Publications -- Liang-Jun Yan

Permanent URI for this collectionhttps://hdl.handle.net/20.500.12503/31554

This collection is limited to articles published under the terms of a creative commons license or other open access publishing agreement since 2016. It is not intended as a complete list of the author's works.

Browse

Recent Submissions

Now showing 1 - 14 of 14
  • Item
    Editorial: Diabetes and obesity effects on lung function, volume II
    (Frontiers Media S.A., 2023-12-25) Zheng, Hong; Ma, Wei-Xing; Tang, Xiaoqiang; Lecube, Albert; Yan, Liang-Jun
  • Item
    Renal-Protective Roles of Lipoic Acid in Kidney Disease
    (MDPI, 2023-04-14) Kamt, Sulin F.; Liu, Jiankang; Yan, Liang-Jun
    The kidney is a crucial organ that eliminates metabolic waste and reabsorbs nutritious elements. It also participates in the regulation of blood pressure, maintenance of electrolyte balance and blood pH homeostasis, as well as erythropoiesis and vitamin D maturation. Due to such a heavy workload, the kidney is an energy-demanding organ and is constantly exposed to endogenous and exogenous insults, leading to the development of either acute kidney injury (AKI) or chronic kidney disease (CKD). Nevertheless, there are no therapeutic managements to treat AKI or CKD effectively. Therefore, novel therapeutic approaches for fighting kidney injury are urgently needed. This review article discusses the role of alpha-lipoic acid (ALA) in preventing and treating kidney diseases. We focus on various animal models of kidney injury by which the underlying renoprotective mechanisms of ALA have been unraveled. The animal models covered include diabetic nephropathy, sepsis-induced kidney injury, renal ischemic injury, unilateral ureteral obstruction, and kidney injuries induced by folic acid and metals such as cisplatin, cadmium, and iron. We highlight the common mechanisms of ALA's renal protective actions that include decreasing oxidative damage, increasing antioxidant capacities, counteracting inflammation, mitigating renal fibrosis, and attenuating nephron cell death. It is by these mechanisms that ALA achieves its biological function of alleviating kidney injury and improving kidney function. Nevertheless, we also point out that more comprehensive, preclinical, and clinical studies will be needed to make ALA a better therapeutic agent for targeting kidney disorders.
  • Item
    Long-term intermittent fasting improves neurological function by promoting angiogenesis after cerebral ischemia via growth differentiation factor 11 signaling activation
    (PLOS, 2023-03-31) Liu, Zhao; Liu, Mengjie; Jia, Gongwei; Li, Jiani; Niu, Lingchuan; Zhang, Huiji; Qi, Yunwen; Sun, Houchao; Yan, Liang-Jun; Ma, Jingxi
    Intermittent fasting (IF), an alternative to caloric restriction, is a form of time restricted eating. IF conditioning has been suggested to have neuroprotective effects and potential long-term brain health benefits. But the mechanism underlying remains unclear. The present study focused on the cerebral angiogenesis effect of IF on ischemic rats. Using a rat middle cerebral artery occlusion model, we assessed neurological outcomes and various vascular parameters such as microvessel density (MVD), regional cerebral blood flow (rCBF), proliferation of endothelial cells (ECs), and functional vessels in the peri-infarct area. IF conditioning ameliorated the modified neurological severity score and adhesive removal test, increased MVD, and activated growth differentiation factor 11 (GDF11)/activin-like kinase 5 (ALK5) pathways in a time-dependent manner. In addition, long-term IF conditioning stimulated proliferation of ECs, promoted rCBF, and upregulated the total vessel surface area as well as the number of microvessel branch points through GDF11/ALK5 pathways. These data suggest that long-term IF conditioning improves neurological outcomes after cerebral ischemia, and that this positive effect is mediated partly by angiogenesis in the peri-infarct area and improvement of functional perfusion microvessels in part by activating the GDF11/ALK5 signaling pathway.
  • Item
    Reductive Stress-Induced Mitochondrial Dysfunction and Cardiomyopathy
    (Hindawi, 2020-05-29) Ma, Wei-Xing; Li, Chun-Yan; Tao, Ran; Wang, Xin-Ping; Yan, Liang-Jun
    The goal of this review was to summarize reported studies focusing on cellular reductive stress-induced mitochondrial dysfunction, cardiomyopathy, dithiothreitol- (DTT-) induced reductive stress, and reductive stress-related free radical reactions published in the past five years. Reductive stress is considered to be a double-edged sword in terms of antioxidation and disease induction. As many underlying mechanisms are still unclear, further investigations are obviously warranted. Nonetheless, reductive stress is thought to be caused by elevated levels of cellular reducing power such as NADH, glutathione, and NADPH; and this area of research has attracted increasing attention lately. Albeit, we think there is a need to conduct further studies in identifying more indicators of the risk assessment and prevention of developing heart damage as well as exploring more targets for cardiomyopathy treatment. Hence, it is expected that further investigation of underlying mechanisms of reductive stress-induced mitochondrial dysfunction will provide novel insights into therapeutic approaches for ameliorating reductive stress-induced cardiomyopathy.
  • Item
    Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases
    (Hindawi, 2019-11-11) Nandi, Ankita; Yan, Liang-Jun; Jana, Chandan Kumar; Das, Nilanjana
    Reactive species produced in the cell during normal cellular metabolism can chemically react with cellular biomolecules such as nucleic acids, proteins, and lipids, thereby causing their oxidative modifications leading to alterations in their compositions and potential damage to their cellular activities. Fortunately, cells have evolved several antioxidant defense mechanisms (as metabolites, vitamins, and enzymes) to neutralize or mitigate the harmful effect of reactive species and/or their byproducts. Any perturbation in the balance in the level of antioxidants and the reactive species results in a physiological condition called "oxidative stress." A catalase is one of the crucial antioxidant enzymes that mitigates oxidative stress to a considerable extent by destroying cellular hydrogen peroxide to produce water and oxygen. Deficiency or malfunction of catalase is postulated to be related to the pathogenesis of many age-associated degenerative diseases like diabetes mellitus, hypertension, anemia, vitiligo, Alzheimer's disease, Parkinson's disease, bipolar disorder, cancer, and schizophrenia. Therefore, efforts are being undertaken in many laboratories to explore its use as a potential drug for the treatment of such diseases. This paper describes the direct and indirect involvement of deficiency and/or modification of catalase in the pathogenesis of some important diseases such as diabetes mellitus, Alzheimer's disease, Parkinson's disease, vitiligo, and acatalasemia. Details on the efforts exploring the potential treatment of these diseases using a catalase as a protein therapeutic agent have also been described.
  • Item
    NADH/NAD(+) Redox Imbalance and Diabetic Kidney Disease
    (MDPI, 2021-05-14) Yan, Liang-Jun
    Diabetic kidney disease (DKD) is a common and severe complication of diabetes mellitus. If left untreated, DKD can advance to end stage renal disease that requires either dialysis or kidney replacement. While numerous mechanisms underlie the pathogenesis of DKD, oxidative stress driven by NADH/NAD(+) redox imbalance and mitochondrial dysfunction have been thought to be the major pathophysiological mechanism of DKD. In this review, the pathways that increase NADH generation and those that decrease NAD(+) levels are overviewed. This is followed by discussion of the consequences of NADH/NAD(+) redox imbalance including disruption of mitochondrial homeostasis and function. Approaches that can be applied to counteract DKD are then discussed, which include mitochondria-targeted antioxidants and mimetics of superoxide dismutase, caloric restriction, plant/herbal extracts or their isolated compounds. Finally, the review ends by pointing out that future studies are needed to dissect the role of each pathway involved in NADH-NAD(+) metabolism so that novel strategies to restore NADH/NAD(+) redox balance in the diabetic kidney could be designed to combat DKD.
  • Item
    Humanin Attenuates NMDA-Induced Excitotoxicity by Inhibiting ROS-dependent JNK/p38 MAPK Pathway
    (MDPI, 2018-09-29) Yang, Xiaorong; Zhang, Hongmei; Wu, Jinzi; Yin, Litian; Yan, Liang-Jun; Zhang, Ce
    Humanin (HN) is a novel 24-amino acid peptide that protects neurons against N-methyl-d-aspartate (NMDA)-induced toxicity. However, the contribution of the different mitogen-activated protein kinases (MAPKs) signals to HN neuroprotection against NMDA neurotoxicity remains unclear. The present study was therefore aimed to investigate neuroprotective mechanisms of HN. We analyzed intracellular Ca(2+) levels, reactive oxygen species (ROS) production, and the MAPKs signal transduction cascade using an in vitro NMDA-mediated excitotoxicity of cortical neurons model. Results showed that: (1) HN attenuated NMDA-induced neuronal insults by increasing cell viability, decreasing lactate dehydrogenase (LDH) release, and increasing cell survival; (2) HN reversed NMDA-induced increase in intracellular calcium; (3) pretreatment by HN or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM), an intracellular calcium chelator, decreased ROS generation after NMDA exposure; (4) administration of HN or N-Acetyl-l-cysteine (NAC), a ROS scavenger, inhibited NMDA-induced JNK and p38 MAPK activation. These results indicated that HN reduced intracellular elevation of Ca(2+) levels, which, in turn, inhibited ROS generation and subsequent JNK and p38 MAPK activation that are involved in promoting cell survival in NMDA-induced excitotoxicity. Therefore, the present study suggests that inhibition of ROS-dependent JNK/p38 MAPK signaling pathway serves an effective strategy for HN neuroprotection against certain neurological diseases.
  • Item
    Redox imbalance stress in diabetes mellitus: Role of the polyol pathway
    (John Wiley & Sons Australia, Ltd, 2018-04-19) Yan, Liang-Jun
    In diabetes mellitus, the polyol pathway is highly active and consumes approximately 30% glucose in the body. This pathway contains 2 reactions catalyzed by aldose reductase (AR) and sorbitol dehydrogenase, respectively. AR reduces glucose to sorbitol at the expense of NADPH, while sorbitol dehydrogenase converts sorbitol to fructose at the expense of NAD(+), leading to NADH production. Consumption of NADPH, accumulation of sorbitol, and generation of fructose and NADH have all been implicated in the pathogenesis of diabetes and its complications. In this review, the roles of this pathway in NADH/NAD(+) redox imbalance stress and oxidative stress in diabetes are highlighted. A potential intervention using nicotinamide riboside to restore redox balance as an approach to fighting diabetes is also discussed.
  • Item
    Neuroprotection of Cyperus esculentus L. orientin against cerebral ischemia/reperfusion induced brain injury
    (Wolters Kluwer - Medknow, 2020-03) Jing, Si-Qun; Wang, Sai-Sai; Zhong, Rui-Min; Zhang, Jun-Yan; Wu, Jin-Zi; Tu, Yi-Xian; Pu, Yan; Yan, Liang-Jun
    Orientin is a flavonoid monomer. In recent years, its importance as a source of pharmacological active substance is growing rapidly due to its properties such as anti-myocardial ischemia, anti-apoptosis, anti-radiation, anti-tumor, and anti-aging. However, the neuroprotective effects of Orientin on stroke injury have not been comprehensively evaluated. The aim of the present study was thus to investigate the neuroprotective capacity and the potential mechanisms of Cyperus esculentus L. orientin (CLO) from Cyperus esculentus L. leaves against ischemia/reperfusion (I/R) injury using standard orientin as control. For in vitro studies, we treated HT22 cells with CoCl2 as an in vitro ischemic injury model. HT22 cells in the control group were treated with CoCl2. For in vivo studies, we used rat models of middle cerebral artery occlusion, and animals that received sham surgery were used as controls. We found that CLO protected CoCl2-induced HT22 cells against ischemia/reperfusion injury by lowering lipid peroxidation and reactive oxygen species formation as well as decreasing protein oxidation. However, CLO did not reduce the release of lactate dehydrogenase nor increase the activity of superoxide dismutase. Results showed that CLO could decrease neurological deficit score, attenuate brain water content, and reduce cerebral infarct volume, leading to neuroprotection during cerebral ischemia-reperfusion injury. Our studies indicate that CLO flavonoids can be taken as a natural antioxidant and bacteriostastic substance in food and pharmaceutical industry. The molecular mechanisms of CLO could be at least partially attributed to the antioxidant properties and subsequently inhibiting activation of casepase-3. All experimental procedures and protocols were approved on May 16, 2016 by the Experimental Animal Ethics Committee of Xinjiang Medical University of China (approval No. IACUC20160516-57).
  • Item
    Redox Imbalance and Mitochondrial Abnormalities in Kidney Disease
    (MDPI, 2022-03-21) Yan, Liang-Jun
    Note: In lieu of an abstract, this is an excerpt from the first page. The kidneys carry out fundamental life-sustaining functions by removing waste substances, controlling salt and water balance, retaining substances vital to the body such as glucose and proteins, and maintaining blood pH balance.
  • Item
    Folic acid-induced animal model of kidney disease
    (John Wiley & Sons Australia, Ltd, 2021-11-24) Yan, Liang-Jun
    The kidneys are a vital organ that is vulnerable to both acute kidney injury (AKI) and chronic kidney disease (CKD) which can be caused by numerous risk factors such as ischemia, sepsis, drug toxicity and drug overdose, exposure to heavy metals, and diabetes. In spite of the advances in our understanding of the pathogenesis of AKI and CKD as well AKI transition to CKD, there is still no available therapeutics that can be used to combat kidney disease effectively, highlighting an urgent need to further study the pathological mechanisms underlying AKI, CKD, and AKI progression to CKD. In this regard, animal models of kidney disease are indispensable. This article reviews a widely used animal model of kidney disease, which is induced by folic acid (FA). While a low dose of FA is nutritionally beneficial, a high dose of FA is very toxic to the kidneys. Following a brief description of the procedure for disease induction by FA, major mechanisms of FA-induced kidney injury are then reviewed, including oxidative stress, mitochondrial abnormalities such as impaired bioenergetics and mitophagy, ferroptosis, pyroptosis, and increased expression of fibroblast growth factor 23 (FGF23). Finally, application of this FA-induced kidney disease model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given that this animal model is simple to create and is reproducible, it should remain useful for both studying the pathological mechanisms of kidney disease and identifying therapeutic targets to fight kidney disease.
  • Item
    Chronic Inhibition of Mitochondrial Dihydrolipoamide Dehydrogenase (DLDH) as an Approach to Managing Diabetic Oxidative Stress
    (MDPI, 2019-02-02) Yang, Xiaojuan; Song, Jing; Yan, Liang-Jun
    Mitochondrial dihydrolipoamide dehydrogenase (DLDH) is a redox enzyme involved in decarboxylation of pyruvate to form acetyl-CoA during the cascade of glucose metabolism and mitochondrial adenine triphosphate (ATP) production. Depending on physiological or pathophysiological conditions, DLDH can either enhance or attenuate the production of reactive oxygen species (ROS) and reactive nitrogen species. Recent research in our laboratory has demonstrated that inhibition of DLDH induced antioxidative responses and could serve as a protective approach against oxidative stress in stroke injury. In this perspective article, we postulated that chronic inhibition of DLDH could also attenuate oxidative stress in type 2 diabetes. We discussed DLDH-involving mitochondrial metabolic pathways and metabolic intermediates that could accumulate upon DLDH inhibition and their corresponding roles in abrogating oxidative stress in diabetes. We also discussed a couple of DLDH inhibitors that could be tested in animal models of type 2 diabetes. It is our belief that DLDH inhibition could be a novel approach to fighting type 2 diabetes.
  • Item
    Cadmium-Induced Kidney Injury: Oxidative Damage as a Unifying Mechanism
    (MDPI, 2021-10-23) Yan, Liang-Jun; Allen, Daniel C.
    Cadmium is a nonessential metal that has heavily polluted the environment due to human activities. It can be absorbed into the human body via the gastrointestinal tract, respiratory tract, and the skin, and can cause chronic damage to the kidneys. The main site where cadmium accumulates and causes damage within the nephrons is the proximal tubule. This accumulation can induce dysfunction of the mitochondrial electron transport chain, leading to electron leakage and production of reactive oxygen species (ROS). Cadmium may also impair the function of NADPH oxidase, resulting in another source of ROS. These ROS together can cause oxidative damage to DNA, proteins, and lipids, triggering epithelial cell death and a decline in kidney function. In this article, we also reviewed evidence that the antioxidant power of plant extracts, herbal medicines, and pharmacological agents could ameliorate cadmium-induced kidney injury. Finally, a model of cadmium-induced kidney injury, centering on the notion that oxidative damage is a unifying mechanism of cadmium renal toxicity, is also presented. Given that cadmium exposure is inevitable, further studies using animal models are warranted for a detailed understanding of the mechanism underlying cadmium induced ROS production, and for the identification of more therapeutic targets.
  • Item
    Pancreatic mitochondrial complex I exhibits aberrant hyperactivity in diabetes
    (Elsevier Inc., 2017-07-19) Wu, Jinzi; Luo, Xiaoting; Thangthaeng, Nopporn; Sumien, Nathalie; Chen, Zhenglan; Rutledge, Margaret A.; Jing, Siqun; Forster, Michael J.; Yan, Liang-Jun
    It is well established that NADH/NAD(+) redox balance is heavily perturbed in diabetes, and the NADH/NAD(+) redox imbalance is a major source of oxidative stress in diabetic tissues. In mitochondria, complex I is the only site for NADH oxidation and NAD(+) regeneration and is also a major site for production of mitochondrial reactive oxygen species (ROS). Yet how complex I responds to the NADH/NAD(+) redox imbalance and any potential consequences of such response in diabetic pancreas have not been investigated. We report here that pancreatic mitochondrial complex I showed aberrant hyperactivity in either type 1 or type 2 diabetes. Further studies focusing on streptozotocin (STZ)-induced diabetes indicate that complex I hyperactivity could be attenuated by metformin. Moreover, complex I hyperactivity was accompanied by increased activities of complexes II to IV, but not complex V, suggesting that overflow of NADH via complex I in diabetes could be diverted to ROS production. Indeed in diabetic pancreas, ROS production and oxidative stress increased and mitochondrial ATP production decreased, which can be attributed to impaired pancreatic mitochondrial membrane potential that is responsible for increased cell death. Additionally, cellular defense systems such as glucose 6-phosphate dehydrogenase, sirtuin 3, and NQO1 were found to be compromised in diabetic pancreas. Our findings point to the direction that complex I aberrant hyperactivity in pancreas could be a major source of oxidative stress and beta cell failure in diabetes. Therefore, inhibiting pancreatic complex I hyperactivity and attenuating its ROS production by various means in diabetes might serve as a promising approach for anti-diabetic therapies.