Publications -- Dorette Ellis

Permanent URI for this collection

This collection is limited to articles published under the terms of a creative commons license or other open access publishing agreement since 2016. It is not intended as a complete list of the author's works.


Recent Submissions

Now showing 1 - 3 of 3
  • Item
    Modulation of Mitochondrial Metabolic Parameters and Antioxidant Enzymes in Healthy and Glaucomatous Trabecular Meshwork Cells with Hybrid Small Molecule SA-2
    (MDPI, 2023-07-29) Amankwa, Charles E.; Young, Olivia; DebNath, Biddut; Gondi, Sudershan R.; Rangan, Rajiv; Ellis, Dorette Z.; Zode, Gulab S.; Stankowska, Dorota L.; Acharya, Suchismita
    Oxidative stress (OS)-induced mitochondrial damage is a risk factor for primary open-angle glaucoma (POAG). Mitochondria-targeted novel antioxidant therapies could unearth promising drug candidates for the management of POAG. Previously, our dual-acting hybrid molecule SA-2 with nitric oxide-donating and antioxidant activity reduced intraocular pressure and improved aqueous humor outflow in rodent eyes. Here, we examined the mechanistic role of SA-2 in trabecular meshwork (TM) cells in vitro and measured the activity of intracellular antioxidant enzymes during OS. Primary human TM cells isolated from normal (hNTM) or glaucomatous (hGTM) post-mortem donors and transformed glaucomatous TM cells (GTM-3) were used for in vitro assays. We examined the effect of SA-2 on oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in vitro using Seahorse Analyzer with or without the oxidant, tert-butyl hydroperoxide (TBHP) treatment. Concentrations of total antioxidant enzymes, catalase (CAT), malondialdehyde (MDA), and glutathione peroxidase (GPx) were measured. We observed significant protection of both hNTM and hGTM cells from TBHP-induced cell death by SA-2. Antioxidant enzymes were elevated in SA-2-treated cells compared to TBHP-treated cells. In addition, SA-2 demonstrated an increase in mitochondrial metabolic parameters. Altogether, SA-2 protected both normal and glaucomatous TM cells from OS via increasing mitochondrial energy parameters and the activity of antioxidant enzymes.
  • Item
    Sigma-1R Protects Retinal Ganglion Cells in Optic Nerve Crush Model for Glaucoma
    (ARVO Journals, 2021-08-18) Li, Linya; He, Shaoqing; Liu, Yang; Yorio, Thomas; Ellis, Dorette Z.
    Purpose: The purpose of this study was to determine the effects of the Sigma-1R (sigma-1r) on retinal ganglion cell (RGC) survival following optic nerve crush (ONC) and the signaling mechanism involved in the sigma-1r protection. Methods: The overall strategy was to induce injury by ONC and mitigate RGC death by increasing sigma-1r expression and/or activate sigma-1r activity in sigma-1r K/O mice and wild type (WT) mice. AAV2-sigma-1r vector was used to increase sigma-1r expression and sigma-1r agonist used to activate the sigma-1r and RGCs were counted. Immunohistochemical and Western blot analysis determined phosphorylated (p)-c-Jun, c-Jun, and Caspase-3. Pattern electroretinography (PERG) determined RGC activity. Results: RGC counts and function were similar in pentazocine-treated WT mice when compared to untreated mice and in WT mice when compared with sigma-1r K/O mice. Pentazocine-induced effects and the effects of sigma-1r K/O were only observable after ONC. ONC resulted in decreased RGC counts and activity in both WT and sigma-1r K/O mice, with sigma-1r K/O mice experiencing significant decreases compared with WT mice. The sigma-1r transgenic expression resulted in increased RGC counts and activity following ONC. In WT mice, treatment with sigma-1r agonist pentazocine resulted in increased RGC counts and increased activity when compared with untreated WT mice. There were time-dependent increases in c-jun, p-c-jun, and caspase-3 expression in ONC mice that were mitigated with pentazocine-treatment. Conclusions: These findings suggest that the apoptotic pathway is involved in RGC losses seen in an ONC model. The sigma-1r offers neuroprotection, as activation and/or transgenic expression of sigma-1r attenuated the apoptotic pathway and restored RGCs number and function following ONC.
  • Item
    Novel Thiol Containing Hybrid Antioxidant-Nitric Oxide Donor Small Molecules for Treatment of Glaucoma
    (MDPI, 2021-04-08) Amankwa, Charles E.; Gondi, Sudershan R.; Dibas, Adnan Dibas; Weston, Courtney; Funk, Arlene; Nguyen, Tam; Nguyen, Kytai T.; Ellis, Dorette Z.; Acharya, Suchismita
    Oxidative stress induced death and dysregulation of trabecular meshwork (TM) cells contribute to the increased intraocular pressure (IOP) in primary open angle (POAG) glaucoma patients. POAG is one of the major causes of irreversible vision loss worldwide. Nitric oxide (NO), a small gas molecule, has demonstrated IOP lowering activity in glaucoma by increasing aqueous humor outflow and relaxing TM. Glaucomatous pathology is associated with decreased antioxidant enzyme levels in ocular tissues causing increased reactive oxygen species (ROS) production that reduce the bioavailability of NO. Here, we designed, synthesized, and conducted in vitro studies of novel second-generation sulfur containing hybrid NO donor-antioxidants SA-9 and its active metabolite SA-10 to scavenge broad-spectrum ROS as well as provide efficient protection from t-butyl hydrogen peroxide (TBHP) induced oxidative stress while maintaining NO bioavailability in TM cells. To allow a better drug delivery, a slow release nanosuspension SA-9 nanoparticles (SA-9 NPs) was prepared, characterized, and tested in dexamethasone induced ocular hypertensive (OHT) mice model for IOP lowering activity. A single topical eye drop of SA-9 NPs significantly lowered IOP (61%) at 3 h post-dose, with the effect lasting up to 72 h. This class of molecule has high potential to be useful for treatment of glaucoma.