited to articles published under the terms of a creative commons license or other open access publishing agreement since 2016. It is not intended as a complete list of the author's works.


Recent Submissions

Now showing 1 - 15 of 15
  • Item
    The Expression of Adipogenic Marker Is Significantly Increased in Estrogen-Treated Lipedema Adipocytes Differentiated from Adipose Stem Cells In Vitro
    (MDPI, 2024-05-25) Al-Ghadban, Sara; Isern, Spencer U.; Herbst, Karen L.; Bunnell, Bruce A.
    Lipedema is a chronic, idiopathic, and painful disease characterized by an excess of adipose tissue in the extremities. The goal of this study is to characterize the gene expression of estrogen receptors (ERalpha and ERbeta), G protein-coupled estrogen receptor (GPER), and ER-metabolizing enzymes: hydroxysteroid 17-beta dehydrogenase (HSD17B1, 7, B12), cytochrome P450 (CYP19A1), hormone-sensitive lipase (LIPE), enzyme steroid sulfatase (STS), and estrogen sulfotransferase (SULT1E1), which are markers in Body Mass Index (BMI) and age-matched non-lipedema (healthy) and lipedema ASCs and spheroids. Flow cytometry and cellular proliferation assays, RT-PCR, and Western Blot techniques were used to determine the expression of ERs and estrogen-metabolizing enzymes. In 2D monolayer culture, estrogen increased the proliferation and the expression of the mesenchymal marker, CD73, in hormone-depleted (HD) healthy ASCs compared to lipedema ASCs. The expression of ERbeta was significantly increased in HD lipedema ASCs and spheroids compared to corresponding healthy cells. In contrast, ERalpha and GPER gene expression was significantly decreased in estrogen-treated lipedema spheroids. CYP19A1 and LIPE gene expressions were significantly increased in estrogen-treated healthy ASCs and spheroids, respectively, while estrogen upregulated the expression of PPAR-Upsilon2 and ERalpha in estrogen-treated lipedema-differentiated adipocytes and spheroids. These results indicate that estrogen may play a role in adipose tissue dysregulation in lipedema.
  • Item
    Enhanced Angiogenesis in HUVECs Preconditioned with Media from Adipocytes Differentiated from Lipedema Adipose Stem Cells In Vitro
    (MDPI, 2023-09-09) Al-Ghadban, Sara; Walczak, Samantha G.; Isern, Spencer U.; Martin, Elizabeth C.; Herbst, Karen L.; Bunnell, Bruce A.
    Lipedema is a connective tissue disorder characterized by increased dilated blood vessels (angiogenesis), inflammation, and fibrosis of the subcutaneous adipose tissue. This project aims to gain insights into the angiogenic processes in lipedema using human umbilical vein endothelial cells (HUVECs) as an in vitro model. HUVECs were cultured in conditioned media (CM) collected from healthy (non-lipedema, AQH) and lipedema adipocytes (AQL). The impacts on the expression levels of multiple endothelial and angiogenic markers [CD31, von Willebrand Factor (vWF), angiopoietin 2 (ANG2), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMPs), NOTCH and its ligands] in HUVECs were investigated. The data demonstrate an increased expression of CD31 and ANG2 at both the gene and protein levels in HUVECs treated with AQL CM in 2D monolayer and 3D cultures compared to untreated cells. Furthermore, the expression of the vWF, NOTCH 4, and DELTA-4 genes decreased. In contrast, increased VEGF, MMP9, and HGF gene expression was detected in HUVECs treated with AQL CM cultured in a 2D monolayer. In addition, the results of a tube formation assay indicate that the number of formed tubes increased in lipedema-treated HUVECs cultured in a 2D monolayer. Together, the data indicate that lipedema adipocyte-CM promotes angiogenesis through paracrine-driven mechanisms.
  • Item
    Experimental models to study osteoarthritis pain and develop therapeutics
    (Elsevier B.V., 2022-12-08) Riewruja, Kanyakorn; Makarczyk, Meagan; Alexander, Peter G.; Gao, Qi; Goodman, Stuart B.; Bunnell, Bruce A.; Gold, Michael S.; Lin, Hang
    Pain is the predominant symptom of osteoarthritis (OA) that drives patients to seek medical care. Currently, there are no pharmacological treatments that can reverse or halt the progression of OA. Safe and efficacious medications for long-term management of OA pain are also unavailable. Understanding the mechanisms behind OA pain generation at onset and over time is critical for developing effective treatments. In this narrative review, we first summarize our current knowledge on the innervation of the knee joint, and then discuss the molecular mechanism(s) currently thought to underlie OA pain. In particular, we focus on the contribution of each joint component to the generation of pain. Next, the current experimental models for studying OA pain are summarized, and the methods to assess pain in rodents are presented. The potential application of emerging microphysiological systems in OA pain research is especially highlighted. Lastly, we discuss the current challenge in standardizing models and the selection of appropriate systems to address specific questions.
  • Item
    A Role for Adipocytes and Adipose Stem Cells in the Breast Tumor Microenvironment and Regenerative Medicine
    (Frontiers Media S.A., 2021-11-29) Brock, Courtney K.; Hebert, Katherine L.; Artiles, Maria; Wright, Maryl K.; Cheng, Thomas; Windsor, Gabreille O.; Nguyen, Khao; Alzoubi, Madlin S.; Collins-Burow, Bridgette M.; Martin, Elizabeth C.; Lau, Frank H.; Bunnell, Bruce A.; Burow, Matthew E.
    Obesity rates are climbing, representing a confounding and contributing factor to many disease states, including cancer. With respect to breast cancer, obesity plays a prominent role in the etiology of this disease, with certain subtypes such as triple-negative breast cancer having a strong correlation between obesity and poor outcomes. Therefore, it is critical to examine the obesity-related alterations to the normal stroma and the tumor microenvironment (TME). Adipocytes and adipose stem cells (ASCs) are major components of breast tissue stroma that have essential functions in both physiological and pathological states, including energy storage and metabolic homeostasis, physical support of breast epithelial cells, and directing inflammatory and wound healing responses through secreted factors. However, these processes can become dysregulated in both metabolic disorders, such as obesity and also in the context of breast cancer. Given the well-established obesity-neoplasia axis, it is critical to understand how interactions between different cell types in the tumor microenvironment, including adipocytes and ASCs, govern carcinogenesis, tumorigenesis, and ultimately metastasis. ASCs and adipocytes have multifactorial roles in cancer progression; however, due to the plastic nature of these cells, they also have a role in regenerative medicine, making them promising tools for tissue engineering. At the physiological level, the interactions between obesity and breast cancer have been examined; here, we will delineate the mechanisms that regulate ASCs and adipocytes in these different contexts through interactions between cancer cells, immune cells, and other cell types present in the tumor microenvironment. We will define the current state of understanding of how adipocytes and ASCs contribute to tumor progression through their role in the tumor microenvironment and how this is altered in the context of obesity. We will also introduce recent developments in utilizing adipocytes and ASCs in novel approaches to breast reconstruction and regenerative medicine.
  • Item
    Short-Term Rapamycin Preconditioning Diminishes Therapeutic Efficacy of Human Adipose-Derived Stem Cells in a Murine Model of Multiple Sclerosis
    (MDPI, 2020-09-30) Wise, Rachel M.; Harrison, Mark A. A.; Sullivan, Brianne N.; Al-Ghadban, Sara; Aleman, Sarah J.; Vinluan, Amber T.; Monaco, Emily R.; Donato, Umberto M.; Pursell, India A.; Bunnell, Bruce A.
    Human adipose-derived stem cells (ASCs) show immense promise for treating inflammatory diseases, attributed primarily to their potent paracrine signaling. Previous investigations demonstrated that short-term Rapamycin preconditioning of bone marrow-derived stem cells (BMSCs) elevated secretion of prostaglandin E2, a pleiotropic molecule with therapeutic effects in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), and enhanced immunosuppressive capacity in vitro. However, this has yet to be examined in ASCs. The present study examined the therapeutic potential of short-term Rapamycin-preconditioned ASCs in the EAE model. Animals were treated at peak disease with control ASCs (EAE-ASCs), Rapa-preconditioned ASCs (EAE-Rapa-ASCs), or vehicle control (EAE). Results show that EAE-ASCs improved clinical disease scores and elevated intact myelin compared to both EAE and EAE-Rapa-ASC animals. These results correlated with augmented CD4⁺ T helper (Th) and T regulatory (Treg) cell populations in the spinal cord, and increased gene expression of interleukin-10 (IL-10), an anti-inflammatory cytokine. Conversely, EAE-Rapa-ASC mice showed no improvement in clinical disease scores, reduced myelin levels, and significantly less Th and Treg cells in the spinal cord. These findings suggest that short-term Rapamycin preconditioning reduces the therapeutic efficacy of ASCs when applied to late-stage EAE.
  • Item
    Macrophages Modulate the Function of MSC- and iPSC-Derived Fibroblasts in the Presence of Polyethylene Particles
    (MDPI, 2021-11-27) Gao, Qi; Li, Zhong; Rhee, Claire; Xiang, Shiqi; Maruyama, Masahiro; Huang, Elijah Ejun; Yao, Zhenyu; Bunnell, Bruce A.; Tuan, Rocky S.; Lin, Hang; Gold, Michael S.; Goodman, Stuart B.
    Fibroblasts in the synovial membrane secrete molecules essential to forming the extracellular matrix (ECM) and supporting joint homeostasis. While evidence suggests that fibroblasts contribute to the response to joint injury, the outcomes appear to be patient-specific and dependent on interactions between resident immune cells, particularly macrophages (Mφs). On the other hand, the response of Mφs to injury depends on their functional phenotype. The goal of these studies was to further explore these issues in an in vitro 3D microtissue model that simulates a pathophysiological disease-specific microenvironment. Two sources of fibroblasts were used to assess patient-specific influences: mesenchymal stem cell (MSC)- and induced pluripotent stem cell (iPSC)-derived fibroblasts. These were co-cultured with either M1 or M2 Mφs, and the cultures were challenged with polyethylene particles coated with lipopolysaccharide (cPE) to model wear debris generated from total joint arthroplasties. Our results indicated that the fibroblast response to cPE was dependent on the source of the fibroblasts and the presence of M1 or M2 Mφs: the fibroblast response as measured by gene expression changes was amplified by the presence of M2 Mφs. These results demonstrate that the immune system modulates the function of fibroblasts; furthermore, different sources of differentiated fibroblasts may lead to divergent results. Overall, our research suggests that M2 Mφs may be a critical target for the clinical treatment of cPE induced fibrosis.
  • Item
    Short-Term Autophagy Preconditioning Upregulates the Expression of COX2 and PGE2 and Alters the Immune Phenotype of Human Adipose-Derived Stem Cells In Vitro
    (MDPI, 2022-04-19) Wise, Rachel M.; Al-Ghadban, Sara; Harrison, Mark A. A.; Sullivan, Brianne N.; Monaco, Emily R.; Aleman, Sarah J.; Donato, Umberto M.; Bunnell, Bruce A.
    Human adipose-derived stem cells (hASCs) are potent modulators of inflammation and promising candidates for the treatment of inflammatory and autoimmune diseases. Strategies to improve hASC survival and immunoregulation are active areas of investigation. Autophagy, a homeostatic and stress-induced degradative pathway, plays a crucial role in hASC paracrine signaling-a primary mechanism of therapeutic action. Therefore, induction of autophagy with rapamycin (Rapa), or inhibition with 3-methyladenine (3-MA), was examined as a preconditioning strategy to enhance therapeutic efficacy. Following preconditioning, both Rapa and 3-MA-treated hASCs demonstrated preservation of stemness, as well as upregulated transcription of cyclooxygenase-2 (COX2) and interleukin-6 (IL-6). Rapa-ASCs further upregulated TNFalpha-stimulated gene-6 (TSG-6) and interleukin-1 beta (IL-1β), indicating additional enhancement of immunomodulatory potential. Preconditioned cells were then stimulated with the inflammatory cytokine interferon-gamma (IFNγ) and assessed for immunomodulatory factor production. Rapa-pretreated cells, but not 3-MA-pretreated cells, further amplified COX2 and IL-6 transcripts following IFNγ exposure, and both groups upregulated secretion of prostaglandin-E2 (PGE2), the enzymatic product of COX2. These findings suggest that a 4-h Rapa preconditioning strategy may bestow the greatest improvement to hASC expression of cytokines known to promote tissue repair and regeneration and may hold promise for augmenting the therapeutic potential of hASCs for inflammation-driven pathological conditions.
  • Item
    CRISPR based editing of SIV proviral DNA in ART treated non-human primates
    (Springer Nature, 2020-11-27) Mancuso, Pietro; Chen, Chen; Kaminski, Rafal; Gordon, Jennifer; Liao, Shuren; Robinson, Jake A.; Smith, Mandy D.; Liu, Hong; Sariyer, Ilker K.; Sariyer, Rahsan; Peterson, Tiffany A.; Donadoni, Martina; Williams, Jaclyn B.; Siddiqui, Summer; Bunnell, Bruce A.; Ling, Binhua; MacLean, Andrew G.; Burdo, Tricia H.; Khalili, Kamel
    Elimination of HIV DNA from infected individuals remains a challenge in medicine. Here, we demonstrate that intravenous inoculation of SIV-infected macaques, a well-accepted non-human primate model of HIV infection, with adeno-associated virus 9 (AAV9)-CRISPR/Cas9 gene editing construct designed for eliminating proviral SIV DNA, leads to broad distribution of editing molecules and precise cleavage and removal of fragments of the integrated proviral DNA from the genome of infected blood cells and tissues known to be viral reservoirs including lymph nodes, spleen, bone marrow, and brain among others. Accordingly, AAV9-CRISPR treatment results in a reduction in the percent of proviral DNA in blood and tissues. These proof-of-concept observations offer a promising step toward the elimination of HIV reservoirs in the clinic.
  • Item
    In-depth characterization of a new patient-derived xenograft model for metaplastic breast carcinoma to identify viable biologic targets and patterns of matrix evolution within rare tumor types
    (Springer, 2021-08-09) Matossian, M. D.; Chang, T.; Wright, M. K.; Burks, H. E.; Elliott, S.; Sabol, R. A.; Wathieu, H.; Windsor, G. O.; Alzoubi, Madlin S.; King, C. T.; Bursavich, J. B.; Ham, A. M.; Savoie, J. J.; Nguyen, K.; Baddoo, M.; Flemington, E.; Sirenko, O.; Cromwell, E. F.; Hebert, K. L.; Lau, F.; Izadpanah, R.; Brown, H.; Sinha, S.; Zabaleta, J.; Riker, A. I.; Moroz, K.; Miele, L.; Zea, A. H.; Ochoa, A.; Bunnell, Bruce A.; Collins-Burow, B. M.; Martin, E. C.; Burow, Matthew E.
    Metaplastic breast carcinoma (MBC) is a rare breast cancer subtype with rapid growth, high rates of metastasis, recurrence and drug resistance, and diverse molecular and histological heterogeneity. Patient-derived xenografts (PDXs) provide a translational tool and physiologically relevant system to evaluate tumor biology of rare subtypes. Here, we provide an in-depth comprehensive characterization of a new PDX model for MBC, TU-BcX-4IC. TU-BcX-4IC is a clinically aggressive tumor exhibiting rapid growth in vivo, spontaneous metastases, and elevated levels of cell-free DNA and circulating tumor cell DNA. Relative chemosensitivity of primary cells derived from TU-BcX-4IC was performed using the National Cancer Institute (NCI) oncology drug set, crystal violet staining, and cytotoxic live/dead immunofluorescence stains in adherent and organoid culture conditions. We employed novel spheroid/organoid incubation methods (Pu.MA system) to demonstrate that TU-BcX-4IC is resistant to paclitaxel. An innovative physiologically relevant system using human adipose tissue was used to evaluate presence of cancer stem cell-like populations ex vivo. Tissue decellularization, cryogenic-scanning electron microscopy imaging and rheometry revealed consistent matrix architecture and stiffness were consistent despite serial transplantation. Matrix-associated gene pathways were essentially unchanged with serial passages, as determined by qPCR and RNA sequencing, suggesting utility of decellularized PDXs for in vitro screens. We determined type V collagen to be present throughout all serial passage of TU-BcX-4IC tumor, suggesting it is required for tumor maintenance and is a potential viable target for MBC. In this study we introduce an innovative and translational model system to study cell-matrix interactions in rare cancer types using higher passage PDX tissue.
  • Item
    Adipose-Derived Stem Cells from Obese Donors Polarize Macrophages and Microglia toward a Pro-Inflammatory Phenotype
    (MDPI, 2020-12-25) Harrison, Mark A. A.; Wise, Rachel M.; Benjamin, Brooke P.; Hochreiner, Emily M.; Mohiuddin, Omair A.; Bunnell, Bruce A.
    Macrophages and microglia represent the primary phagocytes and first line of defense in the peripheral and central immune systems. They activate and polarize into a spectrum of pro- and anti-inflammatory phenotypes in response to various stimuli. This activation is tightly regulated to balance the appropriate immune response with tissue repair and homeostasis. Disruption of this balance results in inflammatory disease states and tissue damage. Adipose stem cells (ASCs) have great therapeutic potential because of the potent immunomodulatory capabilities which induce the polarization of microglia and macrophages to the anti-inflammatory, M2, phenotype. In this study, we examined the effects of donor heterogeneity on ASC function. Specifically, we investigated the impact of donor obesity on ASC stemness and immunomodulatory abilities. Our findings revealed that ASCs from obese donors (ObASCs) exhibited reduced stem cell characteristics when compared to ASCs from lean donors (LnASCs). We also found that ObASCs promote a pro-inflammatory phenotype in murine macrophage and microglial cells, as indicated by the upregulated expression of pro-inflammatory genes, increased nitric oxide pathway activity, and impaired phagocytosis and migration. These findings highlight the importance of considering individual donor characteristics such as obesity when selecting donors and cells for use in ASC therapeutic applications and regenerative medicine.
  • Item
    The Effects of Macrophage Phenotype on Osteogenic Differentiation of MSCs in the Presence of Polyethylene Particles
    (MDPI, 2021-05-01) Gao, Qi; Rhee, Claire; Maruyama, Masahiro; Li, Zhong Li; Shen, Huaishuang; Zhang, Ning; Utsunomiya, Takeshi; Huang, Elijah Ejun; Yao, Zhenyu; Bunnell, Bruce A.; Lin, Hang; Tuan, Rocky S.; Goodman, Stuart B.
    Wear debris generated from the bearing surfaces of joint arthroplasties leads to acute and chronic inflammation, which is strongly associated with implant failure. Macrophages derived from monocytes recruited to the local tissues have a significant impact on bone healing and regeneration. Macrophages can adopt various functional phenotypes. While M1 macrophages are pro-inflammatory, M2 macrophages express factors important for tissue repair. Here, we established a 3D co-culture system to investigate how the immune system influences the osteogenic differentiation of mesenchymal stem cells (MSCs) in the presence of micron-sized particles. This system allowed for the simulation of an inflammatory reaction via the addition of Lipopolysaccharide-contaminated polyethylene particles (cPE) and the characterization of bone formation using micro-CT and gene and protein expression. Co-cultures of MSCs with M2 macrophages in the presence of cPE in a 3D environment resulted in the increased expression of osteogenic markers, suggesting facilitation of bone formation. In this model, the upregulation of M2 macrophage expression of immune-associated genes and cytokines contributes to enhanced bone formation by MSCs. This study elucidates how the immune system modulates bone healing in response to an inflammatory stimulus using a unique 3D culture system.
  • Item
    In Vitro Culture Expansion Shifts the Immune Phenotype of Human Adipose-Derived Mesenchymal Stem Cells
    (Frontiers Media S.A., 2021-03-10) Jeske, Richard; Yuan, Xuegang; Fu, Qin; Bunnell, Bruce A.; Logan, Timothy M.; Li, Yan
    Human mesenchymal stem or stromal cells (hMSCs) are known for their potential in regenerative medicine due to their differentiation abilities, secretion of trophic factors, and regulation of immune responses in damaged tissues. Due to the limited quantity of hMSCs typically isolated from bone marrow, other tissue sources, such as adipose tissue-derived mesenchymal stem cells (hASCs), are considered a promising alternative. However, differences have been observed for hASCs in the context of metabolic characteristics and response to in vitro culture stress compared to bone marrow derived hMSCs (BM-hMSCs). In particular, the relationship between metabolic homeostasis and stem cell functions, especially the immune phenotype and immunomodulation of hASCs, remains unknown. This study thoroughly assessed the changes in metabolism, redox cycles, and immune phenotype of hASCs during in vitro expansion. In contrast to BM-hMSCs, hASCs did not respond to culture stress significantly during expansion as limited cellular senescence was observed. Notably, hASCs exhibited the increased secretion of pro-inflammatory cytokines and the decreased secretion of anti-inflammatory cytokines after extended culture expansion. The NAD+/NADH redox cycle and other metabolic characteristics associated with aging were relatively stable, indicating that hASC functional decline may be regulated through an alternative mechanism rather than NAD+/Sirtuin aging pathways as observed in BM-hMSCs. Furthermore, transcriptome analysis by mRNA-sequencing revealed the upregulation of genes for pro-inflammatory cytokines/chemokines and the downregulation of genes for anti-inflammatory cytokines for hASCs at high passage. Proteomics analysis indicated key pathways (e.g., tRNA charging, EIF2 signaling, protein ubiquitination pathway) that may be associated with the immune phenotype shift of hASCs. Together, this study advances our understanding of the metabolism and senescence of hASCs and may offer vital insights for the biomanufacturing of hASCs for clinical use.
  • Item
    Adipose Tissue-Derived Mesenchymal Stem Cells
    (MDPI, 2021-12-06) Bunnell, Bruce A.
    The long-held belief about adipose tissue was that it was relatively inert in terms of biological activity. It was believed that its primary role was energy storage; however, that was shattered with the discovery of adipokines. Scientists interested in regenerative medicine then reported that adipose tissue is rich in adult stromal/stem cells. Following these initial reports, adipose stem cells (ASCs) rapidly garnered interest for use as potential cellular therapies. The primary advantages of ASCs compared to other mesenchymal stem cells (MSCs) include the abundance of the tissue source for isolation, the ease of methodologies for tissue collection and cell isolation, and their therapeutic potential. Studies conducted both in vitro and in vivo have demonstrated that ASCs are multipotent, possessing the ability to differentiate into cells of mesodermal origins, including adipocytes, chondrocytes, osteoblast and others. Moreover, ASCs produce a broad array of cytokines, growth factors, nucleic acids (miRNAs), and other macromolecules into the surrounding milieu by secretion or in the context of microvesicles. The secretome of ASCs has been shown to alter tissue biology, stimulate tissue-resident stem cells, change immune cell activity, and mediate therapeutic outcomes. The quality of ASCs is subject to donor-to-donor variation driven by age, body mass index, disease status and possibly gender and ethnicity. This review discusses adipose stromal/stem cell action mechanisms and their potential utility as cellular therapeutics.
  • Item
    Adipose Stem Cells in Regenerative Medicine: Looking Forward
    (Frontiers Media S.A., 2022-01-13) Al-Ghadban, Sara; Artiles, Maria; Bunnell, Bruce A.
    Over the last decade, stem cell-based regenerative medicine has progressed to clinical testing and therapeutic applications. The applications range from infusions of autologous and allogeneic stem cells to stem cell-derived products. Adult stem cells from adipose tissue (ASCs) show significant promise in treating autoimmune and neurodegenerative diseases, vascular and metabolic diseases, bone and cartilage regeneration and wound defects. The regenerative capabilities of ASCs in vivo are primarily orchestrated by their secretome of paracrine factors and cell-matrix interactions. More recent developments are focused on creating more complex structures such as 3D organoids, tissue elements and eventually fully functional tissues and organs to replace or repair diseased or damaged tissues. The current and future applications for ASCs in regenerative medicine are discussed here.
  • Item
    3D Spheroids Derived from Human Lipedema ASCs Demonstrated Similar Adipogenic Differentiation Potential and ECM Remodeling to Non-Lipedema ASCs In Vitro
    (MDPI, 2020-11-07) Al-Ghadban, Sara; Pursell, India A.; Diaz, Zaidmara T.; Herbst, Karen L.; Bunnell, Bruce A.
    The growth and differentiation of adipose tissue-derived stem cells (ASCs) is stimulated and regulated by the adipose tissue (AT) microenvironment. In lipedema, both inflammation and hypoxia influence the expansion and differentiation of ASCs, resulting in hypertrophic adipocytes and deposition of collagen, a primary component of the extracellular matrix (ECM). The goal of this study was to characterize the adipogenic differentiation potential and assess the levels of expression of ECM-remodeling markers in 3D spheroids derived from ASCs isolated from both lipedema and healthy individuals. The data showed an increase in the expression of the adipogenic genes (ADIPOQ, LPL, PPAR-γ and Glut4), a decrease in matrix metalloproteinases (MMP2, 9 and 11), with no significant changes in the expression of ECM markers (collagen and fibronectin), or integrin A5 in 3D differentiated lipedema spheroids as compared to healthy spheroids. In addition, no statistically significant changes in the levels of expression of inflammatory genes were detected in any of the samples. However, immunofluorescence staining showed a decrease in fibronectin and increase in laminin and Collagen VI expression in the 3D differentiated spheroids in both groups. The use of 3D ASC spheroids provide a functional model to study the cellular and molecular characteristics of lipedema AT.